
OCL meets CTL:
Towards CTL-Extended OCL Model Checking?

Robert Bill1, Sebastian Gabmeyer1, Petra Kaufmann1, Martina Seidl1,2

1 Business Informatics Group
Vienna University of Technology, Vienna, Austria

{bill, gabmeyer, kaufmann, seidl}@big.tuwien.ac.at
2 Institute for Formal Models and Verification,

Johannes Kepler University, Linz, Austria

Abstract. In software modeling, the Object Constraint Language (OCL)
is an important tool to specify properties that a model has to satisfy. The
design of OCL reflects the structure of MOF-based modeling languages
like UML and the tight integration results in an intuitive usability. How-
ever, OCL allows to express properties in the context of the current state
of an instance model only but not with respect to its evolution.
In this paper, we show how OCL can be extended with CTL-based tem-
poral operators to express properties over the lifetime of an instance
model. We explain syntax and semantics of our OCL extension and pro-
vide a prototypical implementation of our MocOCL model checker.

1 Introduction

In software and hardware verification, model checking [3] is currently one of
the most widely used verification techniques to show that a system satisfies its
specification.3 Model checking requires a formal representation of the system
and a specification that is often expressed in terms of a temporal logic formula.
Common choices are the computation tree logic (CTL) and the linear temporal
logic (LTL) that are used to express constraints over the lifetime of the system.

In the context of model-based engineering (MBE), software models are the
core artifacts to specify and develop a system. Obviously, the correctness of the
models is a prerequisite for the correctness of the system that is presented to
the end user [19]. Consequently, formal verification techniques find their way
into the MBE processes to help detect and avoid errors in the models. Due to
its fully automatic verification capabilities, model checking has been shown to
be of particular importance. Recent works and tools, for example, Hugo [14],
Groove [13], and Proco [11] to name but a few, show that various kinds of
software models can be suitably verified with model checking.
? This work was partially funded by the Vienna Science and Technology Fund

(WWTF) under grant ICT10-018.
3 Usually, a specification consists of a set of properties that should hold in a system.

We will, however, often use these terms interchangeably.

13



Many approaches, however, require the modeler to express the properties
of a specification in the language of the target model checker. In our opinion
this is a drawback as (1) the modeler needs to leave her usual working environ-
ment and (2) the properties are not expressed on the modeling layer. Typically,
a modeling environment provides some language to express constraints that a
model has to satisfy. For example, the Object Constraint Language (OCL) [10]
is a widely adopted language to express invariants, and pre- and postconditions
over a model. But OCL only considers a single snapshot of the model, not its
evolution during the execution of the system.

In this paper we thus present a CTL-based temporal extension to OCL and,
in addition, provide a working implementation of a model checker to verify CTL-
extended OCL constraints. Hence, our contribution is twofold. First, we extend
syntax and semantics of OCL with CTL operators. Second, we integrate the
syntactical extension into the Eclipse OCL Workbench and implement a model
checker to evaluate CTL-extended OCL constraints in Eclipse. In the following,
we assume that the static structure of the system is represented by an Ecore
model and the system’s behavior is described by a set of model transformations.
The specification is expressed as a CTL-extended OCL constraint.

The structure of this paper is as follows. In Section 2 we present the syntax
and semantics of our CTL-based OCL extension. Then, in Section 3, we discuss
the overall idea by means of a motivating example and describe the implemen-
tation of our verification framework. Finally, after showcasing a first case study
(Section 4), we close the paper with an overview of related approaches (Sec-
tion 5), and conclude in Section 6 with a critical discussion and an outlook on
future work. Due to space limitations we assume familiarity with model checking
and CTL and kindly refer to standard literature [3] for an introduction.

2 A Temporal Extension of OCL

In the following, we formally introduce the syntax and semantics of OCL enriched
with standard CTL operators. We integrate our extension, named cOCL, into the
formal semantics of OCL [10,18] without modifying the existing definitions. Due
to space limitations we do not reproduce the existing definitions here and kindly
refer to the work of Richters et al. [18] for the details on the syntax and semantics
of OCL.
Definition 1 (Syntax). The expressions of cOCL are defined as follows:

1. Each OCL expression of Definition 1 in [18] is in cOCL;
2. if φ, ψ ∈ ExprBool then AXφ, EXφ, AφWψ, EφWψ, AφUψ, EφUψ ∈ ExprBool

in cOCL, where ExprBool are expressions of type Boolean.

