Specification of a Legacy Tool by Means of a
Dependency Graph to Improve its Reusability

Paola Vallejo, Mickaél Kerboeuf, and Jean-Philippe Babau

University of Brest (France), Lab-STICC, MOCS Team
{vallejoco,kerboeuf,babau}@univ-brest.fr

Abstract. This position paper, investigates a way to improve the reusabil-
ity of legacy tools in specific contexts (defined by specific metamodels).
The approach is based on a dedicated language for co-evolution, called
Modif. Its associated process involves two model migrations. The first
one (Migration), allows to put data under the scope of a legacy tool.
The second one (Reverse Migration), allows to put the legacy tool’s out-
put back into the original specific context. The approach is generalized
by introducing the notion of dependency graph. It specifies the relations
between the legacy tool’s input and the legacy tool’s output. The depen-
dency graph is then used to address some complexities of the Reverse
Migration. The improvement is illustrated by the reuse of a flattener tool
defined on a specific metamodel of FSM (finite state machines).

Keywords: Legacy tool’s reusability, DSML, metamodel transformation, model
migration, code generation

1 Introduction

Reuse is the act of using an asset in different systems [2]. In DSML (Domain-
Specific Modeling Languages), the reuse of legacy tools reduces the cost of pro-
ducing the entire tool support of a DSML. The reuse is also employed in other
contexts such as model transformations, [6] proposes reusing transformations
instead of rewrite them.

The reuse brings up some difficulties with it; for example, when a designer is
defining specific functions for the DSML, he frequently notices that the functions
are already provided by a legacy tool. Nevertheless, they were developed for a
variant of his metamodel.

In this regard, the aim of reusing, raises two questions: how the DSML model
can be adapted to be conform to the legacy tool’s metamodel? And how the
output of the legacy tool can be adapted in return to the DSML context?

Modif [1] [5] addresses those two questions. Figure 1 shows the operations
performed by Modif to handle the interactions between the elements of the two
contexts (DSML and legacy tool). The DSML context’s metamodel MM, its
conforming model M1, the legacy tool context’s metamodel MM’ and the legacy
tool Tool are those we aim at reusing. Then, from M1, the objective is to obtain
M2, M8 and M4 automatically.



MT1 has to be adapted to be M2, with the purpose of match the legacy tool
context. The adaptation is achieved by the Modif’s Adaptation step. In accor-
dance with the principles of co-evolution between metamodels and models, Adap-
tation performs Refactoring operations at the metamodel level and Migration at
the model level [3] [8]. Once Tool has processed M3 from M2, it is necessary
to adapt it to the DSML context by producing M/. The Reverse Migration is
achieved by the Modif’s Contextualization step, thanks to the relational notion
of key.

The process compound of Adaptation (M1 to M2), Tool and Conteztualization
(M3 to M4) correspond to the Tool reuse.

It is important to notice that a common operation performed during Mi-
gration is the deletion of unnecessary information (slicing operation [7]). Then,
the keys mechanism allows to recover at Contextualization, the instances that
have been deleted during Migration. This approach based on keys, presents some
limits when the legacy tool creates of aggregates different instances. Hence, the
interest of find a mechanism able to contextualize deleted instances, but also the
new ones.

ERefactorinE MM’

A
|

Adaptation

. A .
.conforms to, '\ conforms to

- : Migration: M2 |

conforms to| s to! input t >
: : : conform.s toi output Tool
ontextualization X - Migration .

Fig. 1. Legacy tool reuse’s process realized by Modif

In this paper, we aim at improving the Modif’s keys mechanism [5] by using
a dedicated dependency graph. Such graph determines the set of instances from
the legacy tool’s input that have been used to update or create an instance of
the legacy tool’s output.

This paper is organized as follows. The next section presents the background
of this work and some motivations to improve the keys mechanism, in order
to make a correct contextualization. It takes into account the links between
Migration and Reverse Migration. Then, we present the proposition to assist
the user in the process of putting back the legacy tool’s output into his DSML
context. We finally conclude the paper and give some perspectives.



2 Background and Motivation

In a simple example we show the tool reuse process and why Reverse Migration
is a key problem.

Adaptation Modif’s Adaptation is based on co-evolution operators (e.g. up-
date, delete) like classically proposed by [4]. A legacy tool is defined for a spe-
cific usage, and its metamodel includes less concepts than a DSML metamodel
proposes. Then, the most used operators for adaptation are rename and delete.

Tool The input and the output of the legacy tool Tool conform to the same
metamodel. Tool executes creation, update and deletion.

Contextualization Modif [5] proposes a keys mechanism. A key is an attribute
associated to each instance of M1 that uniquely identifies it. The keys allow to
keep a relationship between instances of M1 and those still exist in M2 and M3
after Migration and Tool application. Then, M/ is built by adding M3 instances
and instances that have been deleted during Adaptation.

This is possible by applying the concept of relational natural join of rela-
tional databases. The relationships between instances are also built reusing the
keys information. Thus, instances of the legacy tool’s output are reconnected to
the instances that have been recovered. New instances cannot be reconnected to
other instances, and an instance of M3 can be reconnected to only one existing
instance of M1.

