
ACM/IEEE 16th International Conference on
Model Driven Engineering Languages and Systems
September 30, 2013 – Miami, Florida (USA)

ME 2013 – Models and Evolution
Workshop Proceedings
Alfonso Pierantonio, Bernhard Schätz (Eds.)

Published on Nov 2013 v1.0

© 2013 for the individual papers by the papers’ authors. Copying permitted for private and academic
purposes. Re-publication of material from this volume requires permission by the copyright owners.

Editors’ addresses:

Alfonso Pierantonio
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
Università degli Studi dell’Aquila (Italy)

Bernhard Schätz
fortiss Gmbh (Germany)

Organizers

Alfonso Pierantonio (co-chair) Università degli Studi dell’Aquila (Italy)
Bernhard Schätz (co-chair) fortiss Gmbh (Germany)

Steering Committee

Alfonso Pierantonio Università degli Studi dell’Aquila (Italy)
Bernhard Schätz fortiss Gmbh (Germany)
Jonathan Sprinkle University of Arizona (USA)
Dalila Tamzalit University of Nantes (France)

Program Committee

Arnaud Albinet Continental Automotive (France)
Abdelkrim Amirat LINA Laboratory (France)
Vasilios Andrikopoulos University of Stuttgart (Germany)
Salima Benbernou Université Paris Descartes (France)
Mireille Blay-Fornarino Université de Nice-Sophia Antipolis (France)
Jean-Michel Bruel IRIT (France)
Antonio Cicchetti Mälardalen University (Sweden)
Davide Di Ruscio Università degli Studi dell’Aquila (Italy)
Anne Etien LIFL - University of Lille 1 (France)
Jesus Garcia-Molina Universidad de Murcia (Spain)
Ludovico Iovino Università degli Studi dell’Aquila (Italy)
Ethan K. Jackson Microsoft Research (USA)
Gerti Kappel Vienna University of Technology (Austria)
Udo Kelter University of Siegen (Germany)
Jochen Kuester IBM Research (Switzerland)
Olivier Le Goaer Université de Pau et des Pays de l’Adour (France)
Tom Mens University of Mons (Belgium)
Richard Paige University of York (UK)
Bernhard Rumpe RWTH Aachen University (Germany)
Martina Seidl Vienna University of Technology (Austria)
Jonathan Sprinkle University of Arizona (USA)
Dalila Tamzalit University of Nantes (France)
Hans Vangheluwe University of Antwerp (Belgium)
Stefan Wagner University of Stuttgart (Germany)
Manuel Wimmer Vienna University of Technology (Austria)

Additional Reviewers

Asim Abdulkhaleq
Petra Brosch
Arne Haber
Erica Janke
Timo Kehrer
Achim Lindt
Pedram Mir Seyed Nazari
Jan-Peter Ostberg

Table of Contents

Preface . 1

Learning on the Job: Supporting the Evolution of Designs . 3
Bran Selic

A Survey on Incremental Model Transformation Approaches 4
Juergen Etzlstorfer, Angelika Kusel, Elisabeth Kapsammer, Philip Langer,
Werner Retschitzegger, Johannes Schoenboeck, Wieland Schwinger, Manuel
Wimmer

Co-evolution of Metamodels and Models through Consistent Change Propagation 14
Andreas Demuth, Roberto E. Lopez-Herrejon, Alexander Egyed

Automating Instance Migration in Response to Ontology Evolution 22
Mark Fischer, Juergen Dingel, Maged Elaasar, Steven Shaw

Generating Edit Operations for Profiled UML Models . 30
Timo Kehrer, Michaela Rindt, Pit Pietsch, Udo Kelter

Evolution of Model Clones in Simulink. 40
Matthew Stephan, Manar Alalfi, James R. Cordy, Andrew Stevenson

Proactive Quality Guidance for Model Evolution in Model Libraries. 50
Andreas Ganser, Horst Lichter, Alexander Roth, Bernhard Rumpe

Towards a Novel Model Versioning Approach based on the Separation between
Linguistic and Ontological Aspects .

60

Antonio Cicchetti, Federico Ciccozzi

Analyzing Behavioral Refactoring of Class Models . 70
Wuliang Sun, Robert France, Indrakshi Ray

Specification of a Legacy Tool by means of a Dependency Graph to improve its
Reusability .

80

Paola Vallejo, Mickael Kerboeuf, Jean-Philippe Babau

Preface

The Models and Evolution (ME) 2013 workshop is about the evolution of artefacts of the
modelling process, as inspired by analogous evolution required by software artefacts, with
input from academic as well as industrial practice. As Model-Based Development grows
in popularity, the models used throughout a systems lifecycle are now core artefacts of
modern software engineering processes.

With the increasing use of Model-Based Development in many domains (e.g., Automo-
tive Software Engineering, Business Process Engineering), models are starting to be come
core artefacts of modern software engineering processes. By raising the level of abstraction
and using concepts closer to the problem and application domain rather than the solution
and technical domain, models become core assets and reusable intellectual property, being
worth the effort of maintaining and evolving them. Therefore, increasingly models experi-
ence the same issues as traditional software artefacts, i.e., being subject to many kinds of
changes, which range from rapidly evolving platforms to the evolution of the functionality
provided by the applications developed. These modifications include changes at all levels,
from requirements through architecture and design, to executable models, documentation
and test suites. They typically affect various kinds of models including data models, be-
havioural models, domain models, source code models, goal models, etc. Coping with
and managing the changes that accompany the evolution of software assets is therefore an
essential aspect of Software Engineering as a discipline.

The workshop on Models and Evolution has been co-located with ACM/IEEE 16th
International Conference on Model Driven Engineering Languages & Systems and repre-
sented a forum for practitioners and researchers. We received nineteen papers out of which
nine papers (including a short one) have been selected for inclusion in the proceedings.
The accepted papers covers many different forms of evolution in modeling including, but
not limited to

– automated migration of models in presence of metamodel evolution

– incrementality and versioning

– supporting and analyzing model evolution

The workshop is existing in different forms since 2007 (before was known as MoDSE and
MCCM). Each edition received high attention and enough submissions for concluding that
this is and remain a current and relevant topic in the practice and theory of model-driven
development. Thus, we would like to thank the authors - without them the workshop
simply would not exist - and the program committee for their hard work

November 2013 Alfonso Pierantonio and Bernhard Schätz

1

Keynote

Learning on the Job:
Supporting the Evolution of Designs

Bran Selic

Malina Software Corp., Canada

System design is the process of finding a suitable solution in the abstract
space of possible design variants. As design progresses, we identify and evaluate
potential design alternatives, learning in the process not only about possible
solutions but, if we are doing it right, about the problem on hand. (A wise man
once noted: If you think about a problem long enough, you will always find a
better way of solving it.) Engineering models can and should play a fundamental
role in this process, supporting both understanding and invention.

In this talk, we first present a view of design as a search problem (which
clearly distinguishes it from the closely related project management process with
which it is often confused). From this perspective, we identify and categorize the
issues involved in design and focus in particular on where and how models and
model-based technologies can help overcome them. The talk concludes with a
list of related research challenges for the modeling community.

Bran Selic is President and Founder of Malina Software Corp., a Canadian consulting

and research enterprise, focused on model-based software and systems engineering. Bran

has over 40 years of industrial experience in the design and development of complex

software-intensive systems in various technical domains (robotics, aerospace, telecom,

and industrial control). He was one of the primary contributors to the Unified Modeling

Language (UML) and other modeling language standards. He is formally affiliated as

an adjunct with several academic and research institutions.

3

A Survey on Incremental Model Transformation
Approaches

Angelika Kusel1, Juergen Etzlstorfer1, Elisabeth Kapsammer1, Philip Langer2,
Werner Retschitzegger1, Johannes Schoenboeck3, Wieland Schwinger1, and

Manuel Wimmer2

1 Johannes Kepler University Linz, Austria
[firstname].[lastname]@jku.at

2 Vienna University of Technology, Austria
[lastname]@big.tuwien.ac.at

3 University of Applied Sciences Upper Austria, Campus Hagenberg, Austria
[firstname.lastname]@fh-hagenberg.at

Abstract. Steadily evolving models are the heart and soul of Model-
Driven Engineering. Consequently, all dependent model transformations
have to be re-executed to reflect changes in related models, accordingly.
In case of frequent, but only marginal changes, the re-execution of com-
plete transformations induces an unnecessary high overhead. To over-
come this drawback, incremental model transformation approaches have
been proposed in recent years. Since these approaches differ substantially
in language coverage, execution, and the imposed overhead, an evaluation
and comparison is essential to investigate their strengths and limitations.
The contribution of this paper is a dedicated evaluation framework for
incremental model transformation approaches and its application to a
representative subset of recent approaches. Finally, we report on lessons
learned to highlight past achievements and future challenges.

1 Introduction

In Model-Driven Engineering (MDE), models are first-class artifacts throughout
the software life-cycle [3]. Transformations of these models are comparable, in
role and importance, to compilers for high-level programming languages, since
they allow, e. g., to bridge the gap between design and implementation [14]. Like
any other software artifact, models are subject to constant change, i. e., they
evolve, caused by, e. g., changing requirements. Therefore, dependent models,
which have been derived from the original models by means of transformations,
have to be updated appropriately. A straight-forward way is to re-execute the
transformations entirely, i. e., in batch mode. In case of minor changes on large
models consisting of several thousand elements [21], however, re-execution of a
complete transformation is not efficient [12,13,18]. Consequently, it is of utmost
importance, to transform those elements that have been changed, only, which is
commonly referred to as incremental transformation [8, 17].

Several incremental model transformation approaches focusing on different
transformation languages have been proposed recently. Although all of them

4

aim at the efficient propagation of changes, they differ substantially, not only
since basing on different transformation languages. However, no dedicated survey
has been brought forward so far, which would be essential to highlight past
achievements as well as future challenges. To alleviate this situation, in this
paper, first, a dedicated evaluation framework is proposed (cf. Section 2), whose
criteria are not only inspired by the MDE domain (cf., e. g., [8]), but also by
related engineering domains like data engineering, e. g., in terms of incremental
maintenance of materialized views (cf., e. g., [10]), where incremental approaches
are used since decades. Second, this framework is applied to a carefully selected
set of incremental transformation approaches to achieve an in-depth comparison
(cf. Section 3). Third, lessons learned are derived from this comparison and
presented in Section 4 to highlight past achievements and future challenges.
Finally, Section 5 concludes the paper.

2 Evaluation Framework

In this section, the proposed criteria for the evaluation of incremental model
transformation approaches are presented. The set of criteria for evaluating the
incremental transformation approaches has been derived in a bottom-up manner
by examining dedicated approaches as well as in a top-down manner by review-
ing surveys in related engineering domains (cf., e. g., [10]) – methodologically
adhering to some of our previous surveys, e. g., [24]. This process resulted in
an evaluation framework (cf. Fig. 1), comprising the three categories of (i) lan-
guage coverage for explicating those parts of a transformation language that are
considered for incremental execution (cf. Section 2.1), (ii) execution phases for
highlighting how incrementality is achieved at run-time (cf. Section 2.2), and (iii)
overhead for pointing out the additional efforts needed to achieve incrementality
(cf. Section 2.3).

Change Detection
•Type
•Granularity
•Change Log Optimization
•Source Minimality

Dependency Detection
•Time
•Generated Information
•Trace Minimality?

Change Propagation
•Time
•Coverage
•Granularity
•Directionality
•Strategies

Incremental Model Transformations

Language Coverage Execution Phases Overhead
Change Detection

• Source Minimality
• Type & Number

- Atomic Changes
- Composite Changes

• Granularity
• Change Log

Optimization

 Impact Analysis
• Required Knowledge of

Transformation Specification
- Black Box
- White Box

• Trace
- Model2Model
- Model2Transformation

• Auxiliary Information

Change
Propagation
• Time
• Coverage
• Granularity
• Direction
• Strategies

Declarative Parts
• Number of Input Elements
• Number of Output Elements
• Conditions

- Negative Application Conditions
- Positive Application Conditions

• Assignments
• Rule Inheritance
 Imperative Parts

 Specification
Run-time
Memory

Fig. 1. Evaluation Criteria for Incremental Model Transformation Approaches

2.1 Language Coverage

The first set of criteria reveals the language coverage, i. e., which parts of a trans-
formation language may be executed incrementally. In general, model trans-
formations are specified by a set of rules that comprise input patterns with

5

conditions that match source model elements, and output patterns that pro-
duce elements of the target model. Thereby, source and target models have to
conform to their corresponding metamodels. Furthermore, transformation rules
may be inherited for reuse (cf. [23] for an overview). Such transformation spec-
ifications may comprise declarative and imperative transformation parts. Since
current incremental transformation approaches mostly focus on the support of
incremental execution of declarative language parts [15], this category has been
further broken down into the criteria number of input and output elements, condi-
tions, assignments, and rule inheritance. Among those, conditions play a special
role in incremental model transformations, since negative application conditions
(NACs) may lead to non-monotonicity, e. g., insertion of elements in the source
model entails a deletion of elements in the target model [11, 20], and positive
application conditions (PACs) may cause non-continuity, i. e., a non-uniform
treatment of model elements, e. g., new elements in a container may be trans-
formed differently than previously added elements to the same container [20].

2.2 Execution Phases

Any incremental approach may be characterized by three dedicated execution
phases, comprising (i) change detection, i. e., detection of changes in the source
model, (ii) impact analysis, i. e., detection of parts of the transformation that
must be executed to reflect the changes, and (iii) change propagation, i. e., the
actual execution of the affected transformation parts as well as the update of
the target model.
Criteria for Change Detection. For detecting changes, basically two ap-
proaches may be followed, comprising (i) state-based comparison of the changed
source model to its previous version, and (ii) operation-based detection of changes
by directly recording each change [7]. Although (i) may allow for tool indepen-
dence, run-time performance depends on the size of the source model. Thus, with
regard to run-time performance, (ii) is preferable and is referred to as source
minimality [8], representing the first criterion. Change detection may be further
characterized by the type of the detected changes, including atomic operations,
i. e., insert and delete, and composite operations, e. g., update and move, which
may be composed by combining atomic operations and may allow for reducing
the number of change propagation operations to be executed, by substituting
insert and delete operations. Another criterion is the granularity of the detected
changed elements, ranging from coarse granularity, i. e., on the level of objects,
only, to fine granularity, i. e., on the level of values and links, which is preferable,
since it allows for a more precise detection. Finally, change detection may be ca-
pable of detecting single or multiple changes at once, whereby the latter utilizes
a change log and may allow to reason on inter-dependencies between changes,
thereby facilitating change log optimization. In this context, for instance, change
operations that cancel others may be detected and optimized, e. g., a rename
operation for an element that is subsequently deleted may be removed.
Criteria for Impact Analysis. For impact analysis, the impact of changes on
target models must be detected by (i) utilizing knowledge from the transforma-

6

tion specification and (ii) employing information that relates the transformations
and the models during execution. Concerning the knowledge of the transfor-
mation, approaches, which require white-box knowledge, i. e., insights into the
internal structure, may allow for a more precise detection of affected transfor-
mation parts compared to those, where black-box knowledge, i. e., the inputs and
outputs, are considered, only. For (ii), it is of utmost importance to recognize
those transformation parts that must be executed, requiring a Model2Trans-
formation (M2T) trace. Such a trace may be either created at compile-time by
analyzing the bound metamodel types or at run-time by keeping track of the ex-
ecution of the transformation. Additionally, a dynamically created Model2Model
(M2M) trace is obligatory to relate the elements of the source model to those
in the target model. Besides these traces, additional auxiliary information, such
as internal execution states or intermediate results may be utilized, to further
improve incrementality.
Criteria for Change Propagation. Finally, changes detected in the first phase
have to be propagated to the target model utilizing dependency information ex-
posed in the second phase. Change propagation may differ in (i) time, i. e., when
the changes are propagated, (ii) coverage, i. e., the amount of changes to be
propagated, (iii) granularity, i. e., the degree of transformation code to be re-
executed, (iv) directionality, i. e., the direction of change propagation between
source and target, and, finally, (v) strategies, i. e., different plans to propagate
the changes. Concerning time, eager means that changes in the source model are
propagated synchronously to the target model, whereas lazy induces an asyn-
chronous propagation. Propagation may cover either the complete set of changes
at once or a part of it, only, e. g., single changes. The propagation of single
changes is useful to allow for change propagation on demand, i. e., only when
the affected target model elements are accessed. According to the granularity of
the change propagation, either a complete rule or a single binding (or assign-
ment) has to be re-executed, whereby the latter case results in modifying fewer
elements in the target model. Furthermore, changes may be either propagated
from a dedicated source to a target model, i. e., unidirectional or also vice versa,
i. e., bidirectional. Bidirectionality can be either achieved by utilizing dedicated
bidirectional model transformation languages (e. g., TGGs [22] or JTL [6]) or by
connecting source and target model elements via traces and potentially restrict-
ing transformation language expressiveness to enable bidirectional propagation.
Therefore, this criterion is included in the propagation phase. Finally, different
strategies for updating the target model may be applied, e. g., executing mul-
tiple updates sequentially or in parallel, that may be selected automatically or
manually.

2.3 Overhead

The final set of criteria aims at pointing out overheads that result from incre-
mentality. Such overheads may arise with respect to three different areas, being
(i) specification, i. e., whether the transformation designer must use a dedicated
syntax resulting in a new specification, (ii) run-time, i. e., whether additional

7

run-time is consumed in contrast to batch transformations, and (iii) memory,
i. e., whether additional memory is consumed compared to batch transforma-
tions.

3 Comparison of Approaches

After having presented the evaluation framework in the previous section, in this
section it is applied to selected approaches. The results of the application are
summarized in Table 1. The selection of approaches for incremental model trans-
formations comprises approaches that facilitate incremental execution of user-
specified transformations. Hence, approaches that e. g., aim at efficient batch
transformations or support incrementality for specific applications, only, are not
covered in the comparison (e. g., [5, 6, 19]). Eight approaches across different
transformation languages that meet these criteria have been identified in the lit-
erature and, therefore, participate in the evaluation. Three of them are of declara-
tive nature, whereby two base on Triple Graph Grammars (TGGs) [9,16] and one
on the Tefkat transformation language [11]. The remaining five approaches allow
for hybrid transformation code, i.e., declarative and imperative parts. Among
them, one approach bases on the Atlas Transformation Language (ATL) [13],
three on the graph-transformation-based Viatra2-framework [1,2,18], and one
approach enables incrementality by abstracting from the actual transformation
specification and by relating source and target model elements, only [20].

3.1 Language Coverage

In the context of declarative language parts, six of the eight approaches [1, 2, 9,
11,16,18] support an arbitrary number of input and output elements, i. e., M:N
mappings. One approach [13] restricts itself to a single input element, but allows
for an arbitrary number of output elements, i. e., 1:N mappings, and another
approach [20] may handle 1:1 mappings, only. Interestingly, NACs and PACs,
although quite challenging, are supported by all except one approach [20]. While
assignments are naturally supported by all approaches, support for rule inheri-
tance is not that widespread. Only one approach may handle rule inheritance in
incremental transformations, since the transformation specification is regarded
as black-box and, therefore, inherited rules do not impact the approach [20]. The
remaining approaches do either exclude rule inheritance for incremental trans-
formation [11, 16], explicitly refer to the support of rule inheritance as future
work by flattening the inheritance hierarchy [13], do not support rule inheri-
tance at all [9], i. e., also not in batch mode, or support rule inheritance for
the pattern matching part in transformation rules, only [1, 2, 18]. In contrast
to the comprehensive support for declarative language parts, imperative parts
are either completely re-executed [1, 2, 18], thereby resigning the advantages of
incrementality, regarded as black box [20], which may violate correctness, or not
allowed at all [13].

8

In summary, one may see that incremental model transformation approaches
suffer from restricted language coverage in terms of rule inheritance and imper-
ative parts, and thus, not all potential for incremental execution is exploited so
far.

3.2 Execution Phases

Change Detection. Regarding change detection, all approaches detect changes
operation-based and, therefore, comply with source minimality. Atomic changes
are supported by all approaches. Concerning composite changes, six approaches
support update operations [1,2,9,13,18,20]. Move operations are explicitly sup-
ported by two approaches [2, 9]. Four approaches are able to detect multiple
change operations [2, 9, 16, 18]. However, only one of them actually supports an
optimization of the change log [18]. One approach, although being able to de-
tect multiple changes, considers the model difference instead of a change log,
and, therefore, eludes the need for change log optimization [16], while for an-
other approach the optimization effort is usually higher than the actual propa-
gation effort, and, therefore, change log optimization is omitted [9]. Considering
the granularity of changes, all approaches enable the detection of fine-grained
changes.

Summing up, current approaches mostly lack the detection of multiple, com-
posite change operations and a change log optimization. Support for those cri-
teria would favor an optimized change propagation resulting in fewer operations
on the target model.

Impact Analysis. Seven of the eight approaches require white-box knowl-
edge of the transformation for analyzing rules and generating trace informa-
tion [1, 2, 9, 11, 13, 16, 18], while one approach considers the specification of the
batch transformation as a black box [20]. The M2T trace is generated by seven
approaches [1, 2, 9, 11, 13, 16, 18] at run-time, while two of them generate parts
of this trace at compile-time [1, 13]. One approach does not generate any M2T
trace at all [20], but lacks comprehensive language coverage. All approaches dy-
namically generate M2M traces. Concerning auxiliary information, one approach
stores the complete transformation context in terms of an SLDNF-tree (Selective
Linear Definite clause with Negation as Failure) [11], one generates dedicated
rules for change propagation at compile-time [13], and in [2] so-called Change
History Models are used as input for the change propagation. One approach [1]
creates database tables for each match pattern in a transformation specification
and employs triggers for change detection, while in [20] a so-called Concept Pool
is utilized, which holds similar concepts between source and target models to
enable bidirectional change propagation.

In summary, one may see that all approaches require trace information and
most approaches rely on auxiliary information to further leverage incrementality.

Change Propagation. Three approaches propagate changes in an eager man-
ner [1, 11, 18]. Four approaches allow for lazy propagation by letting the user
decide when to apply the changes on the target model [2, 9, 13, 16]. Finally,

9

one approach allows for both, synchronous and asynchronous, change propa-
gation [20]. The same approach also supports partial propagation. Five of the
eight approaches re-execute a complete rule [1,2,9,16,18], while two approaches
are capable of re-executing a single binding, only [11, 13]. Those two rely on
auxiliary information, being the complete execution context [11] or fine-grained
compiler-generated rules [13]. One approach does not consider rules or bindings
of the batch transformation specification to be re-executed, since the transfor-
mation is regarded as a black-box [20]. Concerning directionality, TGGs support
bidirectionality [9, 16], while other approaches allow for unidirectional change
propagation, only [1,2,11,13,18]. One approach aims at deriving a bidirectional
model transformation from a unidirectional transformation specification, but is
limited in terms of language coverage [20]. Solely the approaches that build on
the Viatra2-framework offer manual selection of strategies in terms of sequen-
tial or parallel execution of change propagation [1, 2, 18].

Summing up, current incremental model transformation approaches mostly
propagate changes synchronously with a predefined strategy. Thereby, situations
that may require different execution strategies for efficient incremental execution
may not be handled satisfactorily.

3.3 Overhead

Regarding the induced overheads, two of the eight approaches require a new spec-
ification by the transformation designer to allow for incremental execution [2,18].
Concerning run-time overheads, three approaches state, that even in the worst
case (i. e., the complete source model has been changed) incremental execution is
as fast as batch transformation, i. e., no run-time overhead occurs [2,9,16], while
the remaining approaches lack any statement on this fact. Finally, all approaches
accept memory overheads in terms of traces and auxiliary information.

