
Supporting Agility in MDE Through Modeling
Language Relaxation

Rick Salay and Marsha Chechik

University of Toronto
Toronto, Canada

{rsalay, chechik}@cs.toronto.edu

Abstract. Agility requires expressive freedom for the modeler; however,
automated MDE processes such as transformations require models to
conform to strict constraints (e.g. well-formed rules). One way out of this
apparent conflict is to allow a “relaxed” version of a modeling language to
be used by modelers and then use tool support to “tighten” such models
so that they are conformant to the original constraints. In this paper,
we explore the issues of relaxation and tightening of modeling languages
and discuss the possibilities for tool support.

1 Introduction

The problem of agility in MDE arises because graphical models have two very
different kinds of users: humans and programs. Humans use models to express
themselves and communicate with each other. Programs manipulate models to
do analyses or to transform them into other models. These two types of users
give rise to a modeling dilemma: humans want expressive freedom and can cope
with relaxed rules while programs need models to conform to precise constraints.
How can this agility conflict be reconciled?

In this paper, we propose a transformation-based framework for addressing
the agility conflict for a given modeling language by meeting the needs of both
kinds of users. Human needs are satisfied by relaxing the language to permit
greater expressive freedom. Program needs are satisfied by defining a tightening
transformation that converts the model in the relaxed language back into the
original, more strict, language.

We limit our scope by focussing on supporting two kinds of agility: omission
agility – allowing the modeler to omit information in the model in order to
express uncertainty, irrelevance, etc., and clarity agility – allowing the modeler to
express information in the model more concisely or differently to improve clarity.
Although our scope is limited, the usefulness of these forms of agility is justified
by work in the philosophy of language relating to human communication. For
example, Grice defines a “cooperative principle” that gives four maxims that
hold in effective human communication [4]: quantity – making the contribution
as informative as is required but no more informative than required; quality –
being truthful; relation – being relevant; and manner – being clear. Both types

of agility we handle address quantity, relation and manner, whereas quality (i.e.,
truthfulness) is an orthogonal issue and is independent of language relaxation.

The paper is structured as follows. In Section 2, we illustrate different aspects
of the two agility types using five examples. In Section 3, we give a preliminary
framework for language relaxation and tightening and show how it can address
our examples. Section 4 explores possible tool support for the framework. We
discuss related work in Section 5 and conclude in Section 6.

2 Language relaxation and tightening by example

A modeling language can be relaxed in several different ways. In this section,
we explore some of these possibilities using the examples depicted in Figure 1
(A-E), referring to these as Examples A-E, respectively. All of the examples use
the language of UML class diagrams (CD). In the discussion below, assume that
the metamodel of CD consists of a vocabulary defining the element and relation
types in the language and a set of constraints defining well-formedness – i.e., a
well-formed model must conform to the constraints. For each example, we first
state what the modeler is attempting to express and the type of agility required,
then describe the relaxation aimed to achieve this and finally, introduce the
tightening transformation required.

Example A. The modeler wants to express that she doesn’t yet know what sits
on the other end of the controlledBy association (omission agility). To do this,
she weakens the well-formedness constraint that a binary association must have
a class on both ends. The tightening transformation assigns a class to the target
of the controlledBy association. Since there is choice here (i.e., an existing class
or a new class), this choice must be resolved.

Example B. The modeler wants to express that in the parallel inheritance hi-
erarchies, the classes Car/Driver and Plane/Pilot are the intended pairings
with the controlledBy association (clarity agility). To do this, she uses the ver-
tical alignment in the layout to indicate the correspondences. Note that neither
the vocabulary nor the constraints of the concrete syntax are affected, but the
expressive power of the language is extended by giving the spatial relation of
vertical alignment a special meaning. The tightening transformation defines an
OCL constraint for each occurrence of the vertical alignment of a pair of classes
that extend Vehicle/Operator to enforce the intended constraint.

Example C. The modeler wants to indicate that she isn’t sure which class
should hold the park() operation (omission agility). To express this, she wants
to link park() to both classes but to do that, it would have to be simultane-
ously contained in two boxes. This “physical” constraint, which enforces the
well-formedness constraint that an operation is owned by one class, cannot be
weakened unless the boxes are made to overlap. Instead, for clarity, she opts for
extending the vocabulary to allow operations to be specified externally to a class,
using an ellipse and linked to the class with a dashed line (clarity agility). The
tightening transformation adds an operation to a class for each ellipse linked to

2

the class. Since in this example, two owners of the operation park() are specified
and this violates a well-formedness constraint, there is a choice (i.e., which class
is the owner?) that needs to be resolved.