To illustrate the approach and its limits, a case study of simple FSM is
presented:

— MM defines the concepts of State, Transition, Action (associated to states)
and Event (associated to transition). A state can contain other states inside
it (hierarchical finite state machine);

— MM’ is the metamodel of input data expected by a flattener legacy tool, it
is similar to MM, except that it does not contain actions;

— M1 (Figure 2) is a state-machine model conforms to MM. It is composed of a
super-state with two actions, a substate with one action, a substate without
actions, and two transitions;

— M2 (Figure 2) is an adaptation of M1, in which actions are deleted;

— Tool is a flattener legacy tool that removes hierarchy by producing atomic
states (aggregation of super-states and states). For each super-state, all sub-
states are renamed and itself is removed. The renaming is done by concate-
nating the super-state’s name and the substate’s name;

— M3 (Figure 2) depicts the legacy tool’s output. Actions have to be reinte-
grated to it;



— My (Figure 2) illustrates the result of the Reverse Migration by using the
keys mechanism. The action runi is recovered and reconnected to running
nominal. The actions start and stop are lost because they are associated to
the super-state running that does not exist after tool application.

Figure 2 illustrates the way in which the states evolve and the keys are
propagated. Only Ki by characterizing a state concept are shown. This exam-
ple underlines the limits of the approach by only using keys mechanism. The
actions associated to a super-state cannot be recovered automatically. And, if
Tool performs creation of new instances instead of updating the existing ones, it
is not possible to recover any deleted action. In this case, either instances that
have been deleted in Migration are lost, or specific user code has to be added to
improve the Reverse Migration.

M1 Migration M2 Tool M3 R. Migration M4
: k1 > : - - - k2
o running Pace running ~ o running nominal » running nominal
entry/start \ °
exit/stop entry/run1
k2 k2 | —»
nominal el
K ok
nok ° nok
- k3 8
k3 3 running degraded »| running degraded
degraded P degraded ~—___| N

Fig. 2. States’ evolution in a tool’s reuse process

The major difficulties in the context of tool reuse are:

— Reverse Migration is not limited to be an inverse Migration, because of Con-
textualization, for example by using keys;

— Conteztualization is not limited on adaptation, because it depends also on
the legacy tool’s behavior impact.

When Tool creates new instances, information about the relation between the
new instances and the existing ones is missing. We propose to add information
about the tool behavior impact on Reverse Migration.

3 Approach

3.1 Proposition

We present a proposition to enhance Modif and its keys mechanism, by intro-
ducing the notion of dependency graph. A dependency graph is considered a
specification of the legacy tool. It specifies the dependencies between each in-
stance of the legacy tool’s output and a set of instances of the legacy tool’s
input. The set is compound of the instances that are involved in the creation



or modification of the legacy tool’s input instance. All types of instances can
participate in the creation or update of other instances.

In this paper, the dependency graph is obtained by instrumenting the legacy
tool. We log each concept of the legacy tool’s output and the set of concepts of
the legacy tool’s input that participates in its creation or modification.

For the case study of FSM, Reverse Migration is applied to M3 using the
keys mechanism, in order to recover deleted actions. Moreover, we also use the
information given by the dependency graph to reconnect more actions. For this
example, the relations between input and output of the legacy tool are shown in
Figure 3. Now, the challenge is how to use this information to keep the recovered
instances and to reconnect them.

output input

running degraged degraged

running running

nominal degraded

éé“ﬁé

state

<«——nominal— degraded
transition

running __ running
degraded™ ™ nominal

(R

degraded — nominal

event

Fig. 3. Relation between the flattener’s input and output

Reverse Migration is parameterized by Adaptation (initial model and keys),
dependency graph (tool behavior) and legacy tool’s output. From those param-
eters, the generated code can be executed to get a contextualized final model.

The process performed by the generated code to produce the final model is:

— to make an identical copy of each instance of the tool’s output, taking into
account its attributes and its references;

— to use the keys to identify the deleted instances;

— to recover the links to deleted instances and filter them by type, using the
information provided by the dependency graph. The filter allows to recover
instances of the appropriate type. We consider that an instance may be
created from only instances of the same type (e.g. states are created from
states);

— to offer an extension point in which the user can specialize the by default
behavior by defining its customized behavior. If there is not customized be-
havior, only by default behavior is executed.



3.2 Experimentation

The approach is experimented with the case study of flattening finite state ma-
chines.

The following is the by default behavior proposed to reconnect each recovered
action:

R1 If its related state in M1 still exists in M3; the action is automatically con-
nected to it;

R2 If the state no longer exists in M3, but another states of M1 are related to
it and they still exist; then, the action is connected to all of them;

R3 If the state no longer exists in M3 neither the state related to it; then, the
action is not connected to any state.

An excerpt of the code generated by Modif is shown in Listing 1.1. function
is the main function, it takes as parameters the legacy tool output M3model,
the dependency graph dicoKeys (it contains also the keys) and the initial model
M1model).