In summary, one may see that most approaches introduce incrementality by
changes to the execution engine instead of requiring a new syntax for transforma-
tion specifications, which is favorable, since then incrementality is transparent
to the transformation designer. All approaches induce memory overheads due
to the generation of traces and auxiliary information, which are, nevertheless,
essential for incremental execution [12].

4 Lessons Learned

In this section, lessons learned gained from the evaluation and comparison of
approaches are discussed along the different evaluation categories.
Insufficient Support for Imperative Parts. While all examined approaches
support declarative language parts, they lack sufficient support for imperative
parts, which are either disregarded at all or treated as black box, i. e., executed
completely, instead of breaking them down into fine-grained parts. Consequently,
extensive support for imperative parts, e. g., by exploiting incremental evaluation
of conditions and bindings [4], may further leverage incrementality.

10

In
se

rt

D
el

et
e

U
pd

at
e

M
ov

e

Bl
ac

k
Bo

x

W
hi

te
 B

ox

C
om

pi
le

-ti
m

e

R
un

-ti
m

e

de
te

rm
in

ist
ic

 r

example used for evaluation
[9] TGG 1..* 1..*    n.a. n.a.  1..* 1..* 1..* 1..*    - -   -  - -  -   - -  1 -   - - - - -
[16] TGG 1..* 1..*    - n.a.  1..* 1..* - -    n.a. -   -  - -  -   - -  1 -   -

[11] Tefkat 1..* 1..*    - n.a.  1 1 - -    n.a. -   -  SLDNF
tree  - -  -   - 1 -  u. - - - -  - class2relational

[13] ATL 1 1..*    - -  1 1 1 -    n.a. -    
Compiler

Generated
Rules

-  -  -   - 1 -  u. -
- - -  - class2relational

[18] VIATRA2 1..* 1..*    ~   1..* 1..* 1..* -     -   -  -  - -   -  - 2 m. - u. - -  -  ~ -

[2] VIATRA2 1..* 1..*    ~   1..* 1..* 1..* 1..*    - -   - 
Change
History
Models

-  -   -  - 2 m. -  -
- - -  

[1] VIATRA2 1..* 1..*    ~   1 1 1 -    n.a. -     Database
Tables  - -   -  - 2 m.  u. -

[20] Arbi-
trary 1 1 - -   ~  1 1 1 -    n.a.  -  - - Concept

Pool     n.a. n.a. -  1 -  u. - - - - - java2wsdl axis trafo

Tratt PMT 1..* 1..*    ?   1..* 1..* 1..*    - -   -  -  - -   -  - 2 m. - ? -
Hass QVT 1 1 - -  n.a. n.a.  (1) 1 1    n.a. -     KB  - -  n.a. n.a. -  1 - - -

3

Gie
se2
009 TGG, Fuj   ?

-

 1 1 1    -     - -   - -  - - - - - - - sld blocks to class diagram

8 Varr graph trafo  ? ? ?      ? ? ?  - - - - - incr. graph transformations

7 RazaQVT-OM   - - -  - - - - books2libr efficient batch trafos, not incr.

8 Tisi2ATL *
-

- - -    - - - class2relat lazy transformations

9 Song

QVT-
Relatio
nal,
medini
QVT  - spec. incr. engine for runtime models

10 VogeTGG, runtime monitoring? based on Giese2006/2009

11

Joh
ann
200
4

IBM
Rationa
l Rose framework for incr. transformations of models

12 Cicc hybrid multi-view modelling  hybrid multi-view modelling
13 Emo future work

Model
2

Trans-
form.

Req.
Know-

ledge of
Transfor-
mation
Specifi-
cation

N
o

M
em

or
y

O
ve

rh
ea

d

Over-
head

As
si

gn
m

en
t

R
ul

e
In

he
rit

an
ce

C
ha

ng
e

Lo
g

O
pt

im
iz

at
io

n

Au
xi

lia
ry

 In
fo

rm
at

io
n

Li
ve

 T
ra

ns
fo

rm
at

io
n

Re
vi

sio
ns

 o
f T

ar
ge

t M
od

el

Di
ff

er
en

t E
xe

cu
tio

n
St

ra
te

gi
esDirec-

tion

Co
nf

lic
t R

es
ol

ut
io

n

Change Propagation

Time Granu-
larity

Pa
rti

al
C

om
pl

et
e

N
um

be
r

Se
le

ct
io

n

U
ni

di
re

ct
io

na
l

N
o

Sp
ec

ifi
ca

tio
n

O
ve

rh
ea

d
N

o
R

un
-ti

m
e

O
ve

rh
ea

d

Impact Analysis
Execution Phases

Change Detection
Strat-
egy

Bi
nd

in
g

Ea
ge

r (
Sy

nc
hr

on
ou

s)

Cover-
age

La
zy

 (A
sy

nc
hr

on
ou

s)

R
ul

e

Bi
di

re
ct

io
na

l

Li
nk

Granu-
larity

O
bj

ec
t

Va
lu

e

M
od

el
2M

od
el

Trace

Hy
br

id
 (D

ec
l.

+
Im

p.
)

Type & Number

Atomic Com-
posite

De
cl

ar
at

iv
e

La
ng

ua
ge

 /
Fr

am
ew

or
k

So
ur

ce
 M

in
im

al
ity

Ap
pr

oa
ch

Condi-
tions

Language Coverage
Declarative Parts

Im
pe

ra
tiv

e
Pa

rts

N
um

be
r o

f I
np

ut
 E

le
m

en
ts

N
um

be
r o

f O
ut

pu
t E

le
m

en
ts

N
AC

s
PA

C
s

propagation granularity: + filter, + imperative teile
wie unterscheiden sich ansätze?
was können sie NICHT? (siehe outlook und conclusion von versch.
paper)
einschränkungen der ansätze in tabelle aufnehmen

Legend:  ... supported - ... not supported ~ ... partially supported * ... multiple n.a. ... not applicable m. ... manual u. ... unknown

Table 1. Comparison Table of Incremental Model Transformation Approaches

Focus on Basic Change Operations. Atomic change operations are sup-
ported by all approaches. However, support for composite change operations,
such as update and move, is not that widespread, but would allow for a more
efficient change propagation by utilizing according change propagation opera-
tions.

Trace Information is Mandatory. All approaches rely on trace information.
Furthermore, the more trace information is generated to relate elements of source
and target models as well as model elements and the transformation specification,
the more accurateness in change propagation may be achieved. Of course, this
is the general trade-off between space and time in computing.

Lack of Appropriate Propagation Strategies. Current incremental model
transformation approaches do not provide different propagation strategies ac-
cording to a given change situation. In case of many changes, re-execution of a
batch transformation may outperform the run-time performance of incremental
execution in certain cases. An automatic selection of an appropriate propaga-
tion strategy could be achieved by analyzing the changes, the transformation
specification, and the traces.

Lack of Proof of Correctness. Apart from one approach [16], correctness
of the incremental model transformation approaches is not proven. Thus, for-
mal proofs for correctness would be highly beneficial for the confidence of the
incremental transformations.

11

5 Conclusion

In this paper, we presented a survey on incremental model transformation ap-
proaches. Therefore, criteria for evaluating and comparing incremental model
transformation approaches have been proposed. Eight recent approaches have
been compared according to the criteria and lessons learned have been presented.

Summing up, although several approaches for incremental model transfor-
mations exist, there is still space for improvements including (i) better support
for imperative language parts, (ii) more efficient change propagation with ded-
icated change operators, (iii) provision and automatic selection of appropriate
propagation strategies, and (iv) proving correctness of incremental model trans-
formations.

Acknowledgements

We would like to thank Stephan Hildebrandt, Marius Lauder, Anthony Anjorin,
Ali Razavi, István Ráth, Gábor Bergmann, Salvador Mart́ınez Pérez, and Mas-
simo Tisi for their helpful comments on the paper.

This work has been funded by the Austrian Federal Ministry for Transport,
Innovation and Technology (bmvit) under grant ffg bridge 832160 and ffg
fit-it 825070 and 829598, ffg Basisprogramm 838181, and by öad under grant
AR18/2013 and UA07/2013.

References

1. Bergmann, G., Horváth, D., Horváth, A.: Applying Incremental Graph Transfor-
mation to Existing Models in Relational Databases. In: 6th Int. Conf. on Graph
Transformations. Springer (2012)

2. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transforma-
tions. SoSym 11(3) (Jul 2012)

3. Bézivin, J.: On the Unification Power of Models. SoSym 4(2) (May 2005)
4. Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In: 18th Int.

Conf. on Advanced Information Systems Engineering. Springer (2006)
5. Cicchetti, A., Ciccozzi, F., Leveque, T.: Supporting Incremental Synchronization

in Hybrid Multi-view Modelling. In: Int. Conf. on Models in SE. Springer (2012)
6. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: A Bidirectional

and Change Propagating Transformation Language. In: Int. Conf. on Software
Language Engineering. Springer (2011)

7. Conradi, R., Westfechtel, B.: Version Models for Software Configuration Manage-
ment. ACM Comp. Surv. 30(2) (Jun 1998)

8. Czarnecki, K., Helsen, S.: Feature-Based Survey of Model Transformation Ap-
proaches. IBM Systems Journal 45(3) (Jul 2006)

9. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping
SysML and AUTOSAR Models Consistent. In: Graph Transformations and Model-
Driven Engineering. LNCS, vol. 5765. Springer (2010)

10. Gupta, A., Mumick, I.S.: Maintenance of Materialized Views: Problems, Tech-
niques, and Applications. IEEE Data Eng. Bull. 18(2) (1995)

12

11. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for
the Evolution of Model-Driven Systems. In: 9th Int. Conf. on Model Driven Engi-
neering Languages and Systems. Springer (2006)

12. Johann, S., Egyed, A.: Instant and Incremental Transformation of Models. In: 19th
Int. Conf. on Automated Software Engineering. IEEE (2004)

13. Jouault, F., Tisi, M.: Towards Incremental Execution of ATL Transformations. In:
3rd Int. Conf. on Theory and Practice of Model Transformations. Springer (2010)

14. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
Transformation By-Example: A Survey of the First Wave. In: Conceptual Mod-
elling and Its Theoretical Foundations. Springer (2012)

15. Kolovos, D., Paige, R.F., Polack, F.A.: The Grand Challenge of Scalability for
Model Driven Engineering. In: Models in SE. Springer (2009)

16. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient Model Synchronization
with Precedence Triple Graph Grammars. In: 6th Int. Conf. on Graph Transfor-
mations. Springer (2012)

17. Mens, T., Van Gorp, P.: A Taxonomy of Model Transformation. ENTCS 152 (Mar
2006)

18. Ráth, I., Bergmann, G., Ökrös, A., Varró, D.: Live Model Transformations Driven
by Incremental Pattern Matching. In: 1st Int. Conf. on Theory and Practice of
Model Transformations. Springer (2008)

19. Razavi, A., Kontogiannis, K.: Partial Evaluation of Model Transformations. In:
Proc. of the 2012 Int. Conf. on Software Engineering. IEEE Press (2012)

20. Razavi, A., Kontogiannis, K., Brealey, C., Nigul, L.: Incremental Model Synchro-
nization in Model Driven Development Environments. In: Conf. of the Center f.
Adv. Studies on Collab. Research. IBM (2009)

21. Scheidgen, M., Zubow, A., Fischer, J., Kolbe, T.H.: Automated and Transparent
Model Fragmentation for Persisting Large Models. In: 15th Int. Conf. on Model
Driven Engineering Languages and Systems. Springer (2012)

22. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Graph-Theoretic Concepts in Computer Science. Springer Berlin Heidelberg (1995)

23. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,
W., Kolovos, D., Paige, R., Lauder, M., Schürr, A., Wagelaar, D.: Surveying Rule
Inheritance in Model-to-Model Transformation Languages. Journal of Obj. Techn.
11(2) (Aug 2012)

24. Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W.,
Kapsammer, E.: A Survey on UML-Based Aspect-Oriented Design Modeling. ACM
Comp. Surv. 43(4) (Oct 2011)

13

Co-evolution of Metamodels and Models
through Consistent Change Propagation

Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed

Institute for Systems Engineering and Automation
Johannes Kepler University (JKU)

Linz, Austria
{andreas.demuth|roberto.lopez|alexander.egyed}@jku.at

Abstract. In Model-Driven Engineering (MDE), metamodels and
domain-specific languages are key artifacts as they are used to define syn-
tax and semantics of domain models. However, metamodels are evolving
over time, requiring existing domain models to be co-evolved. Though
approaches have been proposed for performing such co-evolution auto-
matically, those approaches typically support only specific metamodel
changes. In this paper, we present a vision of co-evolution between
metamodels and models through consistent change propagation. The ap-
proach addressed co-evolution issues without being limited to specific
metamodels or evolution scenarios. It relies on incremental management
of metamodel-based constraints that are used to detect co-evolution fail-
ures (i.e., inconsistencies between metamodel and model). After failure
detection, the approach automatically generates suggestions for correc-
tion (i.e., repairs for inconsistencies). Preliminary validation results are
promising as they indicate that the approach computes correct sugges-
tions for model adaptations, and that it scales and can be applied live
without interrupting tool users.

1 Introduction

In Model-Driven Development (MDD) [1], metamodels are key artifacts that rep-
resent real-world domains. Therefore, they define the language of models; that is,
the different elements available for modeling along with their interdependencies.
Metamodels thus impose structural and semantical constraints on models [2].
Although metamodels are often perceived as static artifacts that do not change,
it has been shown that the opposite is the case: metamodels do evolve over time
for various reasons. For instance, there is a trend for flexible design tools with
adaptable metamodels that can be tailored to different domains (e.g., [3]). An-
other common source for metamodel evolution are refactorings that focus on
improving a metamodel’s structure and usability.

Co-evolution of models denotes the process of adapting models as a conse-
quence of metamodel evolution [4, 5]. This is a non trivial process, and incor-
rect co-evolution may cause models to no longer comply with their metamod-
els. Several incremental approaches have been proposed to support this pro-
cess (e.g., [6]). Unfortunately, proposed solutions are typically limited to specific

14

(a) Metamodel. (b) Model.

Fig. 1. Simple metamodel (a) and model (b). Metamodel evolution and valid model
co-adaptations drawn dotted.

metamodels or do not fully support all kinds of possible changes (e.g., restriction
of metaproperty) [7]. In particular, existing generic approaches do not take into
account domain-specific model constraints. Therefore, co-evolution of metamod-
els and models remains an open issue.

In this paper, we outline a generic approach that does not try to automate co-
evolution in general, but that detects co-evolution failures and suggests model
adaptations to co-evolve a model correctly. In particular, the approach relies
on incremental constraint management that allows for efficient detection of co-
evolution failures (including the absence of co-evolution). If such failures are
detected, the resulting inconsistencies between metamodel and model – along
with other design constraints imposed on the model – are used for finding suitable
model adaptations (repairs) that establish compliance of the model with the
updated metamodel and thus lead to correct co-evolution.

2 Motivating Example

To illustrate our work, we use a simple metamodel for component-oriented sys-
tems with high availability requirements, as shown in Fig. 1(a). Note that, for
now, we only consider elements drawn solid – dotted elements indicate evolu-
tion which we will discuss later. The metamodel defines three classes: Component,
Domain, and Communication. Components can have an arbitrary number of sub-
components and must belong to a Domain. Domains include components that are
responsible for fulfilling a common task in the system. Communications occur
between a sender and a receiver (rec) component. To increase the chance of
a successful communication, different components can be specified as primary
(prim) and as alternative (alt) target of a communication. All possible targets of
a communication are aggregated by the derived reference possibleReceivers.
Note that the defined reference cardinalities (e.g., 1 for prim) implicitly define
model constraints. For example, an instance of Communication must reference
exactly one Component via prim. However, to ensure that only intended models

15

can be built, the metamodel has been extended with the following three explicit
constraints:

R1 All possible receivers of a Communication must be located within a single
Domain (i.e., a set of components with a common purpose).

R2 A communication may only occur between components of different compo-
nent domains.

R3 It is not permitted that a single component is used as primary and alterna-
tive target.

Note that we omit other possible domain-specific constraints as well as implicit
syntactical constraints for simplicity reasons.

In Fig. 1(b), a model that complies with the metamodel is depicted. Again,
ignore dotted elements for now as they indicate possible evolution which we will
discuss later. The derived reference possibleReceivers is omitted for readabil-
ity reasons. The model contains three domains: X, Y , and Z. Domain X consists
of only two components (X1 and X2), Y consists of four components in total
(Y 1 – Y 4), and Z consists of two components (Z1 and Z2). The model also
contains two communications (C1 and C2), drawn as circles.

Let us now consider a simple metamodel evolution. To increase the avail-
ability of systems and reduce the chance of communication failures, a second
alternative communication target (called alt2) is added to the metamodel, as
indicated by the dotted arrow in Fig. 1(a). Intuitively, this metamodel evolution
requires the model in Fig 1(b) to be co-evolved as a new mandatory reference
was added to the class Communication that is instantiated twice in the model.
While existing approaches can typically find model adaptations that produce a
syntactically correct model – for example, by adding a new reference alt2, which
points to an arbitrary Component, to every Communication – such adaptations
may easily lead to a semantically incorrect model. In the next section, we will
show how our approach handles this scenario and automatically provides user
guidance that helps designers to easily find valid adaptions.

3 Co-evolution through Consistent Change Propagation

To address the issues discussed above, we propose to perform co-evolution through
consistent change propagation. The approach consists of two phases:

1. Detect co-evolution failures.

2. Derive options for correction of failures.

In Phase 1, the approach detects locations where co-evolution is not performed
correctly. This, of course, includes the situation of plainly missing co-evolution.
In Phase 2, options for a correct propagation of the metamodel change to the
affected model are derived. We will now discuss those phases in more detail and
also show how the approach is applied to the evolution scenario presented above.

16

3.1 Phase 1: Co-evolution Failure Detection

Although metamodel evolution is likely to require model adaptations, this is
not a necessity – a metamodel may also change in ways that do not affect the
validity of existing models. For example, when an optional reference is added.
Additionally, models may be changed manually by designers or automatically
by tools after a metamodel evolution occurred, trying to co-evolve the model.
Therefore, it is necessary after a metamodel change – and subsequent model
adaptations – to determine whether an affected model is consistent with the
updated metamodel. If it is, co-evolution was performed correctly and no further
intervention is required. If, however, the model is inconsistent with the updated
metamodel, co-evolution failed and additional model adaptations are necessary.

Constraint Management As we have shown in the running example, con-
straints can be used for ensuring both syntax and semantics. Therefore, when
the metamodel evolves, constraints of both kinds may be affected. By using
an incremental constraint management approach, it is possible to update con-
straints after metamodel changes – ensuring that models are always validated
with constraints that are up-to-date.

In our example, the addition of alt2 in Fig. 1(a) requires a new syntactical
constraint to be enforced on models:

R4 Each Communication must reference a Component via alt2.

Consistency Checking After updating the set of constraints imposed by the
metamodel, standard consistency checkings mechanisms (e.g., [8, 9]) can be used
to detect inconsistencies. While the typical scenario is that an unchanged model
becomes inconsistent after metamodel evolution, it is also possible that a pre-
viously inconsistent model becomes consistent without any adaptations. Addi-
tionally, model adaptations that are performed for the purpose of co-evolution
may be incorrect and actually introduce new inconsistencies. If a consistency
checker that uses an up-to-date set of constraints detects inconsistencies after a
metamodel evolution, model adaptations are required and co-evolution was not
done correctly.

After adding the new syntactical constraint defined above, any standard
consistency checker will find that the model in Fig. 1(b) contains two incon-
sistencies: neither C1 nor C2 provide a second alternative target. Thus, our
intuitive assumption that additional model adaptations are necessary for correct
co-evolution has been confirmed.

3.2 Phase 2: Co-evolution Correction

Once co-evolution failures have been detected, our approach reaches Phase 2 in
which those failures are corrected.

17

Repair Options To correct co-evolution failures and propagate the metamodel
change correctly, it is necessary to find model adaptations (i.e., repair options)
that transform the inconsistent model into a consistent one. Unfortunately, find-
ing suitable adaptations is non trivial as every change to a model may not only
eliminate the violation of a constraint, but it may also cause other constraints
to be violated. However, single changes can of course also remove several in-
consistencies at once. Due to those side effects, finding suitable corrections is a
complex task that should not be performed in an ad-hoc manner. Our approach
employs a reasoning mechanism that takes into consideration all design con-
straints present in a model to find suitable adaptations [10]. Note that using not
only those constraints that are actually based on the metamodel but all design
constraints, repairs can be computed with higher precision as more information
is available for the reasoning engine and side effects can be computed.

Let us come back to our example. During Phase 1, two inconsistencies caused
by the elements C1 and C2 were detected in the model. First, we consider the
inconsistency involving C1. To correct the syntax and remove the violation of
constraint R4, a reference alt2 to any component is sufficient. Moreover, in each
domain a new component could be created and used as second alternative target
for C1. Of course, it would also be possible to create a new component in an
entirely new domain. Therefore, there are 12 options available in total: one for
each of the eight existing (i.e., solid drawn) components in Fig. 1(b), one for
each of the three domains, and one for a new domain with a new component.
However, by also taking into account the domain-specific constraints R1 – R3
from Section 2, our approach computes side effects for each of those options. Due
to constraint R2, adding either X1 or X2 as second alternative target to C1 is not
a valid adaptation as this would violate R2. Additionally, the existing references
prim and alt from C1 to components of domain Y disallow the use of any
components that belong to a domain other than Y , according to constraint R1.
This rules out any remaining options that involve a second alternative receiver in
domain Z or in a newly created domain. Finally, constraint R3 disallows Y 1 and
Y 2 as options because they are already possible receivers. Note that this means a
reduction from 12 options – from which 9 are actually semantically incorrect – to
only 3 options that co-evolve C1 correctly. Those are drawn dotted in Fig. 1(b).

For the communication C2, the constraints R1 – R4 can only be satisfied
by adding a new component to domain X that is used as second alternative
receiver, as indicated by the dotted drawn component X3 in Fig. 1(b).

Change Execution Although each derived repair option fixes a model, some
of them may seem more intuitive and more logical to stakeholders than others.
Therefore, stakeholders should choose manually which of the available repair
options should be executed. However, repair options could of course be selected
and executed automatically if model characteristics such as readability are of
low importance.

In our example, the co-evolution of C2 can be done automatically as there is
only one repair option. To repair the inconsistency of C1, a user has to decide

18

between only three options that propagate the metamodel change correctly to
the model.

4 Discussion

Let us now briefly discuss the planned implementation of our approach and
preliminary validation results.

4.1 Prototype Implementation

The individual parts of the approach have been implemented in previous work.
For the constraint management part, we have implemented a template-based
transformation engine that generates and updates metamodel-based model con-
straints [11]. For the consistency checking, we rely on the Model/Analyzer con-
sistency checking framework [12] that allows for efficient incremental addition
and removal of models constraints. Finally, for the repair option generation, we
have implemented a generic inconsistency repair mechanism that builds upon
the Model/Analyzer framework [10].