Our extension introduces three temporal operators, next (X), weak until (W),
and (strong) until (U), which are quantified either existentially (E) or uni-
versally (A). We define the eventually and globally operators as equivalences:
EFϕ ≡ E trueUϕ and AFϕ ≡ A trueUϕ, and EGϕ ≡ EϕW false and AGϕ ≡
AϕW false.

14



Definition 2 (State space). The state space KM = (S, ι, T ,B, E) of a model
M consists of a set of states S, a single initial state ι ∈ S, a transition relation
T ⊆ E × E, a set of variable assignments B, and the environment relation E ⊆
S ×B. An environment τ ∈ E is a pair (σ, β), where σ ∈ S is a state and β ∈ B
a variable assignment.

For each state σ ∈ S the set of objects, associations, and attributes of M are
accessible via σ|class, σ|assoc, and σ|attrs [18]. A variable assignment is a function
β : Var t → Valt that, given a variable name, returns the current value of the
associated variable, where t is the type of the associated variable. The concept
of an environment τ = (σ, β) has been introduced by Richters and Gogolla [18].

Definition 3 (Path). Let KM = (S, ι, T ,B, E) be the state space of a model M .
A path π is a finite or infinite sequence of environments (τ1, τ2, . . .) with τi ∈ E
such that (τi, τi+1) ∈ T . For a path π = (τ1, τ2, . . .), we define the projection
function π(i) = τi . The length of a path |π| = n for finite paths π = (τ1, . . . , τn),
and |π| =∞ for infinite paths π = (τ1, τ2, . . .).

We are now able to describe the semantics of cOCL as follows.

Definition 4 (Semantics). Let KM be a state space of model M . The seman-
tics of a cOCL expression is defined by the rules i.–vi. of Definition 2 from [18]
plus the following rules for the temporal extension.

vii. IJAφU ψK(τ) = true ⇔ ∀paths π with π(0) = τ : ∃n ∈ N, n ≤ |π| :
IJψK(π(n)) = true ∧ ∀ 0 ≤ i < n : IJφK(τi) = true

viii. IJE φU ψK(τ) = true ⇔ ∃path π with π(0) = τ : ∃n ∈ N, n ≤ |π| :
IJψK(π(n)) = true ∧ ∀ 0 ≤ i < n : IJφK(τi) = true

ix. IJAφW ψK(τ) = true ⇔ ∀ paths π with π(0) = τ : ∀n ∈ N, n ≤ |π| :
IJφK(π(n)) = false→ ∃i ∈ N, i ≤ n : IJψK(π(i)) = true

x. IJE φW ψK(τ) = true ⇔ ∃path π with π(0) = τ : ∀n ∈ N, n ≤ |π| :
IJφK(π(n)) = false→ ∃i ∈ N, i ≤ n : IJψK(π(i)) = true

xi. IJEX φK(τ) = true⇔ ∃path π with π(0) = τ, |π| ≥ 1 : IJφK(π(1)) = true
xii. IJAX φK(τ) = true⇔ ∀paths π with π(0) = τ, |π| ≥ 1 : IJφK(π(1)) = true

The semantics of the eventually and globally operators follow directly from the
above definitions. We define a cOCL expression satisfiable as follows.

Definition 5 (Satisfiability). A cOCL expression φ is satisfiable w.r.t. a state
space KM iff IJφK(ι) is true w.r.t. KM .

3 A framework to integrate CTL and OCL

In the following we describe our verification framework that accepts MOF-based
software models and cOCL specifications as input. This allows us to embed model
checking support seamlessly into the MBE workflow. We introduce the general
idea based on the (in)famous dining philosophers problem.