Example D. To reduce clutter, the modeler wants to put the name of the
class outside, but close to, its box (clarity agility). To do this, she weakens
the constraint that the class name is inside the box at the top. The tightening
transformation defines text close to a class box as being the name of the class.
To operationalize it, the definition of “closeness” must be given.

Example E. The modeler wants to express the fact that certain classes are
“connected” without being specific about the type of connection – it can be a
generalization, an association, etc. (omission agility). To do this, she extends the
vocabulary with a special dashed line to indicate this relation. The tightening
transformation resolves the dashed line to one of the class diagram relations that
can hold between classes. Since there is choice here, someone needs to make it.

3 Towards a framework for relaxation and tightening

Our ultimate goal is to develop a framework for the relaxation and tightening
of modeling languages to address the agility conflict. In this section, we use the
examples of Section 2 to discuss the characterizing features of relaxation and
tightening that could be parts of such a framework.

The approach is given schematically in Figure 2. We assume that a modeling
language has a transformation c2a that generates the abstract syntax for a model
expressed using its concrete syntax. Modeling agility is supported by allowing
the modeler to relax the concrete syntax to a new syntax, as needed, to provide
the required expressive power. Then, when the model must be used for MDE
operations, the tightening transformation T that transforms the model back to
the more strict concrete syntax is constructed. The composition c2a ◦ T takes
the relaxed model to the original abstract syntax, making it amenable to MDE
operations such as transformation and analysis.

The approach is motivated by the observation that human and program
(MDE) users of models have different foci: humans deal with concrete syntax
while MDE primarily deals with the abstract syntax of a model1. Thus, all of
our examples are in concrete syntax. Correspondingly, our transformation-based
approach to relaxation and tightening is centered around concrete syntax rather
than abstract syntax. The focus on concrete syntax does not limit the expressive
power of the language relaxation; on the contrary, it is greater than if the relax-
ation were applied to abstract syntax. While all user-relevant information from
the abstract syntax is preserved in the concrete syntax, the reverse is not true,
e.g., Example D in Figure 1. One of the contributions of the present work is to
bring attention to the fact that extending MDE to address human issues such as
agility requires transformations on the concrete syntax.

1 Model editors and model layout algorithms are notable exceptions to this.

3

Vehicle ControlledBy

Vehicle ControlledBy

Car

Plane

Operator

Driver

Pilot

Vehicle

Car

Plane

void park(location) void park(location)

Vehicle

Car

A) B)

C) D)

E)

Vehicle

Car

Plane

Operator

Driver

Pilot

Fig. 1. Examples of language relaxation.

The motivation in Section 1 for limiting our scope to omission and clarity
agility was to ensure that a tightening transformation T always exists (though it
might not be necessarily unique). Relaxation to omit information can be tight-
ened by adding back information; while relaxation to express information dif-
ferently for clarity is tightened by defining an alternate expression in terms of
native constructs in the original language.

3.1 Implementing relaxation and tightening

We now consider the ways in which elements of Figure 2 are affected by the relax-
ation and tightening process. The concrete syntax can be affected in two ways:
extending the vocabulary (Examples C and E) or weakening the well-formedness
constraints (Examples A, C and D). When the vocabulary is extended, the in-
terpretation transformation c2a must be correspondingly broadened; but the

4

𝑐2𝑎

𝑇
relax

tighten

𝑐2𝑎 ∘ 𝑇

abstract
syntax

concrete
syntax

relaxed
concrete syntax

Fig. 2. Transformation-based approach to address model agility.

broadening of c2a may still be required even if the concrete syntax is unaffected
– this is the case with Example B.

The language aspects involved in relaxation have corresponding tightening
actions. Relaxing by extending the vocabulary requires tightening by redefining
these extensions in terms of existing constructs. Relaxing by weakening con-
straints requires tightening by repairing the violations of the constraints that
were weakened. In Section 4, we discuss these actions in more detail.

Support for agility. The examples in Figure 1 show how our approach applies
to both clarity and omission agility. Clarity agility uses vocabulary extension in
Example C and constraint weakening in Example D. In addition, Example B
illustrates clarity agility when no language changes are made and only c2a is
broadened.

Omission agility uses vocabulary extension in Examples C and E and con-
straint weakening in Example A. Furthermore, three different ways of omitting
information are illustrated: dropping information (Example A), providing alter-
natives (Example C) and using abstraction (Example E).

Whenever omission agility is being addressed, choice may occur in the tight-
ening process, and there are different ways to address this choice. One alternative
is to elicit a decision from the modeler. Another possibility is to make a “sys-
tematic” decision (e.g., always create a new class in Example A). Yet another
possibility is to defer the decision and keep all choices. We discuss this last
possibility in Section 3.2.