4.2 Preliminary Performance Results

We have demonstrated in [13] that constraint management through transfor-
mation is efficient and that constraints are updated within milliseconds after a
metamodel change. In [12] and [9], we have shown that the Model/Analyzer is ca-
pable of validating constraints instantly, even for large industrial models of over
100,000 model elements. Moreover, it was demonstrated that adding constraints
(or removing them) is handled efficiently. For repairing detected inconsistencies,
we have observed that for typical UML models less than 10 suggestions were de-
rived, also within milliseconds [10]. Moreover, we have previously found that by
considering side-effects between different constraints, the number of suggestions
can be reduced even further [14].

4.3 Applicability

We have illustrated how our approach updates constraints and derives options for
correcting co-evolution failures. Although we have used the proposed solution in
isolation to keep the example simple and focused, it is compatible with existing
automatic co-evolution techniques. When used in isolation, our approach detects
the absence of necessary model adaptations as co-evolution failures. When com-
bined with other approaches, it also detects co-evolution failures that are based
on incorrect model adaptations. Therefore, our solution is not a substitute but
a complement to existing technologies.

19

5 Related Work

Let us now discuss how the presented approach relates to other work that has
been done in the field of co-evolving metamodels and models. The necessity
of support for efficient and automatic co-evolution of metamodel and models
was identified as a major challenge in software evolution by Mens et al. [4],
and various approaches have been published to address it. Instead of seeing a
metamodel evolution step as a single, complex, and manually performed change
that is performed in an ad-hoc manner, Wachsmuth [15] describes metamodel
evolution as a series of transformational adaptations performed stepwise. Meta-
model changes are traced and qualified based on properties such as semantics-
or instance-preservation. Co-transformations for models can be generated based
on transformation patterns that are instantiated with the performed metamodel
transformations. Cicchetti et al. [16] similarly classify metamodel and model
changes. They identified dependencies between different kinds of modifications
and propose an automated approach that leverages these dependencies for per-
forming co-evolution automatically. Herrmannsdoerfer et al. [17] investigated to
which degree different metamodel adaptations can be handled automatically.
Note that those approaches focus on decomposing metamodel adaptations into
atomic steps that are used for finding suitable co-adaptations of models. While
our approach also relies on atomic metamodel modifications, we use those mod-
ifications for updating the conditions that must hold in a valid model. Our
approach in general does not try to automate co-evolution of metamodels and
models. Instead, the fully automated co-evolution of metamodels and constraints
allows our reasoning engine to provide tool users with specific guidance on how
co-evolution can be performed. Note, however, that in some cases models may
also be adapted automatically (e.g., if only a single repair option exists).

Wimmer et al. [18] merge different metamodel versions to a unified meta-
model and then apply co-evolution rules to models. New metaclasses are instan-
tiated and existing model elements that are no longer required are removed. Due
to issues regarding typecasts and instantiation, their co-evolution rules had to
be adapted. The components used in our prototype implementation are capable
of handling arbitrary metamodel adaptations, including type changes.

6 Conclusion and Future Work

In this vision paper, we have presented the outline of a novel approach for sup-
porting the co-evolution of metamodels and models. Our approach is generic and
relies on the detection of inconsistencies that occur after metamodel evolution.
Those inconsistencies serve as input for a reasoning mechanism that provides as
output a set of possible model adaptations for repairing – that is, co-evolving –
an affected model.

The preliminary validation results are promising and suggest that the pre-
sented approach is feasible and that it can be implemented efficiently. However,
these were observed in tests that were performed with prototype implementa-
tions for the individual components involved in the approach. For a complete

20

validation, we have yet to conduct case studies with industrial models and a
complete implementation that fully integrates the prototypes of individual com-
ponents.

References

1. D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,” IEEE
Computer, vol. 39, no. 2, pp. 25–31, 2006.

2. R. B. France and B. Rumpe, “Model-driven development of complex software: A
research roadmap,” in FOSE, pp. 37–54, 2007.

3. E.-J. Manders, G. Biswas, N. Mahadevan, and G. Karsai, “Component-oriented
modeling of hybrid dynamic systems using the generic modeling environment,” in
MBD/MOMPES, pp. 159–168, 2006.

4. T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri,
“Challenges in software evolution,” in IWPSE, pp. 13–22, 2005.

5. L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “Enhanced automation
for managing model and metamodel inconsistency,” in ASE, pp. 545–549, 2009.

6. M. Herrmannsdoerfer, S. Benz, and E. Jürgens, “COPE - automating coupled
evolution of metamodels and models,” in ECOOP, pp. 52–76, 2009.

7. A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Automating co-
evolution in model-driven engineering,” in EDOC, pp. 222–231, 2008.

8. C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, “xlinkit: a consistency
checking and smart link generation service,” ACM Trans. Internet Techn., vol. 2,
no. 2, pp. 151–185, 2002.

9. I. Groher, A. Reder, and A. Egyed, “Incremental consistency checking of dynamic
constraints,” in FASE, pp. 203–217, 2010.

10. A. Reder and A. Egyed, “Computing repair trees for resolving inconsistencies in
design models,” in ASE, pp. 220–229, 2012.

11. A. Demuth, R. E. Lopez-Herrejon, and A. Egyed, “Supporting the co-evolution
of metamodels and constraints through incremental constraint management,” in
MoDELS, 2013. Accepted for publication.

12. A. Reder and A. Egyed, “Model/analyzer: a tool for detecting, visualizing and
fixing design errors in UML,” in ASE, pp. 347–348, 2010.

13. A. Demuth, R. E. Lopez-Herrejon, and A. Egyed, “Constraint-driven mod-
eling through transformation,” Software and System Modeling, 2013. DOI:
10.1007/s10270-013-0363-3.

14. A. Nöhrer, A. Reder, and A. Egyed, “Positive effects of utilizing relationships
between inconsistencies for more effective inconsistency resolution: NIER track,”
in ICSE, pp. 864–867, 2011.

15. G. Wachsmuth, “Metamodel adaptation and model co-adaptation,” in ECOOP,
pp. 600–624, 2007.

16. A. Cicchetti, D. D. Ruscio, and A. Pierantonio, “Managing dependent changes in
coupled evolution,” in ICMT, pp. 35–51, 2009.

17. M. Herrmannsdoerfer, S. Benz, and E. Jürgens, “Automatability of coupled evo-
lution of metamodels and models in practice,” in MoDELS, pp. 645–659, 2008.

18. M. Wimmer, A. Kusel, J. Schönböck, W. Retschitzegger, W. Schwinger, and
G. Kappel, “On using inplace transformations for model co-evolution,” in MtATL,
INRIA & Ecole des Mines de Nantes, 2010.

21

Automating Instance Migration in Response to
Ontology Evolution

Mark Fischer1, Juergen Dingel1, Maged Elaasar2, Steven Shaw3

1Queen’s University, {fischer,dingel}@cs.queensu.ca
2Carleton University, melaasar@gmail.com

3IBM, sshaw@ca.ibm.com

Abstract

Of great importance to the efficient use of an ontology is the ability
to easily effect change [9]. This paper presents an approach toward au-
tomating a method for instance data to be kept up to date as an ontology
evolves.

1 Introduction and Motivation
As computers become more ubiquitous and the information they attain and
store becomes vast, the benefit gained from formally representing that infor-
mation grows. Ontologies are one of the key technologies which strive to give
information well-defined meaning. This, in turn, allows computers and people
to work more cooperatively [10].

While there are many applications which help develop and create ontologies,
there are still very few which aid or facilitate the evolution of an ontology [7].
Changes in domain understanding and changes in application requirements often
necessitate a change in the underlying ontology [11]. It may be impractical
or impossible to predict how or even if an ontology may change after being
deployed. Changes to an ontology may generate inconsistencies in dependent
ontologies. As ontologies evolve and grow, it becomes increasingly attractive to
find efficient ways of keeping dependent information up to date.

A change in an ontology requiring dependent ontologies to be updated is a
common problem. IBM’s Design Manager is a collaborative design management
software. It works with domains which are specified using ontologies to store,
share, search and manage designs and models. The work presented in this paper
was inspired, in part, by work IBM has done and problems IBM has encountered
while developing Design Manager. Figure 1 helps describe the problem being
addressed.

In Figure 1, there exists an original ontology (O), an evolved or updated
ontology (O′) and a set of dependent ontologies (I1, I2, ..., In). For all j, Ij

1

22

Figure 1: An overview of the problem setup

imports O and contains only individuals and facts asserted about those individ-
uals.

Notice that classes and properties are kept separate from individuals. In an
ontology, an individual is a resource which is an instance of a class and cannot
contain any other resource (individuals may be related to one another through
properties). Through this seperation, classes and properties are analogous to
metamodels or schema while individuals are analogous to objects or data. Sep-
arating class definitions and property definitions from individuals is common
practice when designing and building ontologies [3].

For any change that is made to O, there may exist an arbitrary number of j
such that Ij is inconsistent. Furthermore, it is possible that there exist an a and
a b such that a change in O will make Ia and Ib inconsistent for unrelated reasons
(the axioms in O′ that make Ia inconsistent are distinct from the axioms in O′

that make Ib inconsistent). It is the hope that for all j, a transformation can co-
evolve or migrate Ij into a new ontology, I ′j , such that I ′j imports O′ and remains
consistent. In Figure 1, the arrow labeled ‘transformation’ represents the portion
of this problem for which we propose a unique solution which automates the
transformation process.

Currently, this work is often done manually, or put off entirely because of the
effort required to devise and implement these sorts of migrations. Due to the
complexity possible in an ontology and the semantic ambiguity behind changes
being made, it is not possible to automatically generate the transformation that
performs the migration for individuals in dependent ontologies. Since ontolo-
gies may be too complex for a user to fully comprehend and changes may be
ambiguous and therefore difficult for a computer or algorithm to deal with [11],
the solution is to automate the migration process with the help of some user
input.

To help automate the migration process, we aid the user creation of a trans-
formation which unambiguously defines how to perform a migration for any
possible dependent ontology. We also develop a set of tools and techniques

2

23

Figure 2: Kitchen example ontology and a possible evolution ontology. Solid
components and their labels are from the original ontology while both solid and
dashed components are from the evolved ontology. The original ontology has
four named classes, one anonymous class, and a property. The evolved ontology
has added a named class called spork which is a subclass of both spoon and fork.
A spork is a pronged spoon and was first patented in the U.S. in 1874.

aimed at making it increasingly easier for users to create these transformations.

2 The Approach
The approach discussed here breaks the process into three phases which are
incorporated into a single tool called Oital-T.

The first phase deals with comparing the two ontologies (O and O′). While
not strictly necessary for the development of the transformation, an understand-
ing of the difference between O and O′ allows Oital-T to make suggestions and
help the user to make choices regarding the transformation.

The second phase is the creation of the transformation itself. The trans-
formation is authored in a language called Oital. Oital-T acts as an integrated
development environment for Oital, allowing the syntax to be easier to learn and
manipulate. The end goal of this entire process is to create a transformation
written in Oital. This is the transformation that can then be run any number
of times to migrate instances from O to O′.

Finally, the last phase involves analyzing the transformation. This phase
of the process can be used to indicate which parts of the transformation may
require correction or further development.

3

24

Figure 3: Venn Diagram showing regions where an axiom may be found

2.1 Analyzing the ontologies
In OWL, the separation of class and properties from individuals is expressed
using axioms and facts. In relation to Figure 1, I1 through In are all a series of
facts with an inclusion reference to O while O and O′ both consist of a series of
axioms (possibly with inclusion references to other ontologies).

Axioms may either restrict or add to an ontology. Restrictive axioms add
further clarification to the information encoded in an ontology (such as holdsVol-
ume exactly 1 in Figure 2) while additive axioms broaden the scope of the
information (such as the creation of a new class).

Figure 3 depicts three regions in which an axiom may exist. Region 1 de-
scribes axioms which can be found in O and not in O′ (deleted axioms), region
2 describes those axioms which can be found in both O and O′ (unchanged
axioms), and region 3 describes axioms which can not be found in O but can be
found in O′ (new or added axioms).

Axioms may influence one another. In Figure 2, the kitchen ontology has an
axiom (A) stating that cutlery is the domain of the property holdsVolume. It
also has the axiom (B) that there is a specific anonymous restriction class which
contains only individuals that hold exactly one amount of volume. Axiom B is
influenced by axiom A because a change in A is axiomatically a change in B as
well. For any axiom, C, the axiom and all other axioms it is influenced by is
denoted as C∗ and called that axiom’s context.

Table 1 gives an overview of how axioms are labeled while analyzing O and
O′. If there exists axiom A such that its context, A∗, is entirely in Region 3, then
A cannot be the cause of any inconsistencies. Specifically, if Ij is consistent with
respect to O, then any inconsistencies Ij has with respect to O′ cannot be due
to axiom A. This means that aspects of the updated or evolved ontology which
are entirely unique to the updated ontology are not of concern for the creation
of a transformation. Similarly, for any A such that A∗ is entirely in region 2, A
cannot cause inconsistencies. This means that those parts of the original and
updated ontologies which remain unchanged are not of concern either.

Axioms found in Region 1 may not, by default, be ignored. If the axiom
is restrictive, such as the restriction class in Figure 2, then its removal cannot
create an inconsistency and is considered OK. If, however, the axiom is additive,
then its removal may create inconsistencies. For example, removing the fork is
a subclass of cutlery axiom from the kitchen ontology in Figure 2 would result in

4

25

Restrictive Axiom (and
its context)

Additive Axiom (and
its context)

Region 1 OK Must Investigate
Region 2 OK OK
Region 3 OK OK

Region 1 & 2 Should Investigate Must Investigate
Region 2 & 3 Must Investigate Should Investigate

Table 1: Overview of which axioms require further investigation with respect
to specific regions as outlined in Figure 3. OK means the axiom may be safely
ignored as it is very unlikely to hinder a migration. Should Investigate means
this axiom is unlikely to hinder migration, but it is probably semantically im-
portant. Must Investigate means this axiom needs to be considered carefully
during migration as it may cause inconsistencies.

any facts which state that an individual fork holds a specific volume becoming
inconsistent.

If, for a given axiom, A, the context, A∗, straddles two regions, then A is
very likely to be semantically important. This means that even if the axiom
may not cause inconsistencies, it may still be of interest to a user creating the
transformation. Generally A∗ having elements in region 1 and 2 suggests that a
part of the ontology was removed but in such a way that the updated ontology
had to be restructured to accommodate the removal (such as the removal of a
class from a hierarchy). Similarly, A∗ having elements in both region 2 and 3
suggests that a part of the ontology that has been added affects parts of the
already existent ontology (Such as the creation of a new restriction class in
a class hierarchy). Some of these changes may cause inconsistencies and are
treated as more important, but all instances of these are shown to the user.

The following example illustrates how this analysis in performed. Consider
the kitchen ontologies from Figure 2. The following is information that can be
gathered from an analysis of these two ontologies. The spork class is new and
therefore part of Region 3 from Figure 3. Its context includes the fork and spoon
classes because of the subclass property. Because of the spoon, its context also
involves the anonymous restriction class as well as the property holdsVolume.
Because of holdsVolume, its context involves the cutlery class. Since spork is
from Region 3, and it has a context which encompasses Region 2, this change
straddles Region 2 & 3. The creation of a named class is additive, so (as shown in
Table 1) this is unlikely to create an inconsistency during migration, but should
still be brought to the user’s attention as it may be important semantically.

2.2 Creating the transformation
A transformation that facilitates a migration of individuals from one ontology to
another must, in some way, encode all the information that is still lacking after
the two ontologies have been fully analyzed. While an analysis of the original

5

26

and evolved ontology can reveal how the original ontology has been changed, it
cannot uncover the reasoning behind any given change.

A comparison of O and O′ may uncover a difference for which there are many
possible reasons. Consider the analysis of the evolution depicted in Figure 2,
to know how to proceed, it is import to know why the spork class was created.
If, for example, the class was added because of the discovery of a spork, then
the migration can simply ignore this difference. If, on the other hand, the spork
class was created because there were individuals within the class fork which held
a volume, then a migration should take those forks which have the holdsVolume
property and migrate them to the new spork class.

This very simple example illustrates why user interaction is required for the
creation of the migration transformation. To express this transformation, we
developed a domain specific transformation language called Oital.

2.2.1 Ontology Individual Transformation Authoring Language

Oital is a transformation language designed specifically for specifying the migra-
tion of individuals who are conformant to O such that they become conformant
to O′. Currently, SPARQL update is used to perform tasks which alter an on-
tology. SPARQL update, however is an update language for RDF graphs. To
use SPARQL update to effect change on an ontology requires an understanding
of how ontologies are stored as RDF triples. Ontologies which are not stored in
an RDF triple store must first be converted to one before SPARQL update can
be used.

Oital alleviates these issues by using ontology concepts directly in the lan-
guage (thus abstracting away from RDF). Instead of querying triples in a triple
store the way SPARQL update does, Oital queries classes and properties in the
ontology.

The current Oital compiler compiles Oital code into SPARQL update code.
This means that ontologies queried using Oital must still be stored in RDF.
It is, however, possible for Oital to be compiled in such a way that it can
efficiently query and alter other formats as well. Details concerning the syntax
and structure of Oital have been omitted due to space requirements.

To help make Oital easier to adopt, the syntax was heavily influenced by
the Manchester OWL syntax. Oital transformation classes are defined using
a syntax similar to the way OWL classes are defined. As the Manchester Owl
Syntax has been adopted by World Wide Web Consortium [1], it should be fairly
familiar to users who are already creating, updating, and evolving ontologies.

So far, no extensive evaluation of Oital has been conducted. However, pre-
liminary results suggest that it is a convenient means of expression for the kind
of ontology migration transformations we target.

2.3 Analyzing the transformation
Analyzing the created transformation is a helpful step toward inspecting if the
transformation that has been created is correct. Currently, the only forms of

6

27

analysis supported by Oital’s IDE (Oital-T) are traditional testing and a form
of abstract interpretation which executes the transformation in some abstract
fashion while collecting specific information [5][5].

We have developed and implements an abstract interpretation of Oital to
track class membership. For instance, if after running an abstract interpretation
of the transformation, the result shows that a specific class – such as spoon – is
empty, then there exists no possible input such that any individuals from that
input will have rdf:type spoon. Depending on the intent of the transformation,
this may or may not be a desired result.

Traditional testing, abstract interpretation, and – in future – other forms of
analysis may be used throughout the transformation authoring process in order
to ease the development of complex transformations with fewer errors.

3 Related Work
The migration problem, as presented here, closely resembles the data migration
problem found in database work [4] as well as the co-evolution problem found
in model driven development (MDE) work [2].

Using a transformation language is an approach currently being used to solve
the co-evolution problem. Languages such as ATL [6] (a QVT [8] compliant
language) can be used to facilitate the automation of co-evolution in model-
driven engineering [2]. When considering instance migration in ontologies, Oital
is used in a similar capacity (in the domain of ontologies).

Not much work has been done on the migration problem for ontologies as
has presented here, but similar work can be found concerning ontology evolution
management. Much of the work done in this field, such as [11] relies on being
able to access dependent ontologies (I1, I2, ..., In in Figure 1). They also depend
on user involvement at the time of evolution or migration, which our approach
does not require.

4 Conclusions and Future Work
In this paper, we have described an approach to facilitate the development
of transformations that migrate individuals from the original ontology to an
updated one. The approach is based on 1) differencing the ontologies, 2) trans-
formation development using a novel, domain-specific language, and 3) analysis.

There is, however, still much outstanding work to be done. Along with
continued development on Oital’s IDE (Oital-T), we will attempt to identify
transformation patterns and additional analysis that are scalable, yet still pro-
vide developers with useful information.

Aiding the development process will be sufficiently complex case-studies
which shall help show the usability and capability of the approach presented
in this paper. IBM has given us multiple versions of an ontology encoding of
the UML specification along with a series of UML models stored as ontologies.

7

28

IBM has also offered access to a domain with IBM’s Design Manager which may
benefit from this approach.

References
[1] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-

ness, P. F. Patel-Schneider, and L. A. Stein. Owl web ontology language
reference. February 2004.

[2] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating
co-evolution in model-driven engineering. In Enterprise Distributed Object
Computing Conference, 2008. EDOC ’08. 12th International IEEE, pages
222–231, 2008.

[3] A. Gangemi and V. Presutti. Ontology design patterns. Handbook on
Ontologies, pages 221–243, 2009.

[4] J. Hall, J. Hartline, R. A. Karlin, J. Saia, and J. Wilkes. On algorithms
for efficient data migration. In Proceedings of the Twelfth Annual ACM-
SIAM Symposium on Discrete Algorithms. Society for Industrial and Ap-
plied Mathematics, 2001.

[5] N. Jones and F. Nielson. Abstract interpretation: A semantics-based tool
for program analysis. Semantic Modeling, Clarendon Press, Handbook of
Logic in Computer Science, 4:527–635.

[6] F. Jouault, F. Allilaire, J. Bezivin, I. Kurtev, and P. Valduriez. Atl: a qvt-
like transformation language. In Object-oriented Programming Systems,
Languages, and Applications. 21st ACM SIGPLAN Symposium, 2006.

[7] A. M. Khattak, Z. Pervez, S. Lee, and Y. Lee. After effects of ontology
evolution. In Future Information Technology. IEEE 5th International Con-
ference, 2010.

[8] I. Kurtev. State of the art of qvt: A model transformation language stan-
dard. Applications of Graph Transformations with Industrial Relevance.
Springer Berlin Heidelberg, pages 377–393, 2008.

[9] N. F. Noy and M. Klein. Ontology evolution: Not the same as schema
evolution. Knowledge and Information Systems, 6(4):428–440.

[10] P. Plessers, O. De Troyer, and S. Casteleyn. Understanding ontology evo-
lution: A change detection approach. Web Semantics: Science, Services
and Agents on the World Wide Web, 5(1):39–49, 2007.

[11] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven ontol-
ogy evolution management. Knowledge Engineering and Knowledge Man-
agement: Ontologies and the Semantic Web, pages 285–300, 2002.

8

29

Generating Edit Operations
for Profiled UML Models

Timo Kehrer, Michaela Rindt, Pit Pietsch, Udo Kelter

Software Engineering Group
University of Siegen

{kehrer,mrindt,pietsch,kelter}@informatik.uni-siegen.de

Abstract. Since many tools for model-driven engineering (MDE) can
only process consistent models, the consistency must be guaranteed by all
tools which modify models, such as model editors, transformers, merge
tools, etc. This is a recurring challenge for tool developers.

An obvious solution of this challenge is to use a common library of
consistency-preserving edit operations for modifying models. Typical
meta-models lead to several 1000 edit operations, i.e. it is hardly pos-
sible to manually specify and implement so many edit operations. This
problem is aggravated by UML profiles: Stereotyped model elements are
implemented as complex data structures. This paper discusses several
approaches to implementing edit operations on profiled models. Further-
more, it canvasses how to generate complete sets of specifications and
implementations of edit operations.

1 Introduction

In model-driven engineering (MDE) models are the primary development ar-
tifacts. Models are modified by many different tools, including model editors,
transformers, patch and merge tools [7], test data generators [11] etc. Many
tools can only process consistent models; tool constructors are thus faced with
the challenge that all tools must preserve the consistency of the models.

A general solution to the challenge described above is to use a library of edit
operations, but many of the existing libraries do not guarantee the consistency of
the models. In this paper we present a novel approach to specify and implement
a library of consistency-preserving edit operations (Section 2).