15



3.1 Basic Idea
Consider the model depicted in Fig. 1. The root node of type Table contains an
arbitrary number of instances of type Philosopher, Plate, and Fork. Each philoso-
pher is associated with exactly one plate. Each fork is assigned to two adjacent
plates such that philosophers need to share their forks.

Table Philosopher

Plate Fork

*
phils

*
plates *

forks
0..1
left

0..1
right

plate

1

1left

1right

Fig. 1. Dining philosophers model

In order to eat, the philosophers need to
pick up both the left and the right fork of their
plate. When they are done eating, they release
their forks and put them back on the table.
We model the dynamic behavior of the dining
philosophers system with graph transforma-
tions [7], but any other model transformation
formalism would work equally well. Figure 2
shows the rules in storyboard notation. Rule
(a) of Figure 2 creates an association to as-
sign the left fork to a philosopher whenever
the philosopher has not picked up the left fork yet (forbid#1) and the philoso-
pher to his right has not picked up the fork either (forbid#2). The rule to pick
up the right fork works analogously. Rule (b) in Fig. 2 releases simultaneously
the forks that a philosopher has picked up and deletes each of the associations
between the philosopher and the left and right forks.

To check a cOCL property, we first need to create the state space of the
dining philosophers system. The state space is obtained by recursively apply-
ing all matching graph transformation rules starting on a given initial model.
For example, consider an initial model with one table, three philosophers, three
plates, and three forks, where none of the philosophers has neither picked up a
left fork nor a right fork. The initial state has six successor states, as both rules
for picking up a left fork and a right fork can be applied to each philosopher.
Overall, the resulting state space consists of 27 states.

3.2 Implementation

Our verification framework consists of two parts, a concrete syntax extension for
our CTL-based OCL extension that we presented in Section 2, and the MocOCL
model checker that verifies cOCL specifications.

:Philosopher
�preserve�

:Plate
�preserve�

:Fork
�preserve�

:Philosopher
�forbid#1�

:Fork
�forbid#2�

�create�

left

�preserve�

plate

�preserve�

left

�forbid#1�

right

�forbid#2�

left

(a) Pick up left fork rule.

:Philosopher
�preserve�

:Plate
�preserve�

:Fork
�preserve�

:Fork
�preserve�

�delete�

left

�preserve�

plate

�preserve�

left

�delete�

right
�preserve�

right

(b) Release forks rule.
Fig. 2. Graph transformation rules for the dining philosophers example.

16



The concrete syntax enhances the readability of cOCL expressions. It al-
lows to write the temporal operators in their familiar long forms, i.e., Xϕ, Fϕ,
Gϕ, ϕWψ, and ϕUψ become nextϕ, eventuallyϕ, globallyϕ, ϕunlessψ, and
ϕuntilψ. The universal and existential quantifiers for temporal operators be-
come always and sometimes.

The type definitions Sequence(t), Set(t), and Bag(t) and the function defini-
tions mkSequencet, mkSett, and mkBagt that we use in the following definitions
are those introduced by Richters and Gogolla [18]. For example, I(Sequence(t))
defines the set of all possible sequences of type t. We define I(Collection(t)) =
(I(Sequence(t)) ∪ I(Set(t)) ∪ I(Bag(t))). The prototypical implementation of
the MocOCL model checker performs the following steps. Given an initial en-
vironment, a set of model transformations, and a cOCL specification, MocOCL
first generates the state space, then evaluates the cOCL properties, and finally
reports to the modeler useful information on the reason of a specific evaluation
result.

In MocOCL, the state space consists of a set of graphs. Each graph corre-
sponds to an instance of the system and thus represents a system’s state at a dis-
crete point in time. Given a graph transformation system G = (R, ι) with graph
rewrite rules R and an initial state ι, the function stategenR: S → P (S ×M)4

handles the generation of the state space. It expects as input a state σs and
returns a set of pairs (σt,m) where σt denotes the successor state of σs and
m : σClass → σClass ∪ {⊥} is a morphism that maps objects in σs to corre-
sponding objects in σt, or to ⊥ if no such object exists. The successor state
σt is obtained from σs by applying a rewrite rule r ∈ R to the graph repre-
sented by σs. We write σs

