
Programmatic Muddle Management

Dimitrios S. Kolovos, Nicholas Matragkas,
Horacio Hoyos Rodríguez, and Richard F. Paige

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK
{dimitris.kolovos, nicholas.matragkas,

hhr502, richard.paige}@york.ac.uk

Abstract. In this paper we demonstrate how diagrams constructed us-
ing general-purpose drawing tools in the context of agile language de-
velopment processes can be annotated and consumed by model manage-
ment programs (such as simulators, model-to-model and model-to-text
transformations). The aim of this work is to enable engineers to engage
in programmatic model management early in the language development
process, so that they can explore whether or not the languages and mod-
els constructed are fit for purpose. We demonstrate a proof-of-concept
prototype developed atop the Epsilon platform and a flexible graph def-
inition language (GraphML).

1 Introduction

The quality and usefulness of a Domain Specific Language (DSL) depends on
accurately identifying the domain concepts, their features and relationships. As
such, the involvement of domain experts in the language development process
is crucial. In the early stages of the language development process, domain ex-
perts often provide informal example diagrams/sketches from which engineers
can infer a first version of the metamodel of the envisioned language. To ob-
tain additional feeback, engineers then need to develop an initial version of a
language-specific modelling tool that enables domain experts to further experi-
ment with the language. This typically constitutes the first step of an iterative
process during which the metamodel of the language can undergo several revi-
sions. When 3-layer modelling frameworks such as MOF/EMF are used, for each
change in the metamodel, language engineers need to update and re-deploy a new
version of the modelling tool, and for non-additive changes to the metamodel
they also need to provide support for automated migration of older models.

To achieve shorter and more efficient iteration cycles, several techniques that
challenge this top-down metamodel-centric approach have recently been pro-
posed. In such approaches, the early phases of the language development process
involve the construction of example diagrams using flexible drawing tools, which
can be used to (semi-)automatically infer a rigid metamodel only once sufficient
confidence in the completeness and maturity of the language has been developed.

In this paper we argue that example diagrams constructed in the context of
this process should also be processable by model management programs (such

2 D. Kolovos et. al.

as simulators, model-to-model and model-to-text transformations) so that engi-
neers can develop additional and early confidence that the constructed language
is fit for purpose. The rest of the paper is organised as follows. In Section 2 we
provide an overview of related work in the field of bottom-up and agile metamod-
elling. In Section 3 we illustrate an approach for enabling engineers to engage in
programmatic model management activities early in the language development
process, and demonstrate a proof-of-concept prototype developed atop the Ep-
silon platform and a flexible graph definition language (GraphML). In Section 4
we conclude and provide directions to further work.

2 Background and Motivation

In [1], the authors propose an example-driven approach where users are able to
construct informal diagrams using the Dia drawing tool, and these diagrams are
then used to infer appropriate metamodels in an interactive manner. Similarly,
in [2] the authors introduce a systematic semi-automated approach to create
visual DSLs from a set of domain model examples provided by an end-user.
The MetAmodel Recovery System (MARS) [3] is a semi-automatic inference-
based system for recovering a metamodel from a set of instance models through
application of grammar inference algorithms. This approach does not rely on
example models provided by end-users, but it relies on models, which no longer
conform to a metamodel due to its evolution. In [4], the authors present a tool
(GraCoT) that supports co-development of EMF models and metamodels, in
a loosely-coupled manner that promotes agility and simplifies the process of
co-evolution.

To our knowledge, research in this area so far has focused solely on agile
model construction and automated metamodel inference. In our view, to further
validate the maturity and completeness of a metamodel, it is also important for
language engineers to develop some confidence that models conforming to this
metamodel can support the automated model management operations involved
in the envisioned MDE workflow (simulation, model-to-model and model-to-text
transformation etc.)

3 Proposed Approach

In this paper we illustrate an approach for rendering diagrams constructed using
general-purpose drawing tools amenable to programmatic model management.
An overview of the proposed approach is illustrated in Figure 1. Consistently
with previously-proposed bottom-up metamodelling techniques, in this approach
language engineers and domain experts can start the language development pro-
cess by drawing diagrams depicting example models, which (conceptually) con-
form to the envisioned language, using a general purpose diagram drawing tool.