Consistency-preserving edit operations (CPEOs) depend on the meta-model,
i.e. they are not generic. The set of CPEOs available for a given meta-model
must be complete in the following sense: It must be possible to construct any
consistent model and to edit each consistent model to become another consistent
model. Complete sets of CPEOs are quite large; their creation should therefore
be supported by (meta-) tools. Section 2 introduces SERGE, our own tool to
generate CPEOs, and discusses the limitations of automatically generating sets
of CPEOs.

30

The challenge of defining CPEOs is aggravated in case of domain-specific
modeling languages (DSMLs) which are defined using the UML profile mecha-
nism, e.g. SysML [9] and MARTE [10]: Stereotyped model elements are imple-
mented as complex data structures which create new consistency requirements
(See Section 4).

The main contribution of this paper is an analysis of how profiles affect (sets
of) CPEOs of the underlying non-extended meta-model. This is discussed in
Section 5.

Several approaches are available for implementing CPEOs for profiled meta-
models and for semi-automatically generating complete sets of CPEOs. Section
6 presents these approaches and discusses their respective advantages and dis-
advantages.

Section 7 summarizes the contributions of this paper.

2 Consistency-preserving Edit Operations

Meta-Models. A model is conceptually considered as a typed, attributed graph
which is known as the abstract syntax graph (ASG). Meta-models, e.g. the UML
meta-model, define the types of nodes and edges allowed in an ASG. Following
the common practice in MDE, we assume that there is an object-oriented im-
plementation of meta-models. Thus, nodes and edges of an ASG are represented
by (runtime) objects and references between them.

Consistency of Models. An ASG is considered consistent if it complies to
the definitions and constraints specified by its meta-model, notably constraints
concerning hierarchies, relationships and multiplicities.

Standards such as the UML typically define strict, “ideal” consistency con-
straints; ASGs complying with them represent models which can be translated
to source code and other platform-specific documents. Many model editors (e.g.
the Eclipse UML Model Editor) use de facto less strict meta-models. For exam-
ple, they enforce only multiplicity constraints which are required to produce a
graphical representation of a model.

Edit Operations vs. Basic Graph Operations. Meta-models are just data
models of models, they do not directly specify editing behavior. One obvious ap-
proach to modify models is to use ’basic graph operations’ on the ASG including
deleting, creating, moving and changing elements, attributes or references.

Executing a single basic graph operation on an ASG can lead to a new state
which violates the syntactic consistency. For example, a basic operation which
creates a single UML StateMachine object leads to an inconsistent ASG: A
StateMachine must always contain at least one Region. In contrast to this, a
CPEO will create a StateMachine and create a contained Region at the same
time. Thus, the model is transformed from one consistent state into another.
This CPEO is minimal in the sense that it cannot be splitted into smaller parts
which preserve the consistency of the model.

31

In general, an edit operation has an interface specifying input and output
parameters. For example, the edit operation createStateMachine must be supplied
with a container element in which the StateMachine is to be created, along with
local attribute values for the new StateMachine. Objects created by an edit op-
eration are handled as output arguments. Additionally, pre- and postconditions
may precisely specify application conditions of an edit operation.

Basically, minimal CPEOs can be categorized into the same kinds of oper-
ations as basic graph operations, namely creation, deletion, move and change
operations. However, minimal CPEOs usually comprise a set of basic ASG op-
erations. An example for such an ’atomic compositions’ of ASG elements is the
creation of a StateMachine with at least one nested Region in a single transac-
tion.

3 Generating Executable Specifications of Edit
Operations

Comprehensive languages, such as the UML require large sets of edit operations.
The manual specification of such sets of CPEOs for a given modeling language
is very tedious and prone to errors.

This problem is addressed by our SiDiff Edit Rules Generator (SERGe) [12].
SERGe derives sets of minimal CPEOs from a given meta-model with multi-
plicity constraints. These sets are complete in the sense that all kinds of edit
operations, i.e. create, delete, move and change operations, are contained for
every model element, reference and attribute. Respectively, edit operations gen-
erated by SERGe cover multiplicity constraints and maintain the consistency of
a model.

According to our knowledge, there are no other approaches for constructing
CPEOs. There are approaches to create certain kinds of edit operations or gram-
mars which can construct or modify models [1, 3, 6, 13]. However, they either do
not support all types of modifications (e.g. setting attribute values or moving
elements) or they lead to consistency violations. In sum, they were unusable for
our own practical work.

SERGe uses the Eclipse Modeling Framework (EMF) [4]. Generated edit op-
erations are realized as in-place transformation rules in the model transformation
language Henshin [2, 5]. A Henshin transformation rule can specify model pat-
terns to be found and preserved, to be deleted, to be created and to be forbidden.
We will refer to these implementations of edit operations as edit rules.

Figure 1 shows the edit rule createStateMachine. This edit rule is generated by
SERGe when processing the implementation of the UML2 meta-model in EMF
Ecore. For the sake of readability, the rule shown in Figure 1 is a simplified
version of the rule.

This example illustrates that a Henshin rule can define variables serving
as input or output parameters. The input parameter Selected determines the
context object to which an edit rule shall be applied. In our example, the con-
text object will be the Model in which the StateMachine shall be created. The

32

Fig. 1. Edit rule createStateMachine generated by SERGe

StateMachine object and its mandatory Region will be returned as output pa-
rameters New and Child when the rule is applied. Additionally, the name and
the property isReentrant of the StateMachine to be created must be provided
by the input value parameters Name and IsReentrant, respectively.

Manual Adaptions of Generated Operations. SERGe is not capable of in-
terpreting arbitrary well-formedness constraints (OCL ?? Constraints) attached
to a meta-model element. Hence, some of the generated edit rules have to be
complemented by additional application conditions.

For example, the UML meta-model specifies that all the members of a Name-
space (which includes the packaged elements of a Model) are distinguishable by
their names. Thus, a StateMachine can only be created in a Model if there is no
NamedElement with the same name. This precondition can be implemented in
Henshin by a negative application condition (NAC) as shown in Figure 2.

Fig. 2. Manually adapted edit rule createStateMachine

Conclusion. We can conclude that the most important innovation of SERGe
is that the generated edit operations comply to multiplicity constraints and
preserve the consistency of a model in this respect. If required, the generated
edit operations can be extended manually additional well-formedness constraints;
this usually requires only a limited effort.

However, SERGe currently does not address the generation of edit operations
for UML profiles. Several design variants to extend a generator such as SERGe
to profile definitions will be discussed in the remainder of this paper.

33

4 The UML Profile Mechanism

UML profiles provide a light-weight approach to implement domain-specific lan-
guages by reusing existing meta-models.

Profile Definition. Profiles are basically defined as follows: A profile must im-
port the base meta-model which contains the reused element types. Principally,
any MOF-based meta-model can be extended by a profile definition. In practice,
the UML meta-model serves as the base meta-model. Figure 3 shows an excerpt
of the SysML [9] profile definition. The profile defines stereotypes which extend
one or more of the imported element types. These extended classes are called
’meta-classes’. The attribute required of a meta-class extension defines whether
an instance of the extending stereotype must be attached to any instance of this
meta-class. A stereotype can have new attributes or references, the so called
’tagged values’.

Fig. 3. SysML-Profile excerpt

Profile Application. A profile can be applied to a model which is an instance
of the base meta-model, and later be revoked. The application or revocation of
a profile can also be regarded as an edit operation: It causes stereotypes to be
added to or to be removed from appropriate model elements of a model.

The UML profile mechanism is designed in a way that all data related to a
profile are separated from the extended model; i.e. one or more profiles can be
applied to a UML model without destroying its previous structure. Thus, the
extended UML model always remains processable by UML tools.

An example of a profile application is shown in Figure 4; a very simple SysML
model is shown in concrete syntax (left) and abstract syntax (right). It illustrates
how stereotype objects of type Block and FlowPort (colored in light gray) are
attached to instances of the meta-classes Class and Port, respectively.

34

Fig. 4. Sample SysML model in concrete syntax (left) and abstract syntax (right)

5 Edit Operations for Profiled UML Models

In this section we analyze how UML profile definitions influence the set of
CPEOs. The complete set of edit operations can be divided into four disjoint
subsets which are described below.

A. Edit Operations modifying UML Model Elements. The first set of
edit operations operates on model elements that are instances of meta-classes
of the base meta-model, i.e. the UML meta-model. For the sake of readability,
we refer to them as (pure) UML model element operations. In principle, no
knowledge about applicable profiles is required to generate these operations.

Nevertheless, these model elements can have stereotypes. Although the effect
of a UML model element operation does not depend on whether or not there is
a stereotype, it can be necessary to omit or rename some of the generated edit
operations, notably in case of required stereotypes. Thus, we further divide the
set of UML model element operations into two main subsets:

1. Edit operations which create or delete UML model elements and their con-
tainment references.
These edit operations must be omitted if the type of the involved model ele-
ment has a required stereotype in the profile definition. In this case, the base
model element and the stereotype object have to be handled consistently by
hybrid edit operations (s. Section 5.D). Other edit operations which modify
the containment hierarchy, notably relocations of model elements caused by
move operations, are not omitted.

2. Edit operations which change attributes or non-containment references of
model elements. They are independent on whether or not a profile is applied.
It can be helpful to rename these operations for the sake of understandability,
e.g. from setClassIsAbstract to setBlockIsAbstract.

In both cases, edit operations are omitted if they operate on instances of meta-
model elements which are excluded by the profile definition. For example, SysML
does not support interaction diagrams as defined in UML2. Thus, edit opera-
tions modifying elements of type Interaction, InteractionFragment or Lifeline
are omitted.

35

B. Edit Operations modifying Tagged Values. This subset comprises edit
operations which change attributes or references of stereotypes. For the sake of
simplicity, we refer to this subset as tagged value modifications. These edit
operations modify only parts of a model, specifically the stereotype instances of
the profile. They can have arguments whose type is defined by the base meta-
model; these arguments remain unchanged.

Tagged value modifications are easy to define and implement if their domain
is a primitive data type. For example, the edit operation setBlockIsEncapsulated

simply sets the tagged value isEncapsulated of a SysML Block. Tagged value
modifications are more complicated if they change references of stereotype ob-
jects. Here, multiplicity constraints which define mandatory neighbours or chil-
dren must be taken into account. These cases can be handled in the same way
as modifications of references on UML model elements (see Section 2).

C. Edit Operations for Stereotype Application. Stereotypes are applied
to or removed from an UML model element by Stereotype Applications.
From a users’ point of view, this can appear as a conversion of a model element
to another type. On the ASG level, a stereotype application is an edit operation
that creates or deletes a stereotype object together with the reference to an
instance of its base meta-class.

These edit operations are not permitted for stereotypes that are declared as
required for their base meta-class. In such cases they are omitted from this set of
edit operations. For example, the stereotype application operations applyStereo-

typeBlock and unapplyStereotypeBlock are not applicable to SysML models. The
stereotype Block must always be created or deleted together with an instance of
its base meta-class Class, but not without. This kind of modification is achieved
by a hybrid edit operation.

D. Hybrid Edit Operations for Required Stereotypes. Hybrid edit
operations concurrently modify instances of base meta-classes and stereotype
instances. Typically, they create or delete model elements that have required
stereotypes. An example is given in Section 5.C; creating a SysML Block requires
the creation of a UML Class to which it must be attached as stereotype.

6 Generating Edit Operations

The previous section introduced 4 different kinds of edit operations. The com-
plete set of operations which is necessary to consistently edit profiled UML
models, is the union of these 4 sets and represented by the dotted rectangle in
Figure 5.

The edit operations specified in subsections 5.A can be generated by SERGe.
The same is true for edit operations specified in subsections 5.B and 5.C because
profile definitions are handled as usual MOF-based meta-models.

However, some extensions are necessary for the generation of hybrid edit
operations (Section 5.D). Generally, hybrid edit operations can be implemented

36

using two different approaches: A higher-order transformation approach and a
meta-model driven approach.

Fig. 5. Generation of different types of edit operations

A. Higher-order Transformation Approach. This approach uses a set of
existing UML edit operations as primary input (see arrow 1 in Figure 5). It does
not matter whether the edit operations have been generated and/or constructed
manually. The basic idea is to modify them by adding appropriate stereotypes.

We assume that edit operations are defined as executable specifications in the
form of Henshin transformation rules as explained in Section 2. Henshin rules
are technically represented as models and can be transformed automatically, i.e.
their modification can be considered as a higher-order transformation (HOT).

We have implemented this HOT in Henshin as follows: Basically, stereotypes
as defined by the profile are applied to all instances of a UML base meta-class
which occur in the given set of UML edit rules. A parametrized HOT rule is
provided in order to attach an instance of a stereotype. The necessary parameters
are the stereotype and the UML meta-class. We have implemented three variants
of this HOT rule: They attach stereotype objects to UML model elements which
are (1) to be created, (2) to be deleted and (3) to be preserved by an edit rule.
A working example of a HOT rule can be found at [12].

Since a UML meta-class can be extended by several stereotypes, different
variants for every stereotype will be created. Such variants can also consist of
combinations of multiple stereotypes, if more than one meta-class is contained
in the given UML edit rule. Thus, the scheduling algorithm which applies the
HOT rules with appropriate invocation arguments is responsible for generating
all possible combinations of stereotype attachments.

A big advantage of this approach is that efforts of manual adjustments on
UML edit operations are not lost. A disadvantage is that it supports only simple
profiles: It cannot handle stereotypes which have mandatory references to other

37

stereotypes or UML model elements. However, important profile-based standards
such as SysML and MARTE rarely contain such scenarios.

B. Metamodel-driven Approach. This approach does not require any previ-
ously generated sets of edit operations, all operations are generated from scratch;
the profile and the base meta-model are the only input data here (see arrow 2
in Figure 5).

This approach can consider multiplicity constraints of (non-) containment
references which emanate from stereotypes. However, in contrast to the HOT
approach, all manual adjustments on an existing set of UML edit operations
(modifications, creations and deletions) are lost. Manually created edit opera-
tions for the base language are not automatically adapted.

Two alternative patterns are available for implementing a hybrid operation;
Figures 6 and 7 illustrate them using the creation of a SysML Block as an
example:

1. Sequentially boxed operations (Figure 6): Here, the UML edit operation
and the profile application operation are applied in sequential order; initially,
a class instance is created. In a next step the required stereotype is added.

2. Concurrent operation (Figure 7): Basically, all edit operations used sepa-
rately in the first approach are ’merged’ into one. For Henshin transformation
rules, such a merge can be implemented by concurrent rule construction.

Fig. 6. Implementing a hybrid edit operation using a sequential transformation unit

Fig. 7. Implementing a hybrid edit operation using a single transformation rule

38

7 Conclusion

This paper has presented our approach to construct complete sets of consistency-
preserving edit operations on models. In contrast, existing approaches for gener-
ating edit operations do not support consistency preservation and DSMLs using
UML Profiles such as SysML or MARTE.

We addressed an important practical requirement: How to consistently main-
tain operation sets for the base language without profiles and for the profiled
language. Our solution is based on a clear separation of all edit operations in 4
categories. The most complex type of edit operations are hybrid ones; we showed
that they can be implemented in such a way that manual optimizations of the
base edit operations can be preserved.

Acknowledgement. This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593: Design For Fu-
ture - Managed Software Evolution.

References

1. Alanen, M.; Porres, I.: A relation between context-free grammars and meta object
facility metamodels; Technical Report 606, TUCS Turku Center for Computer
Science; 2003;

2. Arendt, T.; Biermann, E.; Jurack, S.; Krause, C.; Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations; in: Proc. MoDELS
2010, Oslo; LNCS 6394, Springer; 2010

3. Ehrig, K.; Küster, J.M.; Taentzer, G.; Generating instance models from meta mod-
els; SoSym Volume 8:4, p.479-500; 2009

4. EMF: Eclipse Modeling Framework; http://www.eclipse.org/emf; 2012
5. EMF Henshin Project; http://www.eclipse.org/modeling/emft/henshin
6. Hoffmann, B.; Minas, M.: Generating instance graphs from class diagrams with

adaptive star grammars. Intl. Workshop on Graph Computation Models, 2011
7. Kehrer, T.; Kelter, U.; Taentzer, G.: Consistency-Preserving Edit Scripts in Model

Versioning; in: Proc. 28th IEEE/ACM Intl. Conf. on Automated Software Engi-
neering (ASE 2013); ACM; 2013

8. Object Constraint Language: Version 2.0; OMG, Doc. formal/2006-05-01; 2006
9. Systems Modeling Language: Version 1.3; OMG, Doc. formal/2012-06-01; 2012

10. UML Profile For Marte - Modeling And Analysis Of Real-time Embedded System:
Version 1.1; OMG, Doc. formal/2011-06-02; 2011

11. Pietsch, P.; Shariat Yazdi, H.; Kelter, U.: Generating Realistic Test Models for
Model Processing Tools; p.620-623 in: Proc. 26th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’11); ACM; 2011

12. The SiDiff EditRule Generator - A tool to automatically derive consistency-
preserving edit operations of any ecore meta model; http://pi.informatik.uni-
siegen.de/Mitarbeiter/mrindt/SERGe.php; 2012

13. Taentzer, G.: Instance Generation from Type Graphs with Arbitrary Multiplicities;
in: Electronic Communication of the EASST 47; 2012

39

Evolution of Model Clones in Simulink

Matthew Stephan, Manar H. Alalfi, James R. Cordy, and Andrew Stevenson

Queen’s University,
Kingston, Ontario, Canada

{stephan,alalfi,cordy,andrews}@cs.queensu.ca

Abstract. A growing and important area of Model-Based Development
(MBD) is model evolution. Despite this, very little research on the evo-
lution of Simulink models has been conducted. This is in contrast to the
notable amount of research on UML models, which di↵er significantly
from Simulink. Code clones and their evolution across system versions
have been used to learn about source-code evolution. We postulate that
the same idea can be applied to model clones and model evolution. In
this paper, we explore this notion and apply it to Simulink models. We
detect model clones in successive versions of MBD projects and, with
a new tool, track the evolution of model clones with respect to their
containing clone classes. When there is a change in classification of a
model-clone, we investigate what specifically evolved in the model to
cause this classification change.

Keywords: model evolution, model clone detection, model clone evolu-
tion, Simulink

1 Introduction

Understanding software model evolution in Model-Based Development
(MBD) is important as it can improve our ability to adapt to change, allows us
to refactor more e�ciently, and increases the quality and amount of analysis we
can do on MBD projects. While still a relatively young area, there is a notable
amount of work that discusses the evolution of UML models [5, 8, 10]. In contrast,
there is very little research related to the evolution of Simulink models, a data-
flow modeling language that is widely used in the automotive and communication
industries, as well as other embedded areas. Simulink models di↵er significantly
from anything in UML, with the most analogous diagram being a UML activity
diagram, which is still quite di↵erent.

As noted in [13], there are a number of instances where code clones are used in
order to perform source-code evolution analysis. Specifically, once a relationship
can be established between two versions of a system, it can be employed as a
means to understand the evolution of the system. Such a relationship can be
realized by extracting code clones from di↵erent versions and then identifying
and analyzing similar groups and how they have changed. We believe the same
holds true for models. Thus, as a first step towards understanding Simulink

40

2 Matthew Stephan, Manar H. Alalfi, James R. Cordy, Andrew Stevenson

model evolution, we introduce the notion and use of Simulink model clone
evolution (MCE). We focus on Simulink because there is sparse research on its
evolution, it is of interest to our industrial partners, and Simulink model clone
detection (MCD) is the most mature form of MCD.

In this paper, we use our near-miss MCD tool, SIMONE [1], to detect clones
from successive versions of both industrial and publicly available models. Using
a new tool we develop, we are able to track the evolution of a model-clone class’
clone instances throughout multiple versions. When there is a change in the
classification of the model-clone instance, we then delve deeper into the model
itself to see and illustrate what exactly has evolved that caused this change
and then explain it. The paper begins by providing background in Sect. 2 and
defining key terms in Sect. 3. We then present the tool we developed for this
work in Sect. 4 and our experiments with it, along with examples of models and
their evolution, in Sect. 5. We present related and future work in Sect. 6 and
conclude in Sect. 7.

2 Background

2.1 Simulink

Simulink models consist of 3 levels of granularity: whole models, (sub) systems,
and blocks. Models contain systems, and systems contain other (sub) systems
and blocks. This is similar to source files: models are like programs; systems
are like methods, functions, and classes; and blocks are like statements in tradi-
tional programming languages. An important characteristic of Simulink models
is “All block names in a model must be unique and must contain at least one
character.” 1

2.2 Clone Genealogies

Kim et al. [9] define the notion of genealogy for code clone groups as the way in
which a collection of clones evolves over multiple versions of a system. The clone
group evolution they describe is in terms of code snippets, which are comprised
of both text and location. For Kim et al.’s genealogies, each code clone group
contains identical (exact) code clones which are matched to other clone groups
based on textual similarity. Saha et al. [14] later consider clone groups contain-
ing non-identical (near-miss) code clones and match them to other groups by
matching functions (code blocks) containing the code clones. We extend and
modify the concepts and approaches from these works in order to apply them to
Simulink models.

2.3 Model Clone Detection

Much like its counterpart, code clone detection, model clone detection entails
discovering identical or similar fragments of model elements [4]. We recently

1 http://www.mathworks.com/help/simulink/ug/changing-a-blocks-appearance.html

41

Evolution of Model Clones in Simulink 3

developed a model clone detector, called SIMONE, that is capable of detect-
ing both exact and near-miss clones in Simulink models [1]. Its clone detection
algorithm uses a sorted and filtered version of the underlying internal textual
representation of the models stored in the Simulink MDL files. This is in contrast
to CloneDetective [4], which treats Simulink models as graphs. Both techniques
identify clones and group them together into clone classes, however, in SIMONE,
a user-specified similarity threshold can be specified, such as 70% for near-miss
and 100% for exact clones. There are other less-mature MCD techniques as
well [17].

3 Definitions

A Simulink clone is essentially a similar subgraph of a larger Simulink system and
is comprised of Simulink blocks (including sub-system blocks) and the lines that
connect them. The basic units in our model-clone genealogy are these subgraphs,
which we term model clone instances (MCIs). The attributes of an MCI are its
list of blocks and lines, and its location. Location refers to the specific Simulink
model and system(s) the MCI is contained in. For example, both CloneDetective
and SIMONE produce XML clone reports that contain this information in some
form. A model clone class (MCC) is a collection of MCIs grouped together by
a model clone detector based on some measure of classification. All the Simulink
MCD tools we have encountered thus far identify clone classes explicitly.

In order to trace a specific MCI across di↵erent versions, we can use the
combination of (1) the model containing the MCI, and (2) the fully qualified
path to the system (or sets of systems, for clones that span systems) comprising
the MCI, that is, the trail of enclosing Simulink (sub) systems that contain the
MCI’s blocks and lines. Because all blocks, including those of type “subsystem”
must have unique names in a Simulink model, this is a suitable source of clone
traceability. This is analogous with Saha et al.’s code clone mapping where they
determine if a code clone fragment is located within a function.

As Saha et al. have noted, with near-miss clones it is not possible to simply
map one class to another in successive versions [14]. Analogously to what they
do with functions and code clone classes, we extend their ideas to the modeling
domain by taking a specific MCC, say MCCv from version v, and seeing what
MCCs in future versions contain MCIs from MCCv. In contrast, however, while
they are interested primarily with counting occurrences of code-clone evolution
patterns, we are concerned mainly with how individual model clone instances
evolve to cause a change in MCC classification. As such, we need to identify only
if MCCv yields one MCC in a future version, v+1; multiple MCCs in version
v+1; or no MCCs in version v+1; and focus on the specific evolution of the MCIs
involved in each case.