r⇒ σt to denote that σs is rewritten to σt by rule
r ∈ R. The state space generation function is then defined as stategenR(σs) =⋃
r∈R{(σt,m)|σs

r⇒ σt ∧ ∃m ∈ M : ∀c ∈ σs|class : m(c) ∈ σt|class ∨ m(c) =
⊥}. The helper function succ: E → P (E) returns all environments reachable
by a transition from the source environment τs = (σs, βs) and is defined by
succ((σs, βs)) := {(σt, βt)|(σt,m) ∈ stategenR(σs), βt = mapvar(βs,m)}. The
mapvar : B ×M → B function takes a variable assignment βs of state σs and
a mapping m ∈ M and updates βs with respect to m resulting in a variable
assignment βt for the successor state σt. It is defined by

mapvar(β(v),m) : v 7→


mapcol(β(v),m) if ∃t : β(v) ∈ I(Collection(t))
m(β(v)) if β(v) ∈ Dom(m), i.e., β(v) ∈ σclass

β(v) otherwise.

A collection is mapped by the mapcol : Collection(t) × M → Collection(t)
function, which applies mapvar recursively to all elements of the collection:

mapcol(X,m) =


mkSequencet(mapvar(x,m)|x ∈ X) X ∈ Sequence(t)
mkSett(mapvar(x,m)|e ∈ X) X ∈ Set(t)
mkBagt(mapvar(x,m)|e ∈ X) X ∈ Bag(t)

4 P (X) is the set of all finite subsets of X.

17



This implementation gives us a state space KM = (S, ι, T ,B, E) with initial
state ι ∈ G and (τs, τt) ∈ T ⇔ τt ∈ succ(τs), E being the transitive closure
of applying the succ function to the initial environment (ι, βι), and S and B
being all states and variable assignments occurring in an environment. Cur-
rently, we use Henshin’s graph rewrite engine [1] to generate the state space.

ω = {τι}; Φ = Ψ = η = ∆ = ∆l = ∅
while ω 6= ∅

pick τ = (σ, β) ∈ ω
ω := ω \ {τ}
if IJψK(τ) or IJφK(τ) then

if IJψK(τ) then
Ψ := Ψ ∪ {τ}

else
Φ := Φ ∪ {τ}
ω := ω∪succ(τ) \ (Φ∪Ψ ∪ η)

end if
else

η := η ∪ {τ}
end if

end while
repeat

∆l := ∆
∆ := {τ ∈ Φ | succ(τ)∩(Φ\∆l) = ∅}

until ∆ = ∆l

Fig. 3. Algorithm pseudo code

The evaluation of cOCL expres-
sions of the form (A|E)φ (U |W )ψ is
shown in Fig. 3. The algorithm con-
structs the sets Φ and Ψ that con-
tain all states where ϕ and ψ hold,
and a third set η that contains all
states reachable from a ϕ-state but
where neither ϕ nor ψ hold. The
worklist ω contains all nodes that
need to be processed. The algorithm
sets the worklist to the initial envi-
ronment τι and uses the succ func-
tion to iteratively expand the set of
reachable environments. It evaluates
ϕ and ψ in each environment τ and
assigns τ to the corresponding sets
Φ and Ψ , or to η if neither ϕ or
ψ hold. Then, IJAφUψK(τ) holds if
η is empty, and Φ contains neither
cycle (cycle ⇔ ∆ 6= Φ) nor dead-
lock; IJE φUψK(τ) holds if Ψ is not
empty; IJAφWψK(τ) holds if η is empty; and IJE φWψK(τ) holds if Ψ is
not empty or Φ contains a cycle. Expressions (A|E)Xφ are implemented as
IJ(A|E)XφK((σ, β)) = (∀|∃)n ∈ succ(σ, β) : IJφK(n) = true where we check if all
(at least one) successor of the current state satisfies expression ϕ.