Special characteristics of concrete syntax. The physical nature of concrete
syntax makes it different from abstract syntax and this has two important im-
plications for the framework. First, existing spatial relations that are “unused”
can be appropriated for increasing expressiveness without changing the concrete
syntax. This is the case with Example B where vertical alignment is given a
meaning, and in Example D where closeness is given a meaning. Other relations
that can be used are overlap, containment, horizontal alignment, clustering, ra-
dial alignment, etc. Second, some well-formedness constraints are enforced by the
physical world, and so weakening them requires an alternative representation.
This is what motivates the vocabulary extension in Example C.

5

A’)

Vehicle

Car

Plane

void park(location)

Vehicle ControlledBy (V) C

(M)

(M)

C’)

Fig. 3. Using partial modeling to express choice in Examples A and C from Figure 1.

3.2 Partial modeling

When tightening due to information omission yields a choice of alternatives, the
modeler may not be comfortable having to choose, either because she doesn’t yet
know which choice is correct or because she wants to consider all alternatives.
In this case, the technique of partial modeling allows the modeler to defer the
decision and provides an alternative to tightening.

A partial model can express a set of possible models through the use of model
annotations and is typically used to express model uncertainty. For example,
Figure 3 shows the use of the MAVO partial modeling approach to express the
choices due to the omission of information in Examples A and C of Figure 1,
resulting in A’ and C’, respectively. The V annotation in Example A’ means that
the class C is a “variable” and so this represents a set of different models ac-
cording to how the variable is instantiated. The M annotations indicate “maybe”
so Example C’ represents the set of models in which only one of the operation
ownership relations exists. Due to lack of space, we omit a detailed description
of MAVO partial modeling – interested readers are directed to [11]. The benefit
of using partial models is that the annotations have formal semantics and thus
partial models can be used in place of ordinary models in MDE operations such
as property checking [11,2] and transformation [3].

4 Towards tool support

Our strategy relies on tool support. In this section, we discuss some of the
possibilities for this in terms of existing technologies.

Relaxation. The relaxation tool may be a general drawing tool (e.g., Visio)
with a predefined template for the concrete syntax to allow models expressed
in the original language to be drawn. The relaxation mechanism of vocabulary
extension is achieved by allowing other shapes to be drawn as well. The relax-
ation mechanism of constraint weakening is achieved by supporting an operating
mode that does not enforce (selectable) constraints (e.g., see “soft validation” in

6

Section 5). Note that physical constraints imposed by the concrete syntax can-
not be weakened, so these are addressed by vocabulary extension as in Example
C.

Tightening. Constructing the tightening transformation is the more difficult
part of the approach. There are two steps involved in the construction:

(1) Identify an occurrence of a language relaxation. Instances of vocabulary
extension or constraint weakening (i.e., violation) are easy to detect auto-
matically. Instances of broadening the interpretation may be impossible to
detect without the modeler “pointing it out”. One clue may be to detect
occurrences of spatial relations (e.g., vertical alignment).

(2) Construct the appropriate tightening depending on the type of relaxation:

– For weakened constraints, we must fix model inconsistencies relative to
the original constraints. To do this, we can rely on existing computational
approaches for computing minimal model repairs. The objective here is
to search the space of possible changes to the model to find the minimal
changes that fix a constraint violation. See Section 5 for a discussion of
this work in the literature. If there is still a choice left after the repair
process (i.e., there are several possible minimal repairs), then a strategy
for dealing with choice must be followed, e.g., to elicit the decision from
the modeler, follow a predefined choice policy or use a partial modeling
mechanism as described in Section 3.2.

– For vocabulary extensions and other interpretation broadening, a defini-
tion of the new elements/information in terms of constructs in the orig-
inal language must be elicited from the modeler. Clearly, this requires
the use of a transformation language for expressing this redefinition, and
we rely on existing solutions for this, e.g., ATL2.

5 Related Work

The use of relaxation to increase agility has been proposed in various contexts.
There is a long tradition of work on relaxing the input method by allowing
freehand sketching of models. See [8] for a recent example and [5] for a survey.
Support for conversion of sketches to the “computer” form of the concrete syntax
has been developed in commercial tools and explored in research (e.g., [1]). In
contrast to this work, our focus is on agility through the relaxation of the concrete
syntax rather than the input method.

Some modeling tools allow “soft validation” where the satisfaction of well-
formedness constraints can be deferred until a more appropriate time when the
modeler is finished with a unit of work (e.g., see Microsoft modeling tools3).
This mechanism can be used as a limited form of language relaxation but it only
addresses constraint weakening and not vocabulary extension.