42

4 Matthew Stephan, Manar H. Alalfi, James R. Cordy, Andrew Stevenson

4 Tool Description

For the first step of our analysis, we developed a tool, called Simulink Clone
Class Tracker (SIMCCT), that allows a user to select a specific MCC from
one version of a system in order to display, in a GUI, what MCCs in future
versions contain its MCIs. As input, the program takes in an ordered set of
MCD results in XML form, with each XML file representing a di↵erent version
in the evolution. We used a TXL [3] source transformation to change the XML
output of SIMONE to a form more conducive to evolution analysis. The same
can be done for CloneDetective. As demonstrated in a simplified version of the
input in Fig. 1, the file contains a list of clones, sorted by classes. Each class
contains sources, which correspond to the MCIs. As mentioned previously, these
are comprised of blocks and lines, each with their own attributes of interest.

In brief, SIMCCT begins by parsing the input XML file we describe above
and extracting the required information, treating each file as a version. It then
identifies unique MCIs across all versions using our earlier definition and assigns
each a unique ID number. This ID number is used in the GUI to represent
the MCI, as a textual ID would be too long and unwieldy. Each time an MCC
from the first version is selected by a user, related MCCs for successive versions
are discovered and displayed by searching for the MCCs in future versions that
contain the MCIs belonging to the selected MCC. So, for example, let us consider
an MCC with class ID 4 from a first version, MCCv1c4. It is selected and contains
a set of MCIs, MCIv1c4. In future version ’x’ and class ’y’, MCCvxcy is displayed
if MCIvxcy contains any element from MCIv1c4.

5 Experiment

We ran SIMCCT on both publicly available models and private models from
our industrial partners. The public models include the Automotive Power

<clones>

<class classid="#" nclones="#" similarity="#" ...>

<source file="..."subsystem="..." ... >

<block path="..." type="..." ...Block attributes.../>

...More Blocks...

<line ...Line attributes"/>

...More Lines...

</source>

...More Sources...

</class>

...More Classes...

</clones>

Fig. 1: General form of SIMCCT input

43

Evolution of Model Clones in Simulink 5

Window (PW) System that comes with the Simulink example set and a large
open-source Advanced Vehicle Simulator(AVS) 2.

To start, we analyzed the 3 systems using SIMONE with our best-fit [1]
settings of 70% similarity and blind-renaming. Table 1 displays statistics about
the results. The PW system is a smaller, compact, and simple system. AVS is
quite large and complex, and has more clone pairs and MCCs than our industrial
system set. Thus, we believe it is a fairly representative and rich system.

After transforming the MCD results into the SIMCCT format, we execute
SIMCCT. As mentioned, we are looking specifically to note what MCCs in future
versions contain MCIs from a user-selected MCC in an earlier/earliest version,
v1. For each MCC in v1, its relation to future MCCs with respect to another
version can be classified in one of five ways: (1) 1 to 1; (2) 1 to 1*, which
is the same as “1 to 1” except there are additional MCIs, missing MCIs, or a
combination of both; (3) 1 to many, which has no additional or missing elements
in future MCCs; (4) 1 to many*, which has additional or missing elements in
future MCCs; and (5) 1 to 0, meaning the MCIs from the original MCC are no
longer in any MCC. We can then use this information as grounds to investigate
what model evolution has transpired on the MCIs to cause this relation.

Table 2 classifies the MCC evolution we observed in the three systems as
it pertains to each MCC’s MCIs in each system’s first version. In our sample
systems, we found no instances of “1 to many”, that is, every time an MCC later
had its constituent MCIs split into multiple MCCs, there were always additional
elements present. For “1-to-many*” relationships, the AVS system had a “1 to
2” and our industrial set had a “1 to 2” and a “1 to 4”.

5.1 Examples

We now showcase a set of examples from our experiment demonstrating di↵erent
cases. We illustrate the examples by extending the representation Göde used for

2 http://sourceforge.net/projects/adv-vehicle-sim/?source=dlp

Table 1: Systems Analyzed by SIMCCT

System Name Version # Model Files SubSystems Clone Pairs MCCs

PW

1 1 18 7 5
2 1 29 15 5
3 1 33 23 6
4 1 25 13 4
5 1 45 39 6

AVS
r0000 69 861 1916 18
r0080 69 1621 5693 35
r0116 72 1714 5951 38

Industrial Set
55 9 977 600 20
56 9 977 618 21
57 9 986 624 23

44

6 Matthew Stephan, Manar H. Alalfi, James R. Cordy, Andrew Stevenson

Table 2: Relationship Classifications of MCCs w.r.t. Earliest Versions

System Name Version 1 to 1 1 to 1* 1 to many 1 to many* 1 to 0

PW

2 1 4 0 0 0
3 1 4 0 0 0
4 1 3 0 0 1
5 1 2 0 0 2

AVS
r0080 12 5 0 1 0
r0116 9 8 0 1 0

Industrial Set
56 14 4 0 2 0
57 14 4 0 2 0

the evolution of type-1 code clones [6], with MCCs being rectangles and MCIs
being circles. In addition, we provide figures of some of the examples showcasing
the specific evolution that has transpired. This is in order to highlight samples
of changes that form various evolutionary MCC relationships.

We choose examples from public models as they adequately exhibit the cases
and are available to all. We then investigate what evolution has taken place on
the models themselves that caused the observed MCE. A reminder, each number
within a circle refers to a uniquely identified key that corresponds to a unique
MCI across all versions.

Power Window - Model Clone Class 3: This example is presented in Figs. 2
and 3. It contains MCC3, which begins with two MCIs, 5 and 6, that are 81%
similar. In version 2, represented by the part underneath the dashed line in Fig. 3,
MCI6 has 2 additional blocks and no longer belongs to any MCC. Conversely,
MCI5 is simplified by replacing three blocks with one and is now 71% similar to
MCI7 and other MCIs, causing a reclassification with them. Starting in version 4,
MCI5 is simplified even further by removing more blocks and no longer belongs
to any MCC. As such, MCC3 has a “1-to-0” relation to versions 4 and 5.

Fig. 2: PW MCC3 SIMCCT Trace

45

Evolution of Model Clones in Simulink 7

!"#"$#%&'()#*+,
-!,.,

!"#"$#%/0)#1$2",
-!,3,

45"$6%78,
-!,9,

Fig. 3: Sample Models from PW MCC3

Power Window - Model Clone Class 2: We demonstrate, in Figs. 4 and 6,
a “1-to-1*” variant where a single MCI is removed from MCC2 in version 1 while
the remaining MCIs remain grouped together. In version 1, the three MCIs; 2,3,
and 4; are 74% similar to each other with MCIs 3 and 4 being identical in this
case. Fig. 6 shows the evolution of MCI2, the Window System. As shown, it was
changed significantly from version 1 to 2 in terms of its ports, the amount and
types of blocks, and its lines. This was done in order to include power electronics
and to incorporate bodies, joints, and actuators. It changed again in version 4,
albeit it not as radically, but it was not enough to reunite it with the original
MCIs from MCC2 from version 1.

Advanced Vehicle Simulator - Model Clone Class 7: Fig. 5 presents
an example of a “1-to-many*” MCC trace. In version 1, MCI17, which is the
system “Energy Storage <ess> RC”, is 71% similar to MCIs 16,18,19. In the next
version, MCI17 becomes 76% similar to MCI325 and is reclassified with that.

Fig. 4: PW MCC2 SIMCCT Trace

Fig. 5: AVS MCC7 SIMCCT Trace

46

8 Matthew Stephan, Manar H. Alalfi, James R. Cordy, Andrew Stevenson

Fig. 6: Evolution of the PW Window System

MCI17’s evolution involved many low-level structural changes, and as such, is
not worth showing a diagram of. So, while the model remained the same in
terms of layout, there were some key non-visual changes including modification
of block types, the addition or explication of ports, and changing a block’s key
parameters, for example, changing a Gain block’s multiplication mode.

6 Related and Future Work

6.1 Related Work

As mentioned already, Saha et al. [14] are focused on counting the occurrences
of code clone genealogies. In contrast, we are more interested in reasoning about
the changes to models that cause MCE and use the genealogy of the MCCs as
the starting point only.

There are some language-agnostic model and metamodel evolution
approaches [7, 12] that can track both evolution and co-evolution. However, in
order to use techniques like this for MCE, we would essentially have to create
a system containing only the clones of interest. As such, we developed a tool
explicitly intended to perform model clone class evolution analysis.

There are some model comparison approaches [16, 17] that can find simi-
larities and di↵erences among models for versioning and other purposes, but
there are no attempts to explicate the structural evolution of Simulink models.
That is, to define what are the potential structural changes that can occur to
a Simulink model and their prevalence. Model evolution and MCE are strongly
related to model comparison and versioning, but can be viewed as a longer-term
analysis over multiple versions with a focus on how a specific artifact or clone
has changed. None of the model comparison techniques we surveyed previously
were ideal for tracking MCE.

47

Evolution of Model Clones in Simulink 9

The only work that deals with any form of Simulink evolution is from Tran
and Kreuz, who focus on refactoring Simulink [11]. Specifically, they look at
forms of antipatterns in Simulink and discuss tool support for correcting them.

6.2 Future Work

One area of future work is providing better di↵erencing and visualization of dif-
ferences for Simulink models. So far, we’ve been doing it relatively manually.
While there are many model comparison tools [16, 17] that provide visualiza-
tion functionality, there are none well-suited for our purposes and the provided
Simulink XML comparison functionality is inadequate as it does not capture
the information we desire. As such, devising and automating the di↵erencing
and visualization for MCE purposes and incorporating it into SIMCCT would
be ideal.

In addition, we are currently working on MCD for other model types, includ-
ing Stateflow and behavioral UML models [2]. We believe our work on MCE can
be applied to other model types; Specifically, as long as an MCD tool identifies
both MCCs and MCIs, these concepts can be extended and an appropriate clone
class tracker can be developed. This is something that we will investigate once
our MCD techniques for these other model types are more mature.

In the long term, we plan on enumerating a set of Simulink model evolutions
as they relate to model clone evolution. The purpose in doing this is to find
a su�cient set for performing MCD evaluation in a mutation-based framework
as discussed in [15]. So, in addition to all the previously mentioned benefits of
observing model evolution, we plan on using this work to help with mutation
research intended to realize model-clone tool evaluation.

7 Conclusions

We believe MCE research is quite valuable as it can be a useful tool for better
understanding how Simulink and other data-flow models evolve. In this paper,
we took some first steps towards understanding Simulink MCE. We began by
defining key terms, including model clone classes and instances. SIMCCT is a
tool we introduced that is capable of tracking an MCI’s evolution with respect
to its containing MCCs across di↵erent system versions. We used this tool on
three systems, share our findings, and go into details for a few examples. These
examples included looking at the model evolution that transpired causing the
specific MCE observed. In the future, we plan on automating the di↵erencing
and visualization of the model evolution for a given MCE trace as well as enu-
merating the Simulink model evolution steps that cause MCC changes. This
and other Simulink and data-flow MCE work can go a long way towards im-
proving our relatively underdeveloped understanding of the model evolution of
these technologies.

48

10 Matthew Stephan, Manar H. Alalfi, James R. Cordy, Andrew Stevenson

Acknowledgments

This work is supported by NSERC, the Natural Sciences and Engineering Re-
search Council of Canada, as part of the NECSIS Automotive Partnership with
General Motors, IBM Canada and Malina Software Corp.

References

1. Alalfi, M.H., Cordy, J.R., Dean, T.R., Stephan, M., Stevenson, A.: Models are code
too: Near-miss clone detection for Simulink models. In: ICSM. pp. 295–304 (2012)

2. Antony, E., Alalfi, M., Cordy, J.: An approach to clone detection in behavioural
models. In: WCRE. p. 5 (2013), (to appear)

3. Cordy, J.: The TXL source transformation language. Science of Computer Pro-
gramming 61(3), 190–210 (2006)

4. Deissenboeck, F., Hummel, B., Juergens, E., Schaetz, B., Wagner, S., Girard, J.F.,
Teuchart, S.: Clone detection in automotive model-based development. In: ICSE.
pp. 603–612 (2009)

5. France, R., Bieman, J.M.: Multi-view software evolution: a uml-based framework
for evolving object-oriented software. In: ICSM. pp. 386–395 (2001)

6. Göde, N.: Evolution of type-1 clones. In: SCAM. pp. 77–86 (2009)
7. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Cope-automating coupled evolution

of metamodels and models. In: ECOOP 2009, pp. 52–76 (2009)
8. Keienburg, F., Rausch, A.: Using XML/XMI for tool supported evolution of UML

models. In: HICSS. vol. 9, p. 9064 (2001)
9. Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone

genealogies. ESEC/FSE-13 30(5), 187–196 (2005)
10. Mens, T., Lucas, C., Steyaert, P.: Supporting disciplined reuse and evolution of

UML models. UML98: Beyond the Notation pp. 378–392 (1999)
11. Minh Tran, Q., Kreuz, I.: Refactoring of simulink models. In: MathWorks Auto-

motive Conference, Stuttgart (2012)
12. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.: Model migration with epsilon

flock. In: Theory and Practice of Model Transformations, pp. 184–198. Springer
(2010)

13. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Tech. Rep.
2007-541, Queen’s University (2007)

14. Saha, R.K., Roy, C.K., Schneider, K.A.: An automatic framework for extracting
and classifying near-miss clone genealogies. In: ICSM. pp. 293–302 (2011)

15. Stephan, M., Alafi, M., Stevenson, A., Cordy, J.: Using mutation analysis for a
model-clone detector comparison framework. In: ICSE. pp. 1277–1280 (2013)

16. Stephan, M., Cordy, J.R.: A survey of methods and applications of model compar-
ison. Tech. Rep. 2011-582 Rev. 3, Queen’s University (2012)

17. Stephan, M., Cordy, J.R.: A survey of model comparison approaches and applica-
tions. In: MODELSWARD (2013)

49

Proactive Quality Guidance
for Model Evolution in Model Libraries

Andreas Ganser1, Horst Lichter1, Alexander Roth2, and Berhard Rumpe2

1 RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany
{ganser, lichter}@swc.rwth-aachen.de,

home page: http://www.swc.rwth-aachen.de
2 RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

{roth, rumpe}@se.rwth-aachen.de,
home page: http://www.se.rwth-aachen.de

Abstract. Model evolution in model libraries di↵ers from general model
evolution. It limits the scope to the manageable and allows to develop
clear concepts, approaches, solutions, and methodologies. Looking at
model quality in evolving model libraries, we focus on quality concerns
related to reusability.
In this paper, we put forward our proactive quality guidance approach
for model evolution in model libraries. It uses an editing-time assessment
linked to a lightweight quality model, corresponding metrics, and sim-
plified reviews. All of which help to guide model evolution by means of
quality gates fostering model reusability.

Keywords: Model Evolution, Model Quality, Model Libraries

1 The Need for Proactive Quality Guidance

Modeling is one of the traditional disciplines in computer sciences and other sci-
ences. Therefore, computer scientists have been creating models for decades and
have seen models incarnate in a lots of di↵erent forms. Interestingly enough that
the general modeling theory was not developed by a computer scientist but by
Herbert Stachowiak in the seventies [Stachowiak, 1973]. His work found impact
in a lot of domains in computer sciences, e.g. databases, resulting in research
like generic model management [Melnik, 2004]. This transforms Stachowiak’s
rather abstract theories to an applicable approach o↵ering concepts and algo-
rithms, e.g., diff, merge, similarity, and match operations. As a result, pure
operations on models did not seem to be challenging any more and a broader
perspective was investigated.

A similar development took place in object oriented modeling which brought
up UML as a suitable modeling language. Today, the success of UML is of-
ten accredited for two reasons. First, UML is believed to be an e↵ective lan-
guage, because “for larger and distributed projects, UML modeling is believed
to contribute to shared understanding of the system and more e↵ective commu-
nication” [Chaudron et al., 2012]. Second, UML is considered as the de facto

50

II

standard in modeling. Due to that, a lot of tools were developed around UML
including code generators. They bolster approaches like rapid prototyping or
model driven development (MDD) and allow modelers to deal with complexity
on an appropriate level of abstraction.

Consequently, UML models are widely used and can be regarded as project
assets that should be reused. Moreover, it is believed that model reuse could
decrease development time while increasing software quality [Mens et al., 1999,
Lange and Chaudron, 2005], because best practices and experience would be
leveraged. But the question is how to store models in a way that their qual-
ity is maintained or even improved over time. Certainly, model reuse requires an
infrastructure enabling to persist models in a library or knowledge base. Further-
more, it needs a means to control model evolution and quality in the long run.
Unfortunately, quality is a matter of subjectivity, often relative to requirements
and sometimes hard to measure [Moody, 2005]. Moreover, all-at-once quality as-
sessments result in endless quality reports that are hard to work through. One
way out is edit-time quality assessment and guidance for assuring a certain level
of quality in model libraries, we call proactive quality guidance. To the best of
our knowledge we could not find such an approach for model libraries.

Hence, we looked into recent research (section 2) and found that model evolu-
tion is often considered as a goal. That would be self-defeating in model libraries.
So, we adopted the meaning of model evolution to fit model libraries and devel-
oped an approach (section 3) that explains how models should evolve in model
libraries. This enables us to discuss model evolution in model libraries on a more
formal and qualitative level. In detail, we introduce our understanding of model
quality and quality gates. After that we explain our proactive approach includ-
ing tool support by defining a mapping between a lightweight quality model and
metrics (section 4). This mostly deals with syntactic aspects, so we introduced
simple reviews (section 5) for the mostly semantic and pragmatic aspects.

2 Related Work

Model evolution, as we will present, can be discussed closely related to model li-
braries and model quality. In the following, we present the current understanding
of model evolution, model repositories, and model quality.

Model evolution is often investigated as a goal to be achieve automatically
by tool support; as it is for software. There are several tools and research proto-
types available. First, COPE supports evolution and co-evolution by monitoring
changes in an operation based way. These can be applied as editing traces to
other models, i.e., forwarded [Herrmannsdoerfer and Ratiu, 2010]. Our approach
di↵ers in a regard that we do not trace changes but focus on edit-time changes
and their impact on quality aspects. Second, MoDisco [Eclipse, 2012] (hosted
with AM3 [Allilaire et al., 2006]) tries to provide means to support evolution of
legacy systems applying model-driven ideas. That means, MoDisco is a tool for
re-engineering legacy software by means of models and starting a model driven
development from gleaned models. Moreover, co-evolution is discussed. We keep

51

III

to plain model evolution, but the main distinction to our approach is that we
want evolution to be guided and directed instead of being aimlessly.

Regarding model repositories one needs to bare in mind their functional-
ity. Often, they allow for querying, conflict resolution, and version management
but no more. This means, evolution and co-evolution are not considered. Exam-
ples are, first, MOOGLE, a user friendly model search engine o↵ering enhanced
querying [Lucredio et al., 2010]. Second, ReMoDD which focuses on comunity
building by o↵ering models in a documentary sense to the community [France
et al., 2007]. Mind that all of these model libraries do not consider model evo-
lution. Consequently, we have implemented an enhanced model library [Ganser
and Lichter, 2013], o↵ering model evolution as presented below.

This evolution support was enhanced by ideas regarding quality in modeling
by Moody [Moody, 2005], because we wanted to establish a common under-
standing of model quality in our library avoiding that “quality is seen as a sub-
jective and rather social than a formally definable property lacking a common
understanding and standards” [Moody, 2005]. This is why we took the quality
dimensions by Lindland et al. [Lindland et al., 1994] and applied them in our
environment. They comprise syntactic, semantic, and pragmatic quality bearing
in mind that these quality dimensions can influence each other as presented by
Bansiya et al. [Bansiya and Davis, 2002]. Looking at UML models, there ex-
ist manifold model qualities. We chose the work of Lange et al [Lange, 2006]
to be most suitable and linked it with metrics. There we employed the work
of Genero et al. [Genero et al., 2003], Wedemeijer et al. [Wedemeijer, 2001],
and Mohagheghi et al. [Mohagheghi and Dehlen, 2009]. Furthermore, we needed
means to assess some semantical and pragmatical aspects. Here we root our
ideas on reviews but found Fagans approach to heavyweight [Fagan, 1976]. So
we subdivided review tasks using an adoption of the thinking hats as proposed
by De Bono [De Bono, 2010].

3 Quality Staged Evolution

General model evolution is to be distinguished from model evolution in model
libraries [Roth et al., 2013] since the purpose di↵ers. While general model evo-
lution is considered aimless, evolution in model libraries does not make sense if
it is undirected. This is due to the reuse focus of model libraries and the fact
that these models mostly represent a starting point for modeling. Consequently,
models in model libraries do not strive for perfection in every possible deploy-
ment scenario but rather an eighty percent solution that will need adaption.
Still, evolution in model library needs a sound foundation and tool support.

We developed an approach for quality assured model evolution in a gated and
staged manner [Roth et al., 2013]. It defines our approach to model evolution in
model libraries and how it can be guided. In the remainder of this section, we
will shortly describe the quality staged model evolution approach.

52

IV

3.1 Quality and Evolution in Model Libraries

During modeling some parts of a model might seem so generic or generally
reusable that a modeler decides to put them in a model library. This means,
some parts of the model are extracted, prepared for reuse, and stored in a model
library. At the same time, the modeler annotates the extracted model with a
simplified specification, we call model purpose. It is supposed to grasp the main
intention of the model and reflect the general idea in a few words so this model
is explained in a complementary way. As all of this is done, we consider this the
moment model evolution of this particular model starts.

JukeboxDAO
records[]: Vinyl

Jukebox
play()

Medium Credit

Snapshot 1 Snapshot 2 Snapshot 3

coins[]: Coin

pay()

play()

Jukebox
discs: MediaSet
credits[]: Credit

play()
pay()

titles[]: String processPay()
convertInput()

discs credits

costs[]: Credit

Fig. 1. Model Evolution Example

Reasons for model evolution in model libraries can be best explained con-
sidering figure 1 as an example. Certainly, the first snapshot of this model is
reusable, but some modeling decisions might be questionable. Furthermore, the
model is not free from technological details. The “DAO” su�x in the class name
is a clumsy leftover that should be removed quickly. Due to that, we o↵er editing
support so models can be overwritten in a versioning style and call a version of
a model in our approach a model snapshot.

A few snapshots might be necessary to get a well designed and reusable
model. Since all of them are persisted, one can order these snapshots as shown
in figure 1 and assign numbers to each snapshot forming an evolution sequence.

This evolution sequence can be subdivided into subsequences annotated with
stages that make a statement regarding reusability. We conducted a field study
about the number and the names and found that “vague”, “decent”, and “fine”
are the best representatives and assigned the colors “red”, “yellow”, and “green”
respectively (cf. figure 2(b)). This is meant to provide an intuitive representation
of the model’s reusability and the underlying formalities [Roth et al., 2013], since
we do not want to bother modelers with the state machine formalizing the states.