The evaluation of a cOCL expression yields a report that, besides return-
ing the result of the evaluation, contains a cause or explanation for the result. A
cause is is associated with a cOCL expression. It stores the result of the evaluation
of the associated expression and, for each relevant sub-expression, a sub-cause.
A sub-expression is relevant if it influences the result of its super-expression. For
example, if the sub-expression ϕ in ϕorψ evaluates to true then no sub-cause is
generated for ψ as the evaluation of ϕ uniquely determines the result of ϕorψ.
If, however, both ϕ and ψ evaluate to false, then a sub-cause for each of the
two sub-expressions is generated and stored in the cause of ϕorψ. Note that
cause generation need not be deterministic, as is the case, for example, if both
ϕ and ψ evaluate to true. In case of cOCL expressions the report generation
becomes expensive fast. For example, the number of generated sub-causes for
a counter-example trace of a EFϕ formula, where ϕ is a propositional formula
without set operations, has as upper bound O(|KM | × |ϕ|) the size of the state
space times the size of the formula ϕ.

18



4 A First Showcase

In this section, we illustrate how cOCL expressions can be used to express prop-
erties of a system. For the purpose of comparison, we also specify the properties
as CTL formulas as used in Groove [17], which generates the state space similar
to our model checker, but uses graph transformations to express properties of
the system. Such a graph transformation-based expression evaluates to true if
the graph transformation can be applied in the current state. Graph transfor-
mations are the only link between the temporal formula to be verified and the
model of the system. Thus, it is neither possible to store and compare variables
nor to iterate over multiple state space elements.

In the following, we formulate two properties based on the dining philosophers
example introduced in the previous section. The statement ”every philosopher
should always be able to eat at some point in the future” is specified as follows:
self.philosophers->forAll(p | always globally always eventually
(p.left <> null and p.right <> null))

Note that OCL allows us to quantify over all philosopher objects and with
our extension we are able to say that in all reachable branches of the state space
eventually a philosopher has to have a right and a left fork.

In Groove, every philosopher needs an ID to be traced. Additionally, there
are no parametrized properties and thus a new graph transformation has to be
specified for each philosopher. Then the graph transformation rules are specified
as in Fig. 4 and the formula is specified in Groove as

Fig. 4. Rule
phil1full

(A G A F phil1full) & (A G A F phil2full) &
(A G A F phil3full)

The rule philXfull (see Fig. 5) is applicable when, and thus
specifies the property that, the philosopher with ID X has forks
in both hands.

The second example shows that in some cases, there can be
an even more extreme blowup in necessary rule count. We want
to check the property that a single fork is owned by exactly two
adjacent philosophers. This is expressed in MocOCL as
self.forks->forAll(f | self.philosophers->
select(p | (sometimes eventually p.left = f or
p.right = f))->size() = 2)

Fig. 5. Rule
phil1fork1

In Groove, the statement p.left = f or p.right = f has
to be specified for every fork and every philosopher. Thus, in
the case of three philosophers nine graph transformation rules
philXforkY have to be defined; in general, n2 graph transfor-
mation rules for n philosophers are necessary. Additionally, to
specify that for every fork, exactly two philosophers may use
the fork, the specification of ((phil1forkX & phil1forkY) &
!(phil1forkZ)) is required for every combination of X, Y, and
Z. Consequently, the property in Groove grows rather large, even if we consider
only three philosophers:

19



(!((E F phil1fork1) & (E F phil1fork2) & (E F phil1fork3)) &
(((E F phil1fork1) & ((E F phil1fork2) | (E F phil1fork3))) |
((E F phil1fork2) & (E F phil1fork3)))) & (!((E F phil2fork1)
& (E F phil2fork2) & (E F phil2fork3)) & (((E F phil2fork1) &
((E F phil2fork2) | (E F phil2fork3))) | ((E F phil2fork2) & (E
F phil2fork3)))) & (!((E F phil3fork1) & (E F phil3fork2) & (E
F phil3fork3)) & (((E F phil3fork1) & ((E F phil3fork2) | (E F
phil3fork3))) | ((E F phil3fork2) & (E F phil3fork3))))

These small examples already illustrate the benefits of combining OCL with
temporal logics. Since our implementation is currently a prototypical proof of
concept, we do not achieve the same performance as Groove. Here, we identified
the following problems and possible solutions to overcome these issues. First,
the state space generation is slow and can be improved with more sophisticated
isomorphism checks and retrieval of mapping information. Second, there is room
for improvement in the evaluation of consecutive temporal operators, where we
plan to apply more advanced evaluation algorithms. And third, the OCL engine
imposes a bottleneck, and we are in the process of investigating if alternative
implementations of OCL are better suited for our demands. Overall, we are
convinced that it is possible to find solutions to these issues.