In the next stage, engineers can augment these conceptual diagrams using
a set of predefined textual annotations (discussed in Section 3.2) to specify the

alfonso
Rectangle

alfonso
Sticky Note
Marked set by alfonso

alfonso
Sticky Note
Accepted set by alfonso

Programmatic Muddle Management 3

types and features of diagram elements of interest in an agile manner. Anno-
tated diagrams are then automatically transformed into an intermediate repre-
sentation (muddle) that can be programmatically managed using existing model
management languages.

In this work we use GraphML, the conceptual metamodel of which is illus-
trated in Figure 2, for diagram drawing, and languages of the Epsilon platform
[5] for automated model management, but in principle this approach should be
applicable to other diagram formats and model management languages.

Fig. 1. Process Overview

Fig. 2. GraphML Metamodel

3.1 Running Example

We illustrate the process of constructing, annotating, and programmatically
managing GraphML diagrams through a running example. In this example, our
aim is to define a flowchart language that supports timed events and delays. To
develop some confidence that the envisioned language is feature-complete, we
also need to implement a proof-of-concept program that can execute/simulate
models that conform to the language.

alfonso
Rectangle

4 D. Kolovos et. al.

We start by using the yEd1 GraphML-compliant tool to draw an example
diagram that conceptually conforms to the envisioned flowchart language. The
diagram, illustrated in Figure 3 consists of labeled rectangles which conceptually
represent actions, a diamond which represents a decision, directed edges which
represent transitions, a hexagon that represents the triggering event, a circle
which represents a delay, and a hexagon which represents the time at which the
attached event should fire for the first time.

Fig. 3. Flowchart Diagram

We now take a leap and in Listing 1.1 we present the implementation of
a simple simulator for such flowcharts, expressed in the Epsilon Object Lan-
guage [6], an imperative OCL-based model query and transformation language.
We provide a brief overview of the behaviour and the organisation of the simu-
lator and then demonstrate how we need to annotate the diagram of Figure 3
so that the simulator program can use it as an input model that can drive its
execution.

1 var event = Event.all.selectOne(e|e.entryPoint = true);
2 var time = event.time.hours.toMinutes();
3 event.process();
4
5 operation Event process() {
6 ("Event: " + self.name + " at " + time.toHours()).println();
7 self.outgoing.at(0).target.process();
8 }
9

10 operation Action process() {
11 ("Action: " + self.name).println();
12 if (not self.outgoing.isEmpty()) {
13 self.outgoing.at(0).target.process();
14 }
15 }
16 operation Decision process() {
17 ("Decision: " + self.name).println();
18 var random = self.outgoing.random();
19 ("Chose: " + random.name).println();
20 random.target.process();
21 }
22
23 operation Delay process() {
24 time = time + self.mins;
25 ("Waited for " + self.mins + "mins").println();

1 http://www.yworks.com/en/products_yed_about.html

Programmatic Muddle Management 5

26 self.outgoing.at(0).target.process();
27 }
28
29 operation String toMinutes() : Integer {
30 var parts = self.split(":");
31 return parts[0].asInteger() * 60 + parts[1].asInteger();
32 }
33
34 operation Integer toHours() : String {
35 return (self / 60).asString().pad(2, "0", false) +
36 ":" + (self - (self / 60)*60).asString().pad(2, "0", false);
37 }

Listing 1.1. Simple flowchart simulator

– Assuming that a flowchart can contain many events, in line 1 we select one
event that has its entryPoint attribute set to true;

– In line 3, we keep a copy of the time (converted to minutes) at which this
event is fired for the first time;

– In line 4, we process the target of the first outgoing transition of the event;
Calls to process() operations are dynamically dispatched depending on the
type of their context object, and behave as discussed below;

– The Event.process() operation prints a message and processes the target of
its first outgoing transition;

– The Action.process() operation prints a message and then, if the action has
any outgoing transition, it processes the target of the first of them;

– The Decision.process() operation chooses a random outgoing transition, prints
its name and processes its target;

– The Delay.process() operation adds the delay time to the global time, prints
a message and then processes the target of its first outgoing transition;

– The toMinutes() and toHours() operations can convert HH:MM-formatted
time strings to integers (number of minutes) and vice versa.

A sample execution trace of the simulator appears below.