Listing 1.1. Generated main class for the state machine example

public class ReverseMigration{
migration (mew DefaultBehavior ()) ;
migration (new CustomizedBehavior()) ;

// Reverse Migration

final void function (M3 M3model, Key dicoKeys, Ml Mlmodel){

for (M3. State state : M3StatesList){

// related entry actions of an state
relatedEntryActions=getRelatedEntryActions(state , dicoKeys, Mlmodel);

// related exzit actions of an state
relatedExitActions=getRelatedEntryActions(state, dicoKeys, Mlmodel);

for (M1l. State related : relatedStates){

// by default behavior
byDefault.connectEntryAction (state, relatedEntryActions);
byDefault.connectExitAction(state, relatedExitActions);

// customized behavior
customized.connectEntryAction(state, relatedEntryActions);

Listing 1.2 shows the functions connectEntryAction and connectExitAction.
They are responsible for reconnect entry and exit actions to the states, tak-
ing into account the information gathered from the dependency graph. These
functions execute the behavior defined in R1, R2 and R3.

If the designer does not agree the by default behavior, he can specialize the
code by integrating his requirements. An example of the customized behavior
defined by an user is (Listing 1.3):

D1 If the recovered action is an entry one, it is reconnected to only initial states
(the attribute initial is set to true): it is an adaptation of R1;




D2 If the action is an ezit one, it is reconnected to all states: it was already
defined by R2.

Listing 1.2. By default behavior for the state machine example

public class DefaultBehavior implements Migration{

// Function to reconnect entry actions
public void connectEntryAction
(M3.State state, Elist<Ml.Action> relatedEntryActions){

.

// Function to reconnect exzit actions
public void connectExitAction

(M3.State state, Elist<Ml.Action> relatedEntryActions){

Listing 1.3. Customized behavior for the state machine example

public class CustomizedBehavior extends DefaultBehavior{

public void connectEntryAction
(State state, ArrayList<Action> relatedEntryActions){
if(state.isIni()){
for (Action action : relatedEntryActions){
state.setEntry (action);

Figure 4 presents the result of executing R1; runf is reconnected because run-
ning nominal still exists after flattening. Figure 5 presents the result of executing
R2; start and stop are reconnected because running was involved in the update
of the two substates. In this example, there are not changes while executing R3.

running nominal

entry/run1

running nominal

N

entry/run1
entry/start
exit/stop

running nominal

running degraded

R

entry/run1
entry/start
exit/stop

running degraded

R

entry/start

running degraded

exit/stop

exit/stop

Fig. 4. R1 behavior Fig. 5. R2 behavior Fig. 6. D1 behavior

The final model obtained by following the by default behavior and then the
customized behavior is presented in Figure 6. All actions are recovered and re-
connected. runl still related to running nominal. start is deleted from running
degraded because it is not an initial state. stop still is connected to all states.

This approach allows to keep at Reverse Migration, the DSML instances
deleted during Migration. Contrary to the result obtained by using only the keys



mechanism, the dependency graph allows to reconnect all actions without lost.
Even if the legacy tool performs creation.

4 Conclusion and Future Works

In this paper, we present an approach to facilitate the legacy tool’s reuse process.
In particular, it improves the Reverse Migration for legacy tool’s reuse by means
of a dependency graph. The dependency graph provides a specification of the
legacy tool to be reused. It enables to recover DSML instances deleted before
using the legacy tool and to reintegrate them to its original DSML context.

Migration is metamodel dependent only; Reverse Migration is metamodel
dependent, tool’s behavior dependent, Migration dependent and original model
dependent.

We are now working on the formalization of Migration and Reverese Migra-
tion. The approach will be experimented by reusing some legacy tools in the
context of video transmission and coding in MPSoC.

References

1. J.-P. Babau and M. Kerboeuf. Domain Specific Language Modeling Facilities. In
proceedings of the 5" MoDELS workshop on Models and Evolution, 2011.

2. J. L. Cybulski. Reuse introduction cybulski abstract introduction to software reuse,
1995.

3. K. Garcés, F. Jouault, P. Cointe, and J. Bézivin. Managing model adaptation by
precise detection of metamodel changes. In Proceedings of ECMDA-FA, 2009.

4. M. Herrmannsdoerfer, S. Vermolen, and G. Wachsmuth. An extensive catalog of
operators for the coupled evolution of metamodels and models. In SLE, 2010.

5. M. Kerboeuf and J.-P. Babau. A DSML for reversible transformations. In proceed-
ings of the 11" OOPSLA workshop on Domain-Specific Modeling, 2011.

6. D. Mendez, A. Etien, A. Muller, and R. Casallas. Towards Transformation Migration
After Metamodel Evolution. In Model and Evolution Wokshop, 2010.

7. S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel. Meta-model Pruning. In
ACM/IEEE 12th International Conference on Model Driven Engineering Languages
and Systems (MODELS’09), Denver, Colorado, USA, Oct 2009.

8. G. Wachsmuth. Metamodel adaptation and model co-adaptation. In Proceedings of
ECOOP, 2007.