5 Related Work

One of the first to suggest a temporal extension to OCL were Conrad and Tur-
owski [4]. For describing the interactions of software components in a design
by contract manner they introduce an OCL extension that adds past and future
temporal operators. Their work targets only the specification of the component’s
correct interaction, not the verification. Distefano et al. [5] propose a CTL-based
logic, called BOTL, to specify static and dynamic properties of object-oriented
systems without inheritance and sub-typing. Instead of extending OCL, they
map OCL onto BOTL, thus providing a formal semantics for a large part of
OCL based on BOTL. Ziemann et al. [21] aim to extend the semantics of the
OCL standard with their proposed LTL-based extension, similar to our CTL
solution. They need to extend the environment τ by an additional index i that
points to the current state. Further, they analyze only finite sequences of states.
We are not aware of any implentation of this approach. Soden and Eichler [20]
also present an LTL based extension for OCL. They extend the semantics of
the OCL standard and, like Ziemann et al., they introduce an additional index
into the evaluation environment that captures the current time instant. They
suggest to define the operational semantics of MOF-conforming models with
the M3Action framework. This allows them to define a finite execution trace
by a sequence of changes from which the actual states are derived by applying
the changes in succession to the initial model up to the current state. Flake
and Mueller [8] aim at a tight integration of UML class diagrams, state charts,
and OCL, where the state charts describe the behavior of the associated class
diagrams. They use time-based traces to capture the evolution of the system

20



and propose a UML Profile to specify state-oriented, real-time invariants whose
semantics are defined by a mapping to clocked CTL formulas. In regard to ex-
pressiveness, Bradfield et al. [2] propose the richest extension by embedding OCL
into the observational µ-calculus. As noted by the authors this expressiveness
comes at the price of complexity inherent to specifications using the µ-calculus.
They thus suggest the use of predefined templates with concise semantics, but
which hide the complexity of the underlying µ-calculus formula that is automat-
ically generated from the template. We are not aware of any implementations
realizing the above approaches.

Mullins and Oarga [16] present an extension to OCL, called EOCL, that
augments OCL with CTL operators. They define EOCL’s operational seman-
tics over object-oriented transition systems. The SOCLe tool translates class,
state chart, and object diagrams into an abstract state machine and it checks
on-the-fly if the system satisfies the specification given as an EOCL expression.
Kyas et al. [15] present a prototype that verifies OCL properties over simplified
UML class diagrams whose behavior is described by state machines. In contrast
to all other approaches presented thus far they do not extend OCL with tem-
poral operators but rather translate class diagrams, state machines, and OCL
specifications into the input format of the PVS theorem prover. With PVS they
are able to prove OCL properties of infinite state systems. Similar to Bradfield
et al.’s proposed templates, Kanso and Taha [12] introduce a temporal exten-
sion based on Dwyer et al.’s patterns for the specification of properties for finite
state systems [6]. Although these patterns are not as expressive as their CTL,
LTL, or µ-calculus counterparts, they greatly simplify the property specification
process. Kanso and Taha define a scenario-based semantics for their extension,
where each scenario is a finite sequence of events.

It is thus the combination of our two contributions, a CTL-based extension
of OCL, whose formal syntax and semantics extend the OCL standard without
modifying existing definitions, and the implementation of the MocOCL model
checker, that distinguishes our approach from previous works.

6 Conclusion and Future Work

In this paper, we present syntax and semantics of cOCL, our OCL extension
with CTL-based temporal operators. Further, we describe the implementation
and technical feasibility of our MocOCL model checker5 that verifies cOCL spec-
ifications. With first showcases we illustrate that the combination of OCL and
CTL expressions allows for compact formulations of specifications.