2 http://www.eclipse.org/atl/
3 http://msdn.microsoft.com/en-us/library/bb245773.aspx

7

http://www.eclipse.org/atl/
http://msdn.microsoft.com/en-us/library/bb245773.aspx

Metamodel relaxation has been used for purposes other than increasing the
expressive power of models. For example, in [6], the authors propose a way of
automatically constructing a transformation language from the concrete syntax
of a modeling language. Since transformation rules must work with non-well-
formed model fragments, the creation of the transformation language requires
a relaxation of the original language. Both vocabulary extension and constraint
weakening are used to achieve this. Further, since transformation languages have
a different use than the original language they are based on, language modifica-
tions are required as well. In other work, Ramos et. al. [9] use model fragments
as a way of specifying model patterns for pattern matching. They use constraint
weakening to relax a metamodel so that model fragments (called “model snip-
pets” here) become acceptable instances. Similarly, Levendovszky et. al. [7] use
constraint weakening to construct metamodels that allow design patterns to be
defined, while Sen et. al. [12] use constraint weakening to define metamodels of
models containing partial knowledge in order to support transformation testing.
In most of this work, the focus is on creating a metamodel that can accept model
fragments as instances, with constraint weakening being the primary mechanism
to achieve this. In our work, the goal is richer and hence vocabulary extension
plays a larger role.

As discussed in Section 3, the issue of “model tightening” is dependent on
mechanisms for model repair. Due to lack of space, we omit a thorough review of
work in this area and instead only mention recent examples. Many approaches
focus on attempting to formulate repair rules representing various change scenar-
ios where specific repair actions are performed in response to detected changes,
e.g., [13]. Others automatically infer the needed repairs directly from the well-
formedness constraints and the violation, e.g., [10]. Many of these approaches
also handle the elicitation of a decision from the user when a choice of multiple
repairs is available. Our tightening transformations can work with either of these
techniques.

6 Conclusion

Models are used by humans and programs in different ways, giving rise to what
we have called the agility conflict : humans require expressive freedom while pro-
grams require strict conformance to constraints. In this paper, we outlined the
beginnings of a framework to address the agility conflict with a focus on two
types of agility: omission agility which gives the modeler the freedom to omit
information, and clarity agility which allows the modeler the ability to rephrase
information to improve clarity. Our approach involves relaxing the modeling
language to support these types of agility and then constructing a tightening
transformation to put the relaxed model back into a form that can be accepted
by MDE processes. We explored the approach through a series of examples,
discussing its characteristics and potential tool support. Our next steps are to
further develop the theoretical details of this approach and prototype tool sup-
port for it.

8

References

1. Th. Buchmann. Towards Tool Support for Agile Modeling: Sketching Equals Mod-
eling. In Proc. of XM’12 Wksp, pages 9–14, 2012.

2. M. Famelis, M. Chechik, and R. Salay. Partial Models: Towards Modeling and
Reasoning with Uncertainty. In Proc. of ICSE’12, 2012.

3. M. Famelis, R.Salay, A. Di Sandro, and M. Chechik. Transformation of Models
Containing Uncertainty. In Proc. of MODELS’13, 2013.

4. H. P. Grice. Logic And Conversation. In Cole et al., editor, Syntax and Semantics
3: Speech arts, pages 41–58. Elsevier, 1975.

5. G. Johnson, M. Gross, J. Hong, and E. Yi-Luen Do. Computational Support for
Sketching in Design: a Review. J. Foundations and Trends in HCI, 2(1):1–93, 2009.

6. Th. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer. Explicit Trans-
formation Modeling. In Proc. of MODELS’10, pages 240–255, 2010.

7. T. Levendovszky, L. Lengyel, and T. Mészáros. Supporting domain-specific model
patterns with metamodeling. Software & Systems Modeling, 8(4):501–520, 2009.

8. N. Mangano, A. Baker, M. Dempsey, E. Navarro, and A. van der Hoek. Software
Design Sketching with CALICO. In Proc. of ASE’10, pages 23–32, 2010.

9. R. Ramos, O. Barais, and J. Jézéquel. Matching model-snippets. In Model Driven
Engineering Languages and Systems, pages 121–135. Springer, 2007.

10. A. Reder and A. Egyed. Computing Repair Trees for Resolving Inconsistencies in
Design Models. In Proc. of ASE’12, pages 220–229, 2012.

11. R. Salay, M. Famelis, and M. Chechik. “Language Independent Refinement using
Partial Modeling”. In Proc. of FASE’12, 2012.

12. S. Sen, J. Mottu, M. Tisi, and J. Cabot. Using models of partial knowledge to test
model transformations. In Theory and Practice of Model Transformations, pages
24–39. Springer, 2012.

13. Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei. Supporting Automatic
Model Inconsistency Fixing. In Proc. of ESEC/FSE’09, pages 315–324, 2009.

9

	Supporting Agility in MDE Through Modeling Language Relaxation