The modeler just needs to know the semantics behind each stage. First, a
“vague” model might contain some awkward design or leftovers from the origi-
nating environment saying: “Be careful reusing this!”. Second, a “decent” model
is considered reusable in general, but might contain some pragmatic or semantic
mismatch between the given purpose and the actual model. This stage is best

53

V

characterized by: “The devil is in the details.” Finally, a “fine” model should be
easily reusable and might o↵er additional information, e.g. template information.
So, one could informally characterize it by: “Go ahead and enjoy.”.

f

f

f

d

f

d

d

d

d

M
od

el
 Q

ua
lit

y

Syntactic Quality

Semantic Quality

Pragmatic Quality

Emotional
Quality

Meta-Model
conformity

Transformability

Defect-Freeness

Semantic Validity

Completeness

Confinement

Understandability

Maintainability

Purpose
Extraction

Appeal

(a) Quality Model and Stages (b) Eclipse Prototype

Fig. 2. Quality Model, Stages, and Prototype similar to [Roth et al., 2013]

The more formal idea behind the quality stages is a quality model that defines
criteria (cf. figure 2(a)), which need to be met to gain a certain stage. This is why
we talk about quality gates that need to be passed between the stages. In more
detail, each quality attribute in figure 2(a) is mapped to a stage in figure 2(b)
indicating which quality attributes are required for a certain stage. For example,
completeness is only required if a model should be regarded “fine”, therefore we
attached an “f” to that quality attribute in figure 2(a)

Some of the criteria of a quality model might be checked automatically and
some might depend on modeler interaction. As a result, the formalization un-
derneath is non-deterministic [Roth et al., 2013], partly because some semantic
and most of the pragmatic quality attributes are a matter of subjectivity. For
example, contradicting attributes are very unlikely found by tools. If one of the
required quality attributes of a gate is not met any more the model loses its
status automatically and falls back to the next lower stage.

3.2 Quality Measurement Instruments

Evaluating quality attributes of models shows that some of them are automat-
ically assessable and some are not. Clearly, syntactic errors can be found easily

54

VI

by parsers, but completeness is in the eye of the beholder. Consequently, we
make a distinction regarding model quality measurement instruments in three
categories: strong, medium, and weak characteristics. This classification enables
a mapping from model qualities (cf. figure 2(a)) to quality measurement instru-
ments, where each attribute is used to derive a feedback with respect to the
attribute name.

Strong characteristics form the strictest type. They can be measured pre-
cisely using model metrics. A model metric is formulated with respect to models
and provides clear feedback including the reason for the improvement and the
suggested solution. For example, a model including a class without a name. Be-
sides, model metrics strong characteristics can be measured with external tools,
e.g. EMF validator and EMF generator [Steinberg et al., 2009]. With respect to
our quality model in figure 2(a), strong characteristics can be used to derive feed-
back of the following model quality characteristics: defect-freeness, meta-model
conformity, and transformability.

Medium characteristics are based on Fowler’s idea of smells [Fowler, 1999].
A smell is something that does not seem to be right and can be measured in
some way. For example, a model with hundreds of classes is harder to understand
than one with only a few. Such characteristics can be measured with metrics,
which define a clear threshold. However, this threshold can be overridden, if the
modeler does not agree. Medium characteristics can be used to derive information
for confinement, understandability, and maintainability.

Finally, weak characteristics can be compared to hunches. A hunch is some-
thing that does not seem to be right because of gut feelings, experience, or
intuition. Clearly, it is hard to measure such weak characteristics using metrics.
We present simplified reviews in section 5 that enable assessing weak character-
istics in a quick and precise way. Such model reviews allow to derive qualitative
feedback on semantic validity, completeness, purpose extraction, and appeal.

4 Proactive Quality Assessment

Quality measurement instruments and a quality model are used to assess the
quality of a model. Such an assessment is, generally, triggered manually at a
certain point in time. At this point, the model is analyzed and a report is created,
which identifies improvements of the model. Clearly, such improvements can
be very vague making the cause for an improvement or a suggested solution
hard to understand. Additionally, such events that trigger model assessment are
mostly of manual nature, i.e., triggered by someone. Consequently, to prevent
long assessment reports with dozens improvement suggestions, such assessment
events should be triggered automatically and more importantly periodically.

Proactive quality guidance is an approach that triggers assessment events
automatically and regards the iterative nature of model creation, i.e., the final
model is created in multiple iterations. During model creation the assessment
is triggered whenever the model has been changed. The model is analyzed and
feedback is presented to the modeler. Because the assessment is triggered when

55

VII

a model is changed, the resulting assessment iterations are kept small avoiding
large reports and improvement suggestions. Due to constant and precise feedback
during model creation the model evolution is guided and such detected violations
with respect to the quality model in section 3.1.

The main parts of proactive quality guidance are (a) automatic and constant
assessment of the model, which is currently created, and (b) clear instructions
on where the improvements have to be made and why. Automatic assessment
is executed when the model is changed but clear and instructive feedback is
challenging, because it identifies areas of improvement and their cause and must
always be correct. Otherwise, modelers will be annoyed by false feedback. How-
ever, the subjective nature of model quality makes it hard to always derive
correct feedback without manual interaction.

As the underlying source of information for feedback are quality measurement
instruments, we applied the classification of quality measurement instruments,
as presented in section 3.2, to structure feedback and, thereby, to loosen up the
restriction of always correct feedback. Always correct feedback relies on strong
characteristics, which can be measured precisely by using metrics, e.g. if a class
has duplicate methods. Furthermore, feedback relies on medium characteristics,
which are less precise than strong characteristics, are only suggestions and can
be ignored by the modeler. For instance, methods with long parameter lists
should be avoided to not pass everything as a parameter. A list of all strong and
medium characteristics metrics is listed in [Roth, 2013]. Finally, weak character-
istics regard the subjective nature of model quality and, consequently, are hard
to measure. In consequence, we present an approach to simplify reviews and
to enable measurement of weak characteristics. Such weak quality measurement
instruments can then be used to provide feedback.

5 Simplified Reviews

Metrics enable proactive quality assessment for strong and medium character-
istics but for some weak characteristics proactive quality assessment is di�cult.
At best heuristics can support modelers but they are unlikely to overrule expe-
rience or gut feeling. For example, purpose extraction can be checked partially
by keyword comparison but the modeler must have the last word. This is why
we researched on simplifying reviews as a means to quickly quality check these
and weaker characteristics.

Our result is an approach, we call simplified reviews, that separates di↵erent
aspects of reviews by altering a technique used in parallel thinking [De Bono,
2010]. These “Six Thinking Hats” provide a separation of concerns for each role
which is behind each hat directing tasks clearly. In our simplified reviews this
leads to reviews that take no longer than absolutely necessary:

In total five review roles remained because a role for controlling is not nec-
essary for this approach. The hats are designed as follows: A Yellow Hat Review
(Good points judgment) considers positive aspects of a model and a high number
indicates better quality. For example, a review might emphasize that a model is

56

VIII

of high benefit in maintenance. The Black Hat Review (Bad points judgment)
can be regarded as the most known type of reviews. It is used to criticize point-
ing out di�culties, dangers, defects, or bad design. A black hat review indicates
that the corresponding model needs to be patched immediately. A White Hat Re-
view (Information) is used to provide information or ask for information, which
cannot be gleaned from the model. For example, if a modeler has expertise on
limitations of the model, this should be documented by a white hat review. The
Green Hat Reviews (Creativity) are a means to provide information about possi-
ble improvements or new ideas. For a model library this review type is an integral
part to foster evolution and to keep modelers satisfied in the long run. Finally,
in a Red Hat Review (Emotions) a reviewer can express a general attitude in
terms of like and dislike. For example, this can be a dislike based on experience
that might help improving a model in future.

All of the simple reviews need no more than very simple tool support. A look
at figure 2(b) shows an entry that reads “Simple Reviews” with a plus button
right next to it. Clicking this button opens a small window that allows to select
the type of the simple review and entering additional text. Moreover, the tree
editor can be unfolded if there are simple reviews related to this model. Then
every review can be inspected and checked “done” or “reopened”. This is a bit
similar to a very lightweight issue tracking system.

6 Proactive Quality Guidance in a Nutshell

General model evolution is to be distinguished from model evolution in model
libraries as we briefly discussed above. This is due to unguided evolution being
self-defeating for model libraries. Due to that guidance is required to keep models
reusable. Moreover, a model library with a focus on reuse puts constraints on a
quality model for models that makes it manageable.

All in all, we have shown how models should evolve in model libraries with
proactive quality guidance. Therefore, we illustrated how a quality model for
model library can be used to guide and stage model evolution in model libraries.
To achieve this, we broke down the stages “vague”, “decent”, and “fine” to
quality characteristics which are assured in di↵erent ways. While strong charac-
teristics are checked automatically, medium and weak characteristics require user
interaction. But this interaction is supported in two ways. On the one hand, for
medium characteristics some metrics provide assessments that only need to be
judged by a user because certain constraints like thresholds might not hold true
for a particular case. On the other hand, for weak characteristics, we introduced
simple reviews that allow quick and guided evaluations.

Since all this takes place during editing time, we call this approach proactive
quality guidance. But there is more, because a lot of metrics allow to derive
recommendations how to fix certain issues. We use other published experience
to do so and implemented a prototype that realizes the entire approach. It looks
simple and clean, because we tried to avoid as much noise for modelers as possible
so the modeler does not get distracted while modeling.

57

IX

Acknowledgements

We would like to thank all our anonymous reviewers for their comments and
e↵ort. We would also like to thank all our participants in our surveys and studies.

References

[Allilaire et al., 2006] Allilaire, F., Bezivin, J., Bruneliere, H., and Jouault, F. (2006).
Global Model Management in Eclipse GMT/AM3. In Proceedings of the Eclipse
Technology eXchange workshop (eTX) at the ECOOP 2006 Conference.

[Bansiya and Davis, 2002] Bansiya, J. and Davis, C. (2002). A hierarchical model for
object-oriented design quality assessment. IEEE Transactions on SE.

[Chaudron et al., 2012] Chaudron, M., Heijstek, W., and Nugroho, A. (2012). How
e↵ective is UML modeling? Software and Systems Modeling, pages 1–10.

[De Bono, 2010] De Bono, E. (2010). Six Thinking Hats. Penguin Group.

[Eclipse, 2012] Eclipse (2012). MoDisco. http://www.eclipse.org/MoDisco/.

[Fagan, 1976] Fagan, M. E. (1976). Design and code inspections to reduce errors in
program development. IBM Systems Journal, 15(3):182–211.

[Fowler, 1999] Fowler, M. (1999). Refactoring: Improving the Design of Existing Code
(Object Technology Series). Addison-Wesley Longman, Amsterdam.

[France et al., 2007] France, R., Bieman, J., and Cheng, B. (2007). Repository for
Model Driven Development (ReMoDD). In Kuehne, T., editor, Models in Software
Engineering, volume 4364 of LNCS, pages 311–317. Springer Berlin / Heidelberg.

[Ganser and Lichter, 2013] Ganser, A. and Lichter, H. (2013). Engineering Model Rec-
ommender Foundations. In Modelsward 2013, Proceedings of the 1st International
Conference on Model-Driven Engineering and Software Development, Barcelona,
Spain,19.-21- February 2013, pages 135–142. SCITEPRESS.

[Genero et al., 2003] Genero, M., Piattini, M., Manso, M. E., and Cantone, G. (2003).
Building uml class diagram maintainability prediction models based on early metrics.
In IEEE METRICS, pages 263–. IEEE Computer Society.

[Herrmannsdoerfer and Ratiu, 2010] Herrmannsdoerfer, M. and Ratiu, D. (2010).
Limitations of automating model migration in response to metamodel adaptation.
In Ghosh, S., editor, Models in Software Engineering, volume 6002 of Lecture Notes
in Computer Science, pages 205–219. Springer Berlin Heidelberg.

[Lange and Chaudron, 2005] Lange, C. F. and Chaudron, M. R. (2005). Managing
model quality in uml-based software development. Software Technology and Engi-
neering Practice, International Workshop on, 0:7–16.

[Lange, 2006] Lange, C. F. J. (2006). Improving the quality of uml models in practice.
In Proceedings of the 28th international conference on Software engineering, ICSE
’06, pages 993–996, New York, NY, USA. ACM.

[Lindland et al., 1994] Lindland, O., Sindre, G., and Solvberg, A. (1994). Understand-
ing quality in conceptual modeling. Software, IEEE, 11(2):42 –49.

[Lucredio et al., 2010] Lucredio, D., de M. Fortes, R., and Whittle, J. (2010).
MOOGLE: a metamodel-based model search engine. Software and Systems Mod-
eling, 11:183–208.

[Melnik, 2004] Melnik, S. (2004). Generic Model Management: Concepts and Algo-
rithms. Lecture Notes in Computer Science. Springer.

58

X

[Mens et al., 1999] Mens, T., Lucas, C., and Steyaert, P. (1999). Supporting disciplined
reuse and evolution of UML models. In Bezivin, J. and Muller, P.-A., editors, Proc.
UML’98 - Beyond The Notation, volume 1618 of Lecture Notes in Computer Science,
pages 378–392. Springer-Verlag. Mulhouse, France.

[Mohagheghi and Dehlen, 2009] Mohagheghi, P. and Dehlen, V. (2009). Existing
model metrics and relations to model quality. In Proceedings of the Seventh ICSE con-
ference on Software quality, WOSQ’09, pages 39–45, Washington, DC, USA. IEEE.

[Moody, 2005] Moody, D. L. (2005). Theoretical and practical issues in evaluating the
quality of conceptual models: current state and future directions. Data Knowl. Eng.,
55(3):243–276.

[Roth, 2013] Roth, A. (2013). A Metrics Mapping and Sources. http://goo.gl/ruqFpi.
[Roth et al., 2013] Roth, A., Ganser, A., Lichter, H., and Rumpe, B. (2013). Staged

evolution with quality gates for model libraries. In 1st International Workshop
on:(Document) Changes: modeling, detection, storage and visualization, September
10th, 2013, Florence, Italy.

[Stachowiak, 1973] Stachowiak, H. (1973). Allgemeine Modelltheorie. Springer-Verlag.
[Steinberg et al., 2009] Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E.

(2009). EMF: Eclipse Modeling Framework 2.0. Addison-Wesley, 2nd edition.
[Wedemeijer, 2001] Wedemeijer, L. (2001). Defining metrics for conceptual schema

evolution. In Selected papers from the 9th International Workshop on Foundations of
Models and Languages for Data and Objects, Database Schema Evolution and Meta-
Modeling, FoMLaDO/DEMM 2000, pages 220–244, London, UK. Springer.

59

Towards a Novel Model Versioning Approach
based on the Separation between

Linguistic and Ontological Aspects

Antonio Cicchetti and Federico Ciccozzi

School of Innovation, Design and Engineering
Mälardalen University, SE-721 23, Västerås, Sweden

antonio.cicchetti@mdh.se, federico.ciccozzi@mdh.se

Abstract. With the increasing adoption of Model-Driven Engineering (MDE)
the support of distributed development and hence model versioning has become a
necessity. MDE research investigations targeting (meta-)model versioning, con-
flict management, and model co-evolution have progressively recognized the im-
portance of tackling the problem at higher abstraction level and a number of solv-
ing techniques have been proposed. However, in general existing mechanisms hit
the wall of semantics, i.e. when not only syntax is involved in the manipulations
the chances for providing precision and automation are remarkably reduced.
In this paper we illustrate a novel version management proposal that leverages
on the separation between linguistic and ontological aspects involved in a (meta-
)modelling activity. In particular, we revisit the main versioning tasks in terms
of the mentioned separation. The aim is to maximize the amount of versioning
problems that can be automatically addressed while leaving the ones intertwined
with domain-specific semantics to be solved separately, possibly by means of
semi-automatic techniques and additional precision.

1 Introduction

Model-Driven Engineering (MDE) promises to reduce software development complex-
ity by shifting the focus from coding to modelling. Models become first-class citizens
and they represent abstractions of real-phenomena tailored to a specific purpose. In
this respect they are an appropriate composition of concepts, whose well-formedness is
specified by means of a metamodel. Moreover, model transformations are exploited to
manipulate models to perform analysis and generate code. Given the relevance gained
by models, they are expected to be affected by the same evolutionary pressure source
code experienced in the past. Therefore, if MDE approaches are not able to provide
evolution support at least comparable with the one existing for text-based software de-
velopment, MDE adoption would be remarkably hindered.

In the latest years the need for appropriate support of model evolution has been
largely recognized and addressed by a number of research works, including differenc-
ing, storing versions, managing merges and possible conflicts, supporting metamodel
evolution and corresponding model migrations. In particular, model differencing cov-
ered both language-specific and agnostic cases, model changes have been tackled both

60

2

in a state-based and operation-based manner, mechanisms have been introduced to de-
tect divergences between concurrent manipulations of the same model and provide
possible reconciliation strategies. Moreover, techniques have been developed to detect
metamodel changes, classify them in terms of effects on existing model instances, and
provide corresponding migration countermeasures ranging from manual to automatic.

Given the high abstraction level of modelling activities, mixing syntax and seman-
tics is unavoidable; unfortunately, when semantics comes into play, versioning prob-
lems become more complex to manage and very often they cannot be dealt with au-
tomatically. In other words, automation support has typically to be reduced and user
intervention is required to keep the desired degree of precision.

In this paper we propose to enhance automation opportunities by defining a novel
methodology for all activities involved in model versioning. The main idea is to exploit
the separation between linguistic and ontological aspects of a model [1] and address
them separately. In particular, linguistic aspects are those related to the structural cor-
rectness of a model, while ontological aspects pertain to the specific domain taken into
account (please, see Section 2 for a more precise definition of these aspects). In this
way the evolution of the linguistic part, that is expected to be mainly syntactic and
hence easier to manage, can be supported by automated mechanisms, whereas the onto-
logical part can be provided with more precise domain-specific versioning support and
possibly offer semi-automatic management. Based on the separation mentioned so far,
this work revisits the current techniques developed for model version management and
outlines a research agenda to cover all the aspects of model versioning.

The structure of the paper is as follows. Section 2 depicts the motivations underneath
the proposed methodology as well as the related works in the area. In Section 3 we
propose a research agenda to cover the different aspects of model versioning with our
novel methodology and we conclude the paper with an outlook in Section 4.

2 Background and Related Work

In MDE, models are commonly defined as abstractions of real phenomena, by means of
a given modelling purpose in mind, pursuing a simplification of the reality [2]. In this
respect, (meta-)modelling activities carry along not only the syntax by which concepts
are expressed (either textual, graphical, or a combination of both), but also the underly-
ing semantics of the application domain taken into account. In general these two aspects
are not clearly distinguishable, since part of the semantics can be intertwined with the
adopted syntax and structural constraints.

Kühne proposed an alternative separation between those two aspects by introducing
linguistic and ontological matters of (meta-)modelling [1]. In particular, the linguis-
tic can be referred to constraints and rules that define the structural correctness of a
model. For instance, a class must have a unique name within a model, or a relationship
shall have a source and a target model element. On the contrary, ontological aspects are
those pertaining to the domain taken into account, and exploit structural compositions
to prescribe domain-specific well-formedness. In other words, they create a new logical
abstraction level by specializing (groups of) concepts at lower levels of abstraction. No-
tably, the class person must have a name, a surname, and an age greater than 0 to be

61

3

Fig. 1. Motivating Scenario

a valid ontological instance of the type person. It is worth noting that while linguistic
aspects are invariants of the modelling activity, the ontological part is strictly coupled
with the domain taken into account, and hence the purpose the modelling activity is de-
voted to. More importantly, ontologies implicitly define a set of semantic relationships
which would need to be explicitly specified otherwise, as proposed in existing works
on semantic model versioning [3]. Therefore, the semantics can be considered as direct
consequence of adopting a given ontology for the domain taken into account. The idea
of separating linguistic and ontological matters to reduce the complexity of modelling
management, and/or to enhance reuse chances, is not new. In general these techniques
have been referred to as deep or multilevel metamodelling [4, 5], to stress the fact that
it could be useful to consider more than two (fixed) metamodelling layers. Based on the
partition of linguistic and ontological aspects, it has been possible to support generic
modelling language and transformation specifications [6, 7], and to lower the complex-
ity of language evolution [8]. Notably, even if by exploiting different terminologies, all
the mentioned works leverage on the distinction between linguistic and ontological as-
pects to define generic operations that are later on applied to the metamodel taken into
account. In particular, linguistic manipulations can be replicated directly, while onto-

62

4

logical ones have to be bound to the concepts pertaining to the considered applicative
domain. This allows to create operators over models, define constraints, model trans-
formations, and manage the need for language evolution. In [9] this methodological
approach is the foundation for a framework supporting generic model management op-
erators, which have been implemented within the Epsilon family of (meta-)modelling
languages [10]. A similar solution is developed by means of the Melanie tool [11]; also
in this case the modelling environment uses a multilevel modelling approach. More-
over, the ATLAS Transformation Language has been extended to encompass predicates
distinguishing between the various modelling levels.

Despite the growing research interest and effort in this area, so far there has been
little effort in the definition of evolution management support based on the separation
between linguistic and ontological aspects. In this respect, with this paper we propose
to revisit the main model versioning features in terms of such a separation to improve
their efficacy. In order to better grasp the potentials of this idea, in Fig. 1 a sample evo-
lutionary scenario is depicted. Metamodel MMa defines a language for the definition of
living creatures with focus on flying animals. As it can be noticed in its original form
the metaclass FlyingAnimal is specialised by the sub-types Eagle and Pigeon, both
containing a layEggs operation. Let us now suppose that MMa is exposed, and concur-
rently evolves, in two different views, resulting in two versions of MMa, namely MMa V 1

and MMa V 2. Both view-specific metamodels undergo modifications. In case of MMa V 1,
the metaclass FlyingAnimal is renamed to Bird and the operation layEggs is moved
from the sub-types to the super-type. In MMa V 2, the new sub-type Bat is added together
with its operation giveBirth as specialisation of FlyingAnimal. These modifica-
tions result in an ontological conflict from the perspective of MMa, since a bat is both
a living creature and a flying animal giving birth to live young but NOT a bird laying
eggs.

3 A Research Agenda

In the latest years a considerable research work has been devoted to all the activities
involved in evolution management, notably model differencing, conflict management,
as well as metamodel evolution and model co-evolution. Providing a survey on all those
investigations goes far beyond the scope of this work, however in the next sections we
outline some common principles and problems characterizing the current available so-
lutions. In general current approaches for model versioning that can be found in the
literature have to fight intrinsic semantics issues entailed by the modelling level of ab-
straction.

This paper aims at providing the guidelines for a novel version management method-
ology that takes into consideration the separation between linguistic and ontological as-
pects involved in modelling activities. Our belief is that, by means of such a separation,
domain-specific issues can be better managed thus improving degree of automation and
accuracy of current version management. In this respect, the next sections also illus-
trate a research agenda to revisit current versioning solutions based on the separation
between linguistic and ontological aspects, discussing foreseeable benefits and needs.

63

5

At this point, it is worth noting that this proposal is not excluding the current avail-
able techniques, whereas it provides additional means to better exploit those solutions.
By embracing the MDE principles, versioning artefacts are models conforming to cor-
responding metamodels and are manipulated by means of model transformations [2]. In
this respect, this work relies on a model-based representation of differences as the ones
proposed in [12, 13]. In particular, we exploit the difference representation proposal
in [12] because of its generative approach that allows to adapt the already existing so-
lutions to our separation in a smooth way.

The general approach we pursue is composed by two main constituents, a generic
mechanism tackling the structural part and its evolution, and a domain-specific spe-
cialization that is bound to the ontology taken into account. As a consequence, general
evolution patterns are described in linguistic terms, while ontological information is
exploited to refine their management.