1 Event: Alarm clock rings at 08:00
2 Action: Wake up
3 Decision: Is it too early?
4 Chose: yes
5 Action: Hit snooze
6 Waited for 10mins

7 Event: Alarm clock rings at 08:10
8 Action: Wake up
9 Decision: Is it too early?

10 Chose: no
11 Action: Get up

3.2 Annotating GraphML Diagrams

To facilitate the execution of model management programs such as the one il-
lustrated in Listing 1.1, we need to annotate diagram elements with additional
information. For example, we need to declare that the type of all rectangle nodes
in this diagram is Action, and that the type of directed edges is Transition. As
GraphML does not provide built-in support for capturing type-related informa-
tion for nodes and edges, we need to use GraphML’s extensibility facilities2 to
define Type extension fields for nodes and edges.
2 http://docs.yworks.com/yfiles/doc/developers-guide/graphml.
html

6 D. Kolovos et. al.

The value of the Type extension field of a node/edge needs to adhere to the
name (> name)* pattern, where > is used to denote inheritance. For exam-
ple, by setting the Type field of the Wake up node to Action > FlowchartEle-
ment, we define that the node is an instance of the Action type, and that the
FlowchartElement type is a super-class of Action. All types are unique by name
and are created the first time they are encountered in the diagram. For example,
by subsequently setting the Type field of Hit snooze to Action, we are reusing
the Action type defined in Wake up instead of creating a new one. Beyond type-
related information, we also need to capture additional information using the
following GraphML extensions summarised in Table 1.

Table 1: GraphML extensions

Extension For Description Pattern

Properties Node,
Edge

Descriptors and values
for primitive attributes of
nodes/edges

(int|String|boolean|real)?
(*)? name (= value)?

Default Node,
Edge

Descriptor of the slot under
which the first label of the
node/edge should be made ac-
cessible

(int|String|boolean|real)?
name

Source role Edge Descriptor of the role of the
source end of the edge

name (*)?

Target role Edge Descriptor of the role of the
target end of the edge

name (*)?

Role in source Edge Descriptor of the role of the
edge in its source node

name (*)?

Role in target Edge Descriptor of the role of the
edge in its target node

name (*)?

The value of the Properties field of a node/edge can contain zero or more
lines of text. Each line needs to adhere to the pattern above and define the
type, multiplicity, name and value of the property. For example, by setting the
value of the Type field of the Alarm clock rings node to Event and the text of
its Properties field to boolean startEvent = true, we define that the node has a
single-valued boolean startEvent property, with a value set to true.

The value of the Default field should conform to the pattern above and define
the name of the default slot of the node/edge and, optionally, its primitive type
(defaults to String). For example, by setting the Default field of the Wake up
node to name, the first label of the node that does not match the property
descriptor pattern (in this case, the Wake up label), will be made accessible
through a name property of type String.

The values of the Source role, Target role, Role in source, and Role in target
fields of an edge define the name and multiplicity of the respective roles. For
example, in the yes transition we define the following values for these properties:

Programmatic Muddle Management 7

Source role: source, Target role: target, Role in source: outgoing *, Role in target:
incoming *.

3.3 Deriving a Muddle

The next step of the process is to parse the annotated GraphML diagram and
construct an intermediate model (muddle) that conforms to the metamodel of
Figure 4. This is achieved through a multi-pass transformation which is trans-
parent to the end-user and which comprises the following steps.

Fig. 4. Intermediate (Muddle) Metamodel

1. For every typed node in the graph, it creates an empty MuddleElement in
the intermediate model and its corresponding MuddleElementType (if the
latter does not already exist). It also looks for nodes for which the Default
field has a valid value. When this happens, the value of the Default field is
used to produce a primary Feature which is added to the type of the created
MuddleElement ;

2. Iterates through the created elements and creates/populates their slots, based
on the descriptors provided in the Properties field of the node. Again, for
each new property a Feature is created and added to the type of the ele-
ment. As such, by setting the value of the Properties field of Alarm clock
rings to boolean startEvent = true, all model elements of type Event obtain
a single-valued startEvent boolean feature;

3. Iterates through the labeled and untyped edges of the graph (e.g. the time
edge in the diagram of Figure 3). For each edge, it adds an untyped Feature
to the type of its source muddle element, a respective Slot to the source
muddle element, and adds the target of the edge to the values of the slot;

4. Iterates through the unlabeled and untyped edges of the graph and attempts
to fit their targets into appropriate slots of the source muddle elements (i.e.
slots that already contain at least one value of the same type);

8 D. Kolovos et. al.

5. For every typed edge of the graph it creates an empty MuddleElement and
its corresponding LinkElementType, similar to what was discussed for nodes
in step 1. It also attempts to create primary, role in source, role in target,
source and target Features for the created LinkElementTypes;

6. Iterates through the typed edges of the graph and creates/populates their
slots similar to what was discussed in step 2;

7. Adjusts the multiplicities of features based on the maximum number of values
of their slots. In this process, single-valued features, slots of which contain
more than one values become multi-valued (but not the opposite).