In future work, we plan to improve our implementation in terms of efficiency
and usability. Work on a detailed performance analysis is currently in progress.
For dealing with the state explosion problem, symbolic model checking tech-
niques will be considered. Finally, we would like to apply our approach in the
context of larger V&V environments as for example in USE [9].
5 MocOCL is available at www.modelevolution.org/prototypes/cocl

21

www.modelevolution.org/prototypes/cocl


References

1. T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin: Ad-
vanced Concepts and Tools for In-Place EMF Model Transformations. In MoDELS,
volume 6394 of LNCS, pages 121–135. Springer, 2010.

2. J. C. Bradfield, J. K. Filipe, and P. Stevens. Enriching OCL Using Observational
Mu-Calculus. In FASE, volume 2306 of LNCS, pages 203–217. Springer, 2002.

3. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.
4. S. Conrad and K. Turowski. Temporal OCL Meeting Specification Demands for

Business Components. In UML’01, volume 2185 of LNCS, pages 151–165. Springer,
2001.

5. D. Distefano, J.-P. Katoen, and A. Rensink. On a Temporal Logic for Object-
Based Systems. In FMOODS, volume 177 of IFIP Conf. Proc., pages 285–304.
Springer, 2000.

6. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in Property Specifications
for Finite-State Verification. In ICSE, pages 411–420. ACM, 1999.

7. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

8. S. Flake and W. Müller. Formal semantics of static and temporal state-oriented
ocl constraints. Software and System Modeling, 2(3):164–186, 2003.

9. M. Gogolla, F. Büttner, and M. Richters. USE: A UML-based specification en-
vironment for validating UML and OCL. Sci. Comput. Program., 69(1-3):27–34,
2007.

10. O. M. Group. Object Constraint Language (OCL) V2.2. http://www.omg.org/
spec/OCL/2.2/, February 2010.

11. T. Jussila, J. Dubrovin, T. Junttila, T. L. Latvala, and I. Porres. Model Check-
ing Dynamic and Hierarchical UML State Machines. In Proc. MoDeV2a: Model
Development, Validation and Verification, pages 94–110, 2006.

12. B. Kanso and S. Taha. Temporal Constraint Support for OCL. In SLE, volume
7745 of LNCS, pages 83–103. Springer, 2012.

13. H. Kastenberg and A. Rensink. Model Checking Dynamic States in GROOVE. In
SPIN, volume 3925 of LNCS, pages 299–305. Springer, 2006.

14. A. Knapp and J. Wuttke. Model Checking of UML 2.0 Interactions. In MoDELS
Workshops, volume 4364 of LNCS, pages 42–51. Springer, 2006.

15. M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der Zwaag,
T. Arons, and H. Kugler. Formalizing UML Models and OCL Constraints in PVS.
Electr. Notes Theor. Comput. Sci., 115:39–47, 2005.

16. J. Mullins and R. Oarga. Model Checking of Extended OCL Constraints on UML
Models in SOCLe. In FMOODS, volume 4468 of LNCS, pages 59–75. Springer,
2007.

17. A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In
AGTIVE, volume 3062 of LNCS, pages 479–485. Springer, 2003.

18. M. Richters and M. Gogolla. Ocl: Syntax, semantics, and tools. In Object Modeling
with the OCL, volume 2263 of LNCS, pages 42–68. Springer, 2002.

19. B. Selic. What will it take? a view on adoption of model-based methods in practice.
Software & Systems Modeling, 11(4):513–526, 2012.

20. M. Soden and H. Eichler. Temporal Extensions of OCL Revisited. In ECMDA-FA,
volume 5562 of LNCS, pages 190–205. Springer, 2009.

21. P. Ziemann and M. Gogolla. OCL Extended with Temporal Logic. In Ershov
Memorial Conference, volume 2890 of LNCS, pages 351–357. Springer, 2003.

22

http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/

	OCL meets CTL: Towards CTL-Extended OCL Model Checking 