3.1 Model Differencing

Model differencing has been firstly addressed by means of language-specific solutions
and then generalized to language-agnostic cases. Typically, difference detection, repre-
sentation, and visualisation are performed at model level of abstraction for being able
to grasp user’s intentions [14, 15]. State-based techniques deduce modification opera-
tions based on the old and new state of a model [16]. The element matching can result
very complex and hard to make arbitrarily precise, since it is reduced to the graph
homomorphism problem [17]. A way to reduce such an inherent intricacy is to adopt
operation-based approaches which keep track of the operations performed by the users
to modify the model [18]. The drawback of such approaches is that the differences de-
tection is tightly coupled to the tool, since anything happening outside the tool cannot
be tracked in terms of evolution information.

Regardless being state- or operation-based, differencing approaches rely on struc-
tural similarities to determine evolution operations, thus requiring user intervention
whenever the semantics involved in the changes is misinterpreted or cannot be grasped
at all. Notably, if we consider the example shown in Fig. 1, a differencing engine would
detect a rename of the FlyingAnimal class towards Bird since their subgraphs are
matching from a structural perspective. However, this information does not provide any
additional detail about the domain-specific consequences of such a modification.

In our vision, we propose to exploit ontological information as part of the differenc-
ing detection and result. By adopting a model-based mechanism like the one proposed
in [12], each metaclass of the structural part involved in the modelling activity can be
extended with corresponding evolution means as shown in part Figure 2.A. In this way,
we are able to express the generic concepts for model evolution without coupling this in-
formation with domain-specific details. In relation to the scenario depicted in Fig. 1, the
structural differencing would detect the addition of a class named Bat together with its
operation giveBirth (see Figure 2.B). Analogously, the renaming of FlyingAnimal
to Bird would be detected as shown in the upper part of Figure 2.C. On the contrary, the
moving of the layEggs operation would be represented as a simple deletion in Pigeon
and Eagle classes and as an addition in the Bird class (central and bottom parts of Fig-

64

6

Fig. 2. Difference Metamodel for an Ecore-like Formalism (A) and Structural Differences from
MMa to MMa V 1 (B) and MMa to MMa V 2 (C)

ure 2.C). It is worth noting that, in this difference detection step no semantics matters
are involved and the evolution is observed from a pure linguistic point of view.

Domain-specific (or ontological) information instead is bound later on to provide
additional support to the detection mechanism. Notably, by taking into account the in-
formation coming from a selected ontology (like the one depicted in Figure 3) in the
situation mentioned above, it would be possible to obtain a customized difference al-
gorithm in which layEggs is correctly detected as moved from the two Pigeon and
Eagle subclasses to Bird. Consequently, differences would not only consider modifi-
cations from a structural point of view, but also the information related to the ontological
evolution. Those details can be useful for detection and visualization purposes: the on-
tological relationships among elements could help in distinguishing between a rename
and a delete/add evolution and to show changes from a domain-specific perspective,
respectively. Moreover, they become very relevant when dealing with version merging
and/or co-evolution management, as discussed in the remainder of the paper.

3.2 Conflict Management

Conflict management followed the same development differencing techniques did, that
is detection and resolution have been addressed firstly at atomic operation level [19],

65

7

Fig. 3. Ontological Metamodel

then by considering refactoring modifications [20], and eventually by supporting ar-
bitrary semantics divergences [21, 22]. Also in this case, and possibly even more im-
portant than for differencing, when domain aspects get involved in the management of
concurrent modifications the precision of structure-based solutions degrades remark-
ably and user intervention is unavoidable.

By referring to the example illustrated in Fig. 1, a linguistic merging operation
would not reveal any problem, since the involved subgraphs structures are perfectly
compatible. However, by taking into account also ontological information it is possi-
ble to discover deeper issues. In particular, Bat becomes a specialization of Bird and
layEggs() is inherited in the Bat class, thus arising an ontological conflict. It is very
important to notice that, while the latter conflict could be solved by structural con-
straints (e.g., only one operation per class is admitted), the former has to be explicitly
defined by the user. Even more important, in both cases the ontological aspects disclose
the possibility to grasp the rationale behind the problems: Bat is not a Bird since,
being a mammal, it does not layEggs() (see the ontology definition in Figure 3). Ad-
ditionally, ontology information provides an hint on how to solve the problem: in fact,
by preserving the FlyingAnimal class as parent of both Bird and Bat the conflict
would be reconciled (as depicted in Fig. 4). From a conflict management perspective,
the separation between linguistic and ontological aspects discloses very interesting re-
search directions. Generic conflict detection and resolution strategies can be provided
as based on linguistic aspects, and later on specialized taking into account ontological
information. In this respect, while linguistic conflicts have to be solved since they affect
the well-formedness of the merge result itself, ontological divergences can be toler-
ated. Therefore the separation proposed in this paper could be very useful, especially
in the early stages of development, to allow collaborative development without forc-
ing the users in taking domain-specific design decisions when their side effects are not
completely clear [23].

66

8

Fig. 4. Conflict Reconciliation

3.3 Metamodel Evolution and Model Co-Evolution

In MDE, metamodels are subject to the same evolutionary pressure models do. Meta-
model evolutions trigger model co-evolutions, i.e. model instances have to be migrated
to the newer version of the metamodel in order to recover their conformance [24]. In this
scenario a correct interpretation of metamodel manipulations is of critical importance
to adopt appropriate migration countermeasures. Moreover, model co-evolution may
require user information to resolve particular migration cases [25]. As a consequence,
a number of approaches have been introduced, supporting from (semi-)automated to
manual model co-evolution approaches [26].

In the case of metamodel evolution domain-specific issues can heavily affect the mi-
gration process, especially when the whole metamodel ecosystem is involved in the evo-
lution [27]. Therefore, recent investigations have been devoted to relax the metamodel-
model conformance relationship, even by separating linguistic and ontological aspects
involved in the language definition [8]. Our idea is based on the same principle of this
latter work, but instead of relaxing the conformance relationship we propose to sepa-
rate linguistic and ontological aspects and address their co-evolution separately. Analo-
gously to the model merging problem, also in this case structural co-evolution has to be
performed in order to re-establish the linguistic well-formedness. Whereas, ontological
issues can be solved in a separate way and by means of domain-specific solutions.

It is not expectable that the separation between linguistic and ontological aspects
will guarantee full automation of co-evolution operations. However, by knowing the
metamodel evolution in ontological terms can help in managing it in a better way. In
particular, detecting layEggs() as a moving operation rather than a delete/add manip-
ulation would avoid loss of information in the migration stage. Moreover, by noticing
that Bat can not specialise Bird for the before-mentioned reasons defined in the on-
tology, a migration operation would add a new metaclass Bird instead or renaming
FlyingAnimal (see Figure 4). In turn, Bat would be kept as it is after the migra-
tion being still a valid instance of FlyingAnimal. Interestingly, since Bat is still a
FlyingAnimal a tool co-evolution countermeasure could also decide to re-use the

67

9

same icon, or ask for a new one specific for bats. In the same way, it could be pos-
sible to notice that using the Bird icon would be erroneous from a domain semantics
perspective.

4 Outlook

This paper proposed the guidelines for a novel model versioning methodology based
on the separation between linguistic and ontological aspects of (meta-)modelling. The
idea is not ignoring what already existing and developed in the latest years for model
evolution investigations; rather, it aims at enriching current solutions by adding onto-
logical details to the manipulation information. In this respect, we remark once again
that current semantics aware versioning solutions do not aim at the clear separation
between structural and ontological aspects, which typically get intertwined in the meta-
model definition. Moreover, we consider the ontological part as domain information to
be plugged-in in the generic version management mechanism. Such approach allows
to build-up generic differencing, merging, and co-evolution techniques, taking into ac-
count ontological information as a refinement step.

Up to now, it has been possible to conduct small experiments by means of already
available techniques (notably [12] and the Melanie tool [11]) and the results are en-
couraging. However, the methodology has to be validated against real-life systems to
prove its efficacy. Moreover, it is not possible to exclude future needs for addressing
ontological-specific evolutions, both for the detection, representation, and management,
beyond the general additions, deletions, and changes.

References

1. Kühne, T.: Matters of (meta-)modeling. SoSym 5 (2006) 369–385
2. Bezivin, J.: On the Unification Power of Models. SoSym 4 (2005) 171–188
3. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W.,

Schwinger, W., Wimmer, M.: Lifting metamodels to ontologies: A step to the semantic
integration of modeling languages. In: Procs. of MoDELS, Genova (Italy). LNCS, Springer
(2006) 528–542

4. de Lara, J., Guerra, E.: Deep Meta-modelling with MetaDepth. In: Proc. of TOOLS, Málaga
(Spain). LNCS (2010) 1–20

5. Atkinson, C., Gutheil, M., Kennel, B.: A Flexible Infrastructure for Multilevel Language
Engineering. IEEE TSE 35 (2009) 742–755

6. de Lara, J., Guerra, E., Cuadrado, J.S.: Abstracting Modelling Languages: A Reutilization
Approach. In: Proc. of CAiSE, Gdansk (Poland). LNCS, Springer (2012) 127–143

7. Cuadrado, J.S., Guerra, E., de Lara, J.: Generic Model Transformations: Write Once, Reuse
Everywhere. In: Procs. ICMT, Zurich (Switzerland), 2011. LNCS, Springer (2011) 62–77

8. Gómez, P., Sánchez, M., Florez, H., Villalobos, J.: Co-creation of models and metamodels
for enterprise architecture projects. In: Procs. of XM, ACM (2012) 21–26

9. Rose, L.M., Guerra, E., de Lara, J., Etien, A., Kolovos, D.S., Paige, R.F.: Genericity for
model management operations. SoSym 12 (2013) 201–219

10. : Epsilon. http://www.eclipse.org/epsilon/ (2013)
11. : Melanie - multi-level modeling and ontology engineering environment.

http://code.google.com/a/eclipselabs.org/p/melanie/ (2013)

68

10

12. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach to Dif-
ference Representation. JOT 6 (2007) 165–185

13. Rivera, J., Vallecillo, A.: Representing and Operating with Model Differences. In: Procs.
TOOLS EUROPE. (2008)

14. Kolovos, D., Paige, R., Polack, F.: Model comparison: a foundation for model composition
and model transformation testing. In: Procs. GaMMa, Shanghai (China). (2006) 13–20

15. Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modeling Framework. UP-
GRADE, The European Journal for the Informatics Professional (2008)

16. Conradi, R., Westfechtel, B.: Version Models for Software Configuration Management.
ACM Computing Surveys 30 (1998) 232–282

17. Kolovos, D.S., Di Ruscio, D., Paige, R.F., Pierantonio, A.: Different models for model
matching: An analysis of approaches to support model differencing. In: Proc. 2nd CVSM’09,
ICSE09 Workshop, Vancouver, Canada (2009)

18. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Trans. Softw. Eng. 28
(2002) 449–462

19. Alanen, M., Porres, I.: Difference and Union of Models. In: UML 2003 - The Unified
Modeling Language. Volume 2863 of LNCS., Springer-Verlag (2003) 2–17

20. Mens, T., Taentzer, G., Runge, O.: Detecting Structural Refactoring Conflicts Using Critical
Pair Analysis. Electr. Notes Theor. Comput. Sci 127 (2005) 113–128

21. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches. In-
ternational Journal of Web Information Systems (IJWIS) 5 (2009) 271 – 304

22. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Model Conflicts in Distributed
Development. In: Procs. MoDELS. (2008) 311–325

23. Wieland, K., Langer, P., Seidl, M., Wimmer, M., Kappel, G.: Turning conflicts into collabo-
ration. Computer Supported Cooperative Work 22 (2013) 181–240

24. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-Driven
Software Development. IEEE Software 20 (2003) 42–45

25. Gruschko, B., Kolovos, D., Paige., R.: Towards Synchronizing Models with Evolving Meta-
models. In: Procs of the Work. MODSE. (2007)

26. Rose, L.M., Herrmannsdoerfer, M., Williams, J.R., Kolovos, D.S., Garcés, K., Paige, R.F.,
Polack, F.A.C.: A Comparison of Model Migration Tools. In: Procs. MoDELS. LNCS,
Springer (2010) 61–75

27. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel evolution
in mde. Journal of Object Technology 11 (2012) 3: 1–33

69

Analyzing Behavioral Refactoring of Class
Models

Wuliang Sun, Robert B. France, Indrakshi Ray

Colorado State University, Fort Collins, USA

Abstract. Software modelers refactor their design models to improve
design quality while preserving essential functional properties. Tools that
allow modelers to check whether their refactorings preserve specified es-
sential behaviors are needed to support rigorous model evolution. In this
paper we describe a rigorous approach to analyzing design model refac-
torings that involve changes to operation specifications expressed in the
Object Constraint Language (OCL). The analysis checks whether the
refactored model preserves the essential behavior of changed operations
in a source design model. A refactoring example involving the Abstract
Factory design pattern is used in the paper to illustrate the approach.
Keywords:Behavioral refactoring, UML/OCL, Alloy

1 Introduction

In Model-Driven Development (MDD) projects, one can expect design models
to evolve as developers explore design spaces for high quality solutions. Class
models are among the most popular models used in practice and given their
pivotal roles, there is a need to manage their evolution. Software refactoring
[4][14] is an important class of changes that is applicable to class models. The
goal of a refactoring is to improve software qualities such as maintainability
and extensibility, while preserving essential structural and behavioral proper-
ties. A number of model refactoring mechanisms have been proposed (e.g., see
[2][5][12][19][20][21]), and many (e.g., see [19][21]) provide support for checking
whether structural properties are preserved in refactored models. However, we
are not aware of any approach that supports rigorous analysis of behavioral
properties when operation specifications in class models are added, removed, or
modified. In this paper we describe a rigorous approach to analyzing the refac-
toring of design class models that involve changes to operation specifications
expressed in the Object Constraint Language (OCL) [15].

The model on which a refactoring is performed is called the source model,
and the model produced by the refactoring is called the refactored model. A
refactoring that involves making changes to operation specifications is called
a behavioral refactoring. In this paper, we present an approach to analyzing
behavioral refactorings to check that changes to operation specifications preserve
the net effect of the operation (i.e., its essential behavior) as specified in the
source model. The net effect of an operation can be expressed using the OCL
pre-/post-conditions.

70

As an example, consider a case in which the operation FlightManager ::
bookF light() in a flight reservation system class model is refactored into the fol-
lowing four operations in the refactored model: Airline :: getAvailableF lights()
returns all flights that are available on a given day and airport, Flight :: getAvaila−
bleSeats() returns all seats that are available on the flight on a given day and air-
port, Flight :: reserveSeat() reserves a seat on the flight, and FlightManager ::
bookF light() books a flight by calling the previous three operations. The net ef-
fect of the FlightManager :: bookF light() operation in the source model is
specified using an OCL pre-/post-condition stating that if there exists available
flight seats, at the end of the operation execution a seat will be reserved by a
flight manager. The behavioral refactoring performed on the source model re-
distributes the functionality of FlightManager :: bookF light() across different
classes (i.e., Airline, Flight, and FlightManager). It is tedious to manually
determine if the above behavioral refactoring preserves the net effect of the orig-
inal operation because it involves manually building a description of the global
net effect of a behavior by composing operation specifications that define sub-
behaviors in local contexts (i.e., classes in which the operations are located).

The above motivates the need for an automated analysis technique that sup-
ports rigorous analysis of behavioral refactorings. In the approach described in
this paper, an analysis of a behavioral refactoring involves determining whether
a sequence of operations in the refactored model preserves the net effect of an
operation in the source model. The net effect of a source model operation is
preserved by a sequence of refactored operations if the sequence starts in all the
states that satisfy the pre-condition of the source model operation, and leaves
the system in a state that satisfies the post-condition of the source model oper-
ation. The analysis approach requires the software modeler who performed the
behavioral refactoring to provide a sequence diagram that describes the sequence
of refactored operations. The approach takes the sequence of refactored opera-
tions, applies all the states that satisfy the pre-condition of the source model
operation, and checks if the sequence of refactored operations produces any state
that does not satisfy the post-condition of the source model operation. The net
effect of the source model operation is not preserved by a sequence of refactored
model operations if the sequence of refactored model operations starts in a state
that satisfies the pre-condition of the source operation and produces a state that
does not satisfy the post-condition of the source model operation.

The Alloy Analyzer [9] is used at the back end to statically analyze a be-
havioral refactoring. The analysis involves using the Alloy trace mechanism to
determine whether operations in the refactored model can preserve the net ef-
fect of a changed operation specification in the source model. Since the Alloy
Analyzer requires users to specify a bounded scope for each class, that is, the
maximum number of instances that can be produced for a class, the analysis is
performed within a bounded scope of class objects. The approach uses a UML-
to-Alloy transformation to shield the software modeler from the “back-end” use
of the Alloy Analyzer. Our transformation extends prior work on transforming
UML to Alloy models [1][3][7][11][17] by providing support for transforming a

71

class model and a sequence diagram to an Alloy model that specifies behavioral
traces.

The approach described in the paper is lightweight in that (1) it does not
expose the modeler to any formal notation other than the OCL, and (2) the net
effect preservation analysis is checked within a bounded domain. More heavy-
weight formal analysis techniques are needed in a setting where the net effect
preservation checking requires more exhaustive analysis.

The rest of the paper is organized as follows. Section 2 provides an overview
of the approach and Section 3 illustrates its use on a small example. Section
4 presents a research prototype to support the analysis approach. Section 5
describes related work, and Section 6 concludes the paper.

2 Approach Overview

The analysis approach is used to determine whether the net effect associated with
a behavior specified in a source model can be preserved by distributed behaviors
specified in a refactored class model. The net effect preservation property that
is checked is defined as follows:

Definition 1: Net Effect Preservation. A sequence of operation invocations,
OpSeq, in a refactored model is said to preserve the net effect of an opera-
tion, Op0, in the source model if the set of net effects (i.e., start and end system
states associated with an operation invocation) characterized by the specification
of Op0 is included in the set of net effects (i.e., start and end system states asso-
ciated with a sequence of operation invocations) characterized by the sequence
OpSeq. More precisely, a set of operations specified in a refactored model, {Op1,
Op2, ..., OpN}, is said to preserve the net effect of an operation Op0 specified in
the source model if there exists an invocation sequence of the refactored model
operations, OpSeq = [Op1; Op2; ...; OpN], such that the following holds:

1. OpSeq starts in all the states that satisfy the pre-condition of Op0.
2. If OpSeq starts in a state that satisfies the pre-condition of Op0 then the

sequence of operation invocations leaves the system in a state that satisfies
the post-condition of Op0.

The analysis approach requires a software modeler to provide the following
as inputs:

1. The specification of the source model operation, Op0, that is refactored.
2. The result of a refactoring (i.e., a refactored class model), and a sequence

diagram that describes how Op0’s redistributed behavior is used. The se-
quence diagram provides the sequence of refactored operations that will be
analyzed against the source model specification of Op0.

The intermediate output of the approach is an analyzable model that can be
used to check the net effect preservation property between Op0 and OpSeq. In
this approach, the analyzable model takes the form of an Alloy model that is

72

produced from (1) the refactored class model, and (2) a sequence diagram that
describes OpSeq.

The specifications for Op0 and the operations involved in OpSeq are also
included in the Alloy model. The inclusion of Op0 in an Alloy model produced
from the refactored class model can be problematic when Op0 refers to elements
not included in the refactored model. For this reason the first step of the ap-
proach checks that the elements referenced in the Op0 operation specification
also appear in the refactored model.

The second step of the approach generates the base Alloy model that is
extended in following steps to check the preservation property. We use a UML-
to-Alloy transformation that builds upon our previous work on rigorous analysis
of UML class models [17].

The third step of the approach takes as input the specification of Op0 and
a sequence diagram, and produces an Alloy assertion (or predicate) that is used
to determine whether the sequence described in the sequence diagram (OpSeq)
preserves the net effect of Op0. The assertion (or predicate) is added to the Alloy
model generated in the second step of the approach. If a check of the assertion
(or predicate) by the Alloy Analyzer produces an Alloy instance then the net
effect specified by Op0 cannot be preserved by the operation sequence.

More details on the major steps of the approach can be found in [18].

3 An Illustrating Example

A maze game class model from [6] (see Figure 1) is used in this paper to illustrate
the analysis approach. The MazeGame class is responsible for creating different
types of mazes (e.g., BombedMaze and EnchantedMaze) and their parts (e.g.,
RoomWithBomb and EnchantedRoom). A maze room consists of four sides
that can be doors, walls, or other rooms.

The operation createBombedMaze() in class MazeGame is used to create a
bombed maze that consists of four walls. Its net effect in the form of OCL spec-
ification is given below:

Context MazeGame::createBombedMaze() : BombedMaze
// Pre-condition: no maze has been created
Pre: self.maze→isEmpty()
// Post-condition: a bombed maze has been created, and it includes a room
// with four walls
Post: result.oclIsNew() and self.maze.bRooms→size() = 1 and
self.maze.bRooms→forAll(r : RoomWithBomb | r.bwalls→size() = 4)

If a new type of maze, maze room, door or wall were added, the structure of the
class model would need to be changed significantly. Incorporating the Abstract
Factory pattern [6] into the class model results in a more flexible design in which
the maze creation responsibilities are localized in factories that the MazeGame
class can access.

73

Fig. 1: Maze Game Class Model

Fig. 2: Refactored Maze Game Class Model

Figure 2 shows a refactored maze game class model that incorporates an
instantiation of the Abstract Factory pattern. The original createBombedMaze
and createEnchantedMaze operations inMazeGame have been replaced by the

74

createMaze(f : MazeFactory) : Maze operation, that uses a factory to create
a specific type of maze. The net effects of the original operations in MazeGame
need to be preserved by the behavioral refactoring. The analysis approach de-
scribed in this paper can be used to check if the net effect of createBombedMaze
is preserved by relevant operations in the refactored model.

The OCL specifications for createMaze and addRoom are given below:

Context MazeGame::createMaze(f:MazeFactory) : Maze
// Pre-condition: a maze factory has been associated with a maze game
Pre: self.factory→includes(f)
Post: true

Context Maze::addRoom(r:Room)
// Pre-condition: a room has not been associated with a maze
Pre: self.mazeRooms→excludes(r)
// Post-condition: a room has been associated with a maze
Post: self.mazeRooms→includes(r)

Unlike the createBombedMaze operation, the createMaze operation dele-
gates its responsibility to other operations (i.e.,makeMaze,makeRoom, addRo-
om, makeWall, and addWall) in the refactored class model. Due to space lim-
itations, only the specifications of createMaze and addRoom are given in the
paper (see above). More operation specifications can be found in [18]. A sequence
diagram (see Figure 3) is used to describe the result of the behavioral refactor-
ing. It describes an invocation sequence of the refactored model operations that
is intended to preserve the net effect of the createBombedMaze operation in the
source model.

The analysis showed that if we removed an operation (e.g., addRoom) from
the operation sequence in Fig. 3, the net effect of createBombedMaze cannot be
preserved by the rest of operations in Fig. 3. We also used the same analysis ap-
proach to check if the net effects of other source model operations are preserved
by refactored model operations. Our analysis results showed that all the opera-
tions in the source model (e.g., createEnchantedMaze, createRoomWithBomb,
createEnchantedRoom, createOrdinaryWall and createBombedWall) can be
preserved by relevant operations in the refactored model.

4 Tool Support

We developed a research prototype to investigate the feasibility of developing tool
support for the approach. The prototype consists of an Eclipse OCL parser, an
Ecore/OCL transformer and an Alloy Analyzer. The Ecore/OCL transformer is
developed using Kermeta [13], an aspect-oriented metamodeling tool. The inputs
of the prototype are (1) an EMF Ecore [16] file that specifies a refactored class
model, (2) a textual OCL file that specifies the pre-/post-conditions of Op0 and

75

Fig. 3: A Sequence Diagram that Describes an Invocation Sequence of the Refactored
Model Operations

operations involved in OpSeq, and (3) a textual file that describes a sequence
diagram.