3.4 Consuming Muddles in Epsilon Programs

Epsilon provides an abstraction layer (Epsilon Model Connectivity – EMC3)
that shields the languages of the platform from the intricacies of concrete model
representations and enables them to access models conforming to a wide range of
technologies. To enable Epsilon languages to access muddles, we have developed
a new driver that implements the set of interfaces required by EMC. Due to
space restrictions, a detailed discussion on the new driver is beyond the scope of
this paper.

The driver enables all languages in Epsilon to query muddles. For example,
in addition to the simulator of Listing 1.1, Listing 1.2 demonstrates an exemplar
constraint written in the validation language of the platform (EVL4), and Listing
1.3 demonstrates an exemplar model-to-text transformation written in EGL5.

1 context Decision {
2 constraint HasMoreThanOneOutgoingTransitions {
3 check: self.outgoing.size() > 2
4 message: "Decision " + self.name + " needs to have at least 2 outgoing

transitions"
5 }
6 }

Listing 1.2. Validation constraint for flowchart models

1 The flowchart has [%=Action.all.size()%] actions:
2 [%for (action in Action.all) {%]
3 - [%=action.name%]
4 [%}%]

Listing 1.3. Model-to-text transformation for flowchart models

4 Conclusions and Further Work

In this paper we have argued for the importance of enabling engineers to engage
in exploratory model management operations early on in the language devel-
opment process and demonstrated an approach and a prototype that enables
3 http://www.eclipse.org/epsilon/doc/emc
4 http://www.eclipse.org/epsilon/doc/evl
5 http://www.eclipse.org/epsilon/doc/egl

Programmatic Muddle Management 9

engineers to annotate and programmatically manage GraphML diagrams using
languages of the Epsilon platform. In the future, we plan to investigate support-
ing additional GraphML constructs such as subgraphs and hyperedges.

In our view, while constructing diagrams using using general-purpose draw-
ing tools can be very useful in the early phases of the language development
process, it can become cumbersome and error-prone as the example diagrams
and the DSL become larger and more mature - at which stage a transition to a
language-specific modelling tool should be consider. To reduce the overhead of
this transition, we plan to investigate inferring annotated metamodels that can
then be consumed by tools such as Eugenia6 to automatically generate language-
specific model editors.

Acknowledgements

This research was part supported by the EPSRC, through the Large-Scale Com-
plex IT Systems project (EP/F001096/1) and by the EU, through the Auto-
mated Measurement and Analysis of Open Source Software (OSSMETER) FP7
STREP project (318736).

References

1. Jesús Sánchez-Cuadrado, Juan Lara, and Esther Guerra. Bottom-up meta-
modelling: An interactive approach. In Robert France, Jürgen Kazmeier, Ruth
Breu, and Colin Atkinson, editors, Model Driven Engineering Languages and Sys-
tems, volume 7590 of Lecture Notes in Computer Science, pages 3–19. Springer
Berlin Heidelberg, 2012.

2. Hyun Cho, J. Gray, and E. Syriani. Creating visual domain-specific modeling lan-
guages from end-user demonstration. In Modeling in Software Engineering (MISE),
2012 ICSE Workshop on, pages 22–28, 2012.

3. Faizan Javed, Marjan Mernik, Jeff Gray, and Barrett R. Bryant. Mars: A metamodel
recovery system using grammar inference. Inf. Softw. Technol., 50(9-10):948–968,
August 2008.

4. Villalobos J. Gómez P., Sánchez M. Gracot, a tool for co-creation of models and
metamodels in specific domains. In Proc. Academics Tooling with Eclipse (ACME
2013) at European Conference on Object-Oriented Programming (ECOOP2013).
ACM, 2013.

5. Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos, Fiona
A.C. Polack. The Design of a Conceptual Framework and Technical Infrastruc-
ture for Model Management Language Engineering. In Proc. 14th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, Potsdam, Ger-
many, 2009.

6. Dimitrios S. Kolovos, Richard F.Paige and Fiona A.C. Polack. The Epsilon Object
Language. In Proc. European Conference in Model Driven Architecture (EC-MDA)
2006, volume 4066 of LNCS, pages 128–142, Bilbao, Spain, July 2006.

6 http://www.eclipse.org/epsilon/doc/eugenia