The inputs are automatically transformed to an Alloy model consisting of
signatures and predicates. The prototype then uses the APIs provided by the
Alloy Analyzer to pass the Alloy model to the Alloy SAT solver. The result
returned by the Alloy SAT solver is interpreted by the prototype. The interpreted
result provides the net effect preservation property between Op0 and OpSeq.

The prototype implementation uses a visitor pattern to transform a class
model with operation specifications into an Alloy model. The traditional vis-
itor design pattern keeps the separation of the structure (i.e., the metamodel
elements) and the behavior (i.e., the visitor) by using a specific class for the
visitor, and thus results in ping-pong calls between the objects of the structure
and the objects of the visitor. The Kermeta [10] language provides an aspect
weaving mechanism to simplify the visitor pattern by allowing a user to define
a visit method for each model element being visited in an aspect class that is

76

woven into an existing base class at runtime. There is thus no need to keep a
visitor class that is used to traverse each model element of a metamodel.

5 Related Work

Two broad categories of related work are discussed in the section: work on model
refactoring and work on UML-to-Alloy transformation.

5.1 Model Refactoring

Refactoring has attracted much attention from the MDE community since it
was first introduced by Opdyke in his PhD dissertation [14]. Boger et al. [2]
applied the idea of refactoring to UML class diagrams, statechart diagrams,
and activity diagrams. Their approach, however, does not provide support for
rigorously reasoning about a behavioral refactoring.

Both Sunye et al. [19] and Van Gorp et al. [21] used OCL to formally specify
the refactoring for UML models. An operation is defined for each type of the
refactoring and its OCL pre-/post-condition specifies the model structure that
must be satisfied before and after the refactoring associated with the operation.
Their approach, however, can only be used to verify the refactoring involving
the changes to model structures.

France et al. [5] described a metamodeling approach to pattern-based model
refactoring in which refactorings are used to introduce a new design pattern in-
stance to the model. Mens and Tourwe [12] used logic reasoning to detect if a
design pattern instance that is introduced to a class model, limits the applica-
bility of certain refactorings.

Straeten et al. [20] proposed a behavior preserving refactoring approach for
UML class models. Unlike our approach, the behavior of a class model in their
approach is expressed using state machines and sequence diagrams. Gheyi et al.
[8] described a rigorous approach to verifying the refactoring for Alloy models.

However, based on our knowledge, none of the above approaches can be used
to analyze operation-based model refactoring that involves changes to operation
specifications.

5.2 UML to Alloy Transformation

Georg et al. [7] used both Alloy and UML/OCL to specify the runtime config-
uration management of a distributed system. An ad-hoc comparison between
Alloy and UML/OCL is discussed in their paper.

Dennis et al. [3] used the Alloy Analyzer to uncover the errors in a UML
model of a radiation therapy machine. The operations in the design model are
specified using OCL. An informal description of OCL-to-Alloy transformation is
described in their approach. Their approach, however, does not provide support
for automated transformation between UML/OCL and Alloy.

77

Anastasakis et al. [1] described a tool, namely UML2Alloy, that automati-
cally transforms a UML class model with OCL invariants into an Alloy model.
Their tool builds upon a formal mapping between UML/OCL metamodel and
Alloy metamodel. Unlike their approach, our approach leverages Alloy’s trace
mechanism to generate an Alloy model with trace features from a UML/OCL
model.

Maoz et al. [11] developed a tool that implements the transformation between
UML class models and Alloy models. Unlike the approach described in [1], Maoz’s
tool produces a single Alloy module from two class models. Maoz’s approach,
however, does not provide support for class models with OCL invariants and
operation specifications.

6 Conclusion

We presented an approach to rigorously analyzing a behavioral refactoring that
involves making changes to operation specifications expressed in the OCL. The
behavioral refactoring analysis involves checking whether relevant operations in
the refactored model can preserve the net effects of the operations targeted by
the refactoring in the source model. The net effect preservation checking tech-
nique described in the paper builds upon the Alloy Analyzer and thus requires
a translation from UML class models and OCL operation specifications to Alloy
models. We developed a prototype for transforming UML+OCL models to Al-
loy models with traces to support the net effect preservation check. We applied
the approach to a pattern-based model refactoring to demonstrate how software
modelers can use the approach to analyze a behavioral refactoring.

We plan to extend the behavioral refactoring analysis approach by providing
support for more complex OCL operators. Specifically we are currently inves-
tigating how we can use SMT solvers (e.g., Microsoft Z3) at the back-end to
analyze the OCL specifications. Our future work will also explore how mappings
between equivalent source and refactored forms can be used to support the net
effect preservation checking.

ACKNOWLEDGMENT

The work described in this report was supported by the National Science Foun-
dation grant CCF-1018711.

References

1. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On challenges of model trans-
formation from UML to Alloy. Software and Systems Modeling, 9(1):69–86, 2010.

2. M. Boger, T. Sturm, and P. Fragemann. Refactoring browser for UML. Objects,
Components, Architectures, Services, and Applications for a Networked World,
pages 366–377, 2003.

78

3. G. Dennis, R. Seater, D. Rayside, and D. Jackson. Automating commutativity
analysis at the design level. In ACM SIGSOFT Software Engineering Notes, vol-
ume 29, pages 165–174. ACM, 2004.

4. M. Fowler and K. Beck. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

5. R. France, S. Chosh, E. Song, and D.K. Kim. A metamodeling approach to pattern-
based model refactoring. Software, IEEE, 20(5):52–58, 2003.

6. E. Gamma, H. Richard, J. Ralph, and V. John. Design patterns: elements of
reusable object-oriented software. Reading: Addison Wesley Publishing Company,
1995.

7. G. Georg, J. Bieman, and R. France. Using Alloy and UML/OCL to specify
run-time configuration management: a case study. Practical UML-Based Rigorous
Development Methods-Countering or Integrating the eXtremists, 7:128–141, 2001.

8. R. Gheyi, T. Massoni, and P. Borba. A rigorous approach for proving model
refactorings. In Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering, pages 372–375. ACM, 2005.

9. D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

10. J.M. Jézéquel, O. Barais, and F. Fleurey. Model driven language engineering with
kermeta. Generative and Transformational Techniques in Software Engineering
III, pages 201–221, 2011.

11. S. Maoz, J. Ringert, and B. Rumpe. Cddiff: Semantic differencing for class dia-
grams. ECOOP 2011–Object-Oriented Programming, pages 230–254, 2011.

12. T. Mens and T. Tourwe. A declarative evolution framework for object-oriented
design patterns. In Software Maintenance, 2001. Proceedings. IEEE International
Conference on, pages 570–579. IEEE, 2001.

13. P.A. Muller, F. Fleurey, and J.M. Jézéquel. Weaving executability into object-
oriented meta-languages. Model Driven Engineering Languages and Systems, pages
264–278, 2005.

14. W.F. Opdyke. Refactoring: A program restructuring aid in designing object-
oriented application frameworks. PhD thesis, PhD thesis, University of Illinois
at Urbana-Champaign, 1992.

15. O.M.G.A. Specification. Object constraint language, 2007.
16. D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse Modeling

Framework. Addison-Wesley Professional, 2008.
17. W. Sun, R. France, and I. Ray. Rigorous analysis of UML access control policy

models. In Policies for Distributed Systems and Networks (POLICY), 2011 IEEE
International Symposium on, pages 9–16. IEEE, 2011.

18. W. Sun, R. France, and I. Ray. Analyzing Behavioral Refactoring of
Class Models. Technical Report CS-13-104, Colorado State University,
http://www.cs.colostate.edu/TechReports/, 2013.

19. G. Sunye, D. Pollet, Y. Le Traon, and J.M. Jezequel. Refactoring UML models.
UML 2001The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, pages 134–148, 2001.

20. R. Van Der Straeten, V. Jonckers, and T. Mens. A formal approach to model
refactoring and model refinement. Software and Systems Modeling, 6(2):139–162,
2007.

21. P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards automating source-
consistent UML refactorings. UML 2003-The Unified Modeling Language. Modeling
Languages and Applications, pages 144–158, 2003.

79

Specification of a Legacy Tool by Means of a
Dependency Graph to Improve its Reusability

Paola Vallejo, Mickaël Kerboeuf, and Jean-Philippe Babau

University of Brest (France), Lab-STICC, MOCS Team
{vallejoco,kerboeuf,babau}@univ-brest.fr

Abstract. This position paper, investigates a way to improve the reusabil-
ity of legacy tools in specific contexts (defined by specific metamodels).
The approach is based on a dedicated language for co-evolution, called
Modif. Its associated process involves two model migrations. The first
one (Migration), allows to put data under the scope of a legacy tool.
The second one (Reverse Migration), allows to put the legacy tool’s out-
put back into the original specific context. The approach is generalized
by introducing the notion of dependency graph. It specifies the relations
between the legacy tool’s input and the legacy tool’s output. The depen-
dency graph is then used to address some complexities of the Reverse
Migration. The improvement is illustrated by the reuse of a flattener tool
defined on a specific metamodel of FSM (finite state machines).

Keywords: Legacy tool’s reusability, DSML, metamodel transformation, model
migration, code generation

1 Introduction

Reuse is the act of using an asset in different systems [2]. In DSML (Domain-
Specific Modeling Languages), the reuse of legacy tools reduces the cost of pro-
ducing the entire tool support of a DSML. The reuse is also employed in other
contexts such as model transformations, [6] proposes reusing transformations
instead of rewrite them.

The reuse brings up some difficulties with it; for example, when a designer is
defining specific functions for the DSML, he frequently notices that the functions
are already provided by a legacy tool. Nevertheless, they were developed for a
variant of his metamodel.

In this regard, the aim of reusing, raises two questions: how the DSML model
can be adapted to be conform to the legacy tool’s metamodel? And how the
output of the legacy tool can be adapted in return to the DSML context?

Modif [1] [5] addresses those two questions. Figure 1 shows the operations
performed by Modif to handle the interactions between the elements of the two
contexts (DSML and legacy tool). The DSML context’s metamodel MM, its
conforming model M1, the legacy tool context’s metamodel MM’ and the legacy
tool Tool are those we aim at reusing. Then, from M1, the objective is to obtain
M2, M3 and M4 automatically.

80

M1 has to be adapted to be M2, with the purpose of match the legacy tool
context. The adaptation is achieved by the Modif’s Adaptation step. In accor-
dance with the principles of co-evolution between metamodels and models, Adap-
tation performs Refactoring operations at the metamodel level and Migration at
the model level [3] [8]. Once Tool has processed M3 from M2, it is necessary
to adapt it to the DSML context by producing M4. The Reverse Migration is
achieved by the Modif’s Contextualization step, thanks to the relational notion
of key.

The process compound of Adaptation (M1 to M2), Tool and Contextualization
(M3 to M4) correspond to the Tool reuse.

It is important to notice that a common operation performed during Mi-
gration is the deletion of unnecessary information (slicing operation [7]). Then,
the keys mechanism allows to recover at Contextualization, the instances that
have been deleted during Migration. This approach based on keys, presents some
limits when the legacy tool creates of aggregates different instances. Hence, the
interest of find a mechanism able to contextualize deleted instances, but also the
new ones.

MM MM ’

M1 M2

M4 M3

Tool

Refactoring

Migration

Reverse

Migration

conforms to

conforms to conforms to

conforms to

input

output

DSML context Legacy tool context

Adaptation

Contextualization

Fig. 1. Legacy tool reuse’s process realized by Modif

In this paper, we aim at improving the Modif’s keys mechanism [5] by using
a dedicated dependency graph. Such graph determines the set of instances from
the legacy tool’s input that have been used to update or create an instance of
the legacy tool’s output.

This paper is organized as follows. The next section presents the background
of this work and some motivations to improve the keys mechanism, in order
to make a correct contextualization. It takes into account the links between
Migration and Reverse Migration. Then, we present the proposition to assist
the user in the process of putting back the legacy tool’s output into his DSML
context. We finally conclude the paper and give some perspectives.

81

2 Background and Motivation

In a simple example we show the tool reuse process and why Reverse Migration
is a key problem.

Adaptation Modif’s Adaptation is based on co-evolution operators (e.g. up-
date, delete) like classically proposed by [4]. A legacy tool is defined for a spe-
cific usage, and its metamodel includes less concepts than a DSML metamodel
proposes. Then, the most used operators for adaptation are rename and delete.

Tool The input and the output of the legacy tool Tool conform to the same
metamodel. Tool executes creation, update and deletion.

Contextualization Modif [5] proposes a keys mechanism. A key is an attribute
associated to each instance of M1 that uniquely identifies it. The keys allow to
keep a relationship between instances of M1 and those still exist in M2 and M3
after Migration and Tool application. Then, M4 is built by adding M3 instances
and instances that have been deleted during Adaptation.

This is possible by applying the concept of relational natural join of rela-
tional databases. The relationships between instances are also built reusing the
keys information. Thus, instances of the legacy tool’s output are reconnected to
the instances that have been recovered. New instances cannot be reconnected to
other instances, and an instance of M3 can be reconnected to only one existing
instance of M1.

To illustrate the approach and its limits, a case study of simple FSM is
presented:

– MM defines the concepts of State, Transition, Action (associated to states)
and Event (associated to transition). A state can contain other states inside
it (hierarchical finite state machine);

– MM’ is the metamodel of input data expected by a flattener legacy tool, it
is similar to MM, except that it does not contain actions;

– M1 (Figure 2) is a state-machine model conforms to MM. It is composed of a
super-state with two actions, a substate with one action, a substate without
actions, and two transitions;

– M2 (Figure 2) is an adaptation of M1, in which actions are deleted;

– Tool is a flattener legacy tool that removes hierarchy by producing atomic
states (aggregation of super-states and states). For each super-state, all sub-
states are renamed and itself is removed. The renaming is done by concate-
nating the super-state’s name and the substate’s name;

– M3 (Figure 2) depicts the legacy tool’s output. Actions have to be reinte-
grated to it;

82

– M4 (Figure 2) illustrates the result of the Reverse Migration by using the
keys mechanism. The action run1 is recovered and reconnected to running
nominal. The actions start and stop are lost because they are associated to
the super-state running that does not exist after tool application.

Figure 2 illustrates the way in which the states evolve and the keys are
propagated. Only Ki by characterizing a state concept are shown. This exam-
ple underlines the limits of the approach by only using keys mechanism. The
actions associated to a super-state cannot be recovered automatically. And, if
Tool performs creation of new instances instead of updating the existing ones, it
is not possible to recover any deleted action. In this case, either instances that
have been deleted in Migration are lost, or specific user code has to be added to
improve the Reverse Migration.

running

entry/start
exit/stop

nominal

entry/run1

degraded

nok ok

running

nominal

degraded

nok ok

MigrationM1 M2

k2

k3

Tool

running nominal

running degraded

nok
ok

M3

running nominal

running degraded

nok

ok

M4

entry/run1

R. Migration

k2

k3

k1

k2

k3

Fig. 2. States’ evolution in a tool’s reuse process

The major difficulties in the context of tool reuse are:

– Reverse Migration is not limited to be an inverse Migration, because of Con-
textualization, for example by using keys;

– Contextualization is not limited on adaptation, because it depends also on
the legacy tool’s behavior impact.

When Tool creates new instances, information about the relation between the
new instances and the existing ones is missing. We propose to add information
about the tool behavior impact on Reverse Migration.

3 Approach

3.1 Proposition

We present a proposition to enhance Modif and its keys mechanism, by intro-
ducing the notion of dependency graph. A dependency graph is considered a
specification of the legacy tool. It specifies the dependencies between each in-
stance of the legacy tool’s output and a set of instances of the legacy tool’s
input. The set is compound of the instances that are involved in the creation

83

or modification of the legacy tool’s input instance. All types of instances can
participate in the creation or update of other instances.

In this paper, the dependency graph is obtained by instrumenting the legacy
tool. We log each concept of the legacy tool’s output and the set of concepts of
the legacy tool’s input that participates in its creation or modification.

For the case study of FSM, Reverse Migration is applied to M3 using the
keys mechanism, in order to recover deleted actions. Moreover, we also use the
information given by the dependency graph to reconnect more actions. For this
example, the relations between input and output of the legacy tool are shown in
Figure 3. Now, the challenge is how to use this information to keep the recovered
instances and to reconnect them.

nominal

running

degraged

nok

input

ok

running nominal

running degraged

output

state

transition
nominal degraded

degraded nominal

event

running
nominal

running
degraded

running
degraded

running
nominal

nok

ok

Fig. 3. Relation between the flattener’s input and output

Reverse Migration is parameterized by Adaptation (initial model and keys),
dependency graph (tool behavior) and legacy tool’s output. From those param-
eters, the generated code can be executed to get a contextualized final model.

The process performed by the generated code to produce the final model is:

– to make an identical copy of each instance of the tool’s output, taking into
account its attributes and its references;

– to use the keys to identify the deleted instances;
– to recover the links to deleted instances and filter them by type, using the

information provided by the dependency graph. The filter allows to recover
instances of the appropriate type. We consider that an instance may be
created from only instances of the same type (e.g. states are created from
states);

– to offer an extension point in which the user can specialize the by default
behavior by defining its customized behavior. If there is not customized be-
havior, only by default behavior is executed.

84

3.2 Experimentation

The approach is experimented with the case study of flattening finite state ma-
chines.

The following is the by default behavior proposed to reconnect each recovered
action:

R1 If its related state in M1 still exists in M3; the action is automatically con-
nected to it;

R2 If the state no longer exists in M3, but another states of M1 are related to
it and they still exist; then, the action is connected to all of them;

R3 If the state no longer exists in M3 neither the state related to it; then, the
action is not connected to any state.

An excerpt of the code generated by Modif is shown in Listing 1.1. function
is the main function, it takes as parameters the legacy tool output M3model,
the dependency graph dicoKeys (it contains also the keys) and the initial model
M1model).

Listing 1.1. Generated main class for the state machine example

public c lass ReverseMigrat ion {
migrat ion (new DefaultBehavior ()) ;
migrat ion (new CustomizedBehavior ()) ;

// Reverse Migration
f ina l void f unc t i on (M3 M3model , Key dicoKeys , M1 M1model){

for (M3. State s t a t e : M3StatesList){

// re l a t ed entry act ions of an s t a t e
r e la tedEntryAct ions=getRelatedEntryAct ions (s tate , dicoKeys , M1model) ;

// re l a t ed e x i t act ions of an s t a t e
r e l a t edEx i tAc t i on s=getRelatedEntryAct ions (s tate , dicoKeys , M1model) ;

for (M1. State r e l a t e d : r e l a t e dS t a t e s){

// by de f au l t behavior
byDefault . connectEntryAction (s tate , r e la tedEntryAct ions) ;
byDefault . connectExitAct ion (s tate , r e l a t edEx i tAc t i on s) ;

// customized behavior
customized . connectEntryAction (s tate , r e la tedEntryAct ions) ;

}
}

. . .

Listing 1.2 shows the functions connectEntryAction and connectExitAction.
They are responsible for reconnect entry and exit actions to the states, tak-
ing into account the information gathered from the dependency graph. These
functions execute the behavior defined in R1, R2 and R3.

If the designer does not agree the by default behavior, he can specialize the
code by integrating his requirements. An example of the customized behavior
defined by an user is (Listing 1.3):

D1 If the recovered action is an entry one, it is reconnected to only initial states
(the attribute initial is set to true): it is an adaptation of R1;

85

D2 If the action is an exit one, it is reconnected to all states: it was already
defined by R2.

Listing 1.2. By default behavior for the state machine example

public c lass DefaultBehavior implements Migrat ion{

// Function to reconnect entry act ions
public void connectEntryAction

(M3. State s tate , E l i s t<M1. Action> r e la tedEntryAct ions){
. . .

}

// Function to reconnect e x i t ac t ions
public void connectExitAct ion

(M3. State s tate , E l i s t<M1. Action> r e la tedEntryAct ions){
. . .

}

Listing 1.3. Customized behavior for the state machine example

public c lass CustomizedBehavior extends DefaultBehavior {
. . .
public void connectEntryAction

(State s tate , ArrayList<Action> r e la tedEntryAct ions){
i f (s t a t e . i s I n i ()){
for (Action ac t i on : r e la tedEntryAct ions){
s t a t e . setEntry (ac t i on) ;

}
. . .

Figure 4 presents the result of executing R1; run1 is reconnected because run-
ning nominal still exists after flattening. Figure 5 presents the result of executing
R2; start and stop are reconnected because running was involved in the update
of the two substates. In this example, there are not changes while executing R3.

running nominal

running degraded

nok
ok

entry/run1

Fig. 4. R1 behavior

running nominal

running degraded

nok
ok

entry/run1

entry/start

exit/stop

entry/start
exit/stop

Fig. 5. R2 behavior

running nominal

running degraded

nok
ok

entry/run1

entry/start

exit/stop

exit/stop

Fig. 6. D1 behavior

The final model obtained by following the by default behavior and then the
customized behavior is presented in Figure 6. All actions are recovered and re-
connected. run1 still related to running nominal. start is deleted from running
degraded because it is not an initial state. stop still is connected to all states.

This approach allows to keep at Reverse Migration, the DSML instances
deleted during Migration. Contrary to the result obtained by using only the keys

86

mechanism, the dependency graph allows to reconnect all actions without lost.
Even if the legacy tool performs creation.

4 Conclusion and Future Works

In this paper, we present an approach to facilitate the legacy tool’s reuse process.
In particular, it improves the Reverse Migration for legacy tool’s reuse by means
of a dependency graph. The dependency graph provides a specification of the
legacy tool to be reused. It enables to recover DSML instances deleted before
using the legacy tool and to reintegrate them to its original DSML context.

Migration is metamodel dependent only; Reverse Migration is metamodel
dependent, tool’s behavior dependent, Migration dependent and original model
dependent.

We are now working on the formalization of Migration and Reverese Migra-
tion. The approach will be experimented by reusing some legacy tools in the
context of video transmission and coding in MPSoC.

References

1. J.-P. Babau and M. Kerboeuf. Domain Specific Language Modeling Facilities. In
proceedings of the 5th MoDELS workshop on Models and Evolution, 2011.

2. J. L. Cybulski. Reuse introduction cybulski abstract introduction to software reuse,
1995.

3. K. Garcés, F. Jouault, P. Cointe, and J. Bézivin. Managing model adaptation by
precise detection of metamodel changes. In Proceedings of ECMDA-FA, 2009.

4. M. Herrmannsdoerfer, S. Vermolen, and G. Wachsmuth. An extensive catalog of
operators for the coupled evolution of metamodels and models. In SLE, 2010.

5. M. Kerboeuf and J.-P. Babau. A DSML for reversible transformations. In proceed-
ings of the 11th OOPSLA workshop on Domain-Specific Modeling, 2011.

6. D. Mendez, A. Etien, A. Muller, and R. Casallas. Towards Transformation Migration
After Metamodel Evolution. In Model and Evolution Wokshop, 2010.

7. S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel. Meta-model Pruning. In
ACM/IEEE 12th International Conference on Model Driven Engineering Languages
and Systems (MODELS’09), Denver, Colorado, USA, Oct 2009.

8. G. Wachsmuth. Metamodel adaptation and model co-adaptation. In Proceedings of
ECOOP, 2007.

87

	Article 1

