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Abstract. Multi-label text classification deals with problems in which
each document is associated with a subset of categories. These documents
often consist of a large number of words, which can hinder the perfor-
mance of learning algorithms. Feature selection is a popular task to find
representative words and remove unimportant ones, which could speed
up learning and even improve learning performance. This work evalu-
ates eight feature selection algorithms in text benchmark datasets. The
best algorithms are subsequently compared with random feature selec-
tion and classifiers built using all features. Results agree with literature
by finding that well-known approaches, such as maximum chi-squared
scoring across all labels, are good choices to reduce text dimensionality
while reaching competitive multi-label classification performance.

Keywords: problem transformation, binary relevance, round-robin,
rand-robin, chi-squared, bi-normal separation

1 Introduction

Classical single-label learning deals with problems in which each dataset instance
(or example) is described by a set of features and associated with only one label
from a disjoint set of labels L. Single-label text classification (or text catego-
rization), for example, learns from data in which each document has a unique
category (topic) as label. If L = 2, this task is called binary text classification,
and it is called multi-class text classification if L > 2.

Although a large amount of research has been carried out on single-label
learning, the correspondent learning algorithms do not fit well into applications
composed of instances annotated with subsets of labels from L. Even in some
text categorization problems, each document is labeled with several topics si-
multaneously, such that the learning algorithm should tackle more than one la-
bel simultaneously to learn accordingly. Motivated by this scenario, multi-label
learning algorithms have been developed [32,26].
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Irrelevant and/or redundant features can hinder the performance of single-
label and multi-label learning algorithms due to the “curse of dimensional-
ity” [16]. Thus, the Feature Selection (FS) task is often applied before learning
to find features which describe the dataset as well as, or even better than, the
original set of features does, and remove the remaining ones. FS also speeds up
learning algorithms and sometimes improves their performance [34].

Research on multi-label feature selection is still scarce. For example, many
publications evaluate a number of FS algorithms in only a few multi-label
datasets. This work contributes to reduce this gap by comparing 8 FS methods
in 20 multi-label text classification datasets (9 from different sources and 11 from
a web page). The methods combine 2 feature evaluation measures, Chi-squared
(CS) and Bi-Normal Separation (BNS) [8], with 4 aggregation strategies to tackle
multiple labels [9], some of them still unexplored for multi-label datasets. Results
show that well-known approaches, such as considering the maximum CS score
of each feature across all labels, led to some of the best classification models.

The rest of this work is organized as follows: Section 2 briefly presents multi-
label learning, FS and related work. Section 3 describes the methods evaluated
in Section 4, which is followed by the conclusion and future work in Section 5.

2 Background

This section describes basic notations and concepts related to multi-label learn-
ing and feature selection. Related work in multi-label feature selection for textual
datasets is also considered.

2.1 Multi-label learning

Let D be a dataset composed of N examples Ei = (xi,Yi), i = 1..N . Each
example (instance) Ei is associated with a feature vector xi = (xi1, xi2, . . . , xiM )
described by M features (attributes) Xj , j = 1..M , and a subset of labels Yi ⊆ L,
where L = {y1, y2, . . . yq} is the set of q labels. Table 1 shows this representation.
In this scenario, the multi-label learning task consists in generating a model H
which, given an unseen instance E = (x, ?), is capable of accurately predicting
its subset of labels Y , i.e., H(E)→ Y .

Table 1. Multi-label data.

X1 X2 . . . XM Y

E1 x11 x12 . . . x1M Y1

E2 x21 x22 . . . x2M Y2
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Multi-label learning methods can be organized into two main categories:
algorithm adaptation and problem transformation [26]. The former one includes
learning algorithms extended to deal with multi-label data directly, such as the
Multi-label Naive Bayes algorithm [33]. On the other hand, the latter category
consists of algorithm independent methods, as any state of the art single-label
learning method can learn from each single-label problem generated by these
methods. The Binary Relevance (BR) approach exemplifies this category by
transforming a multi-label dataset into q single-label datasets, learning from
each single-label problem separately and combining the results.

Furthermore, exploiting label dependence during learning can improve per-
formance [4]. An alternative categorization organizes multi-label learning meth-
ods based on the order of label correlations taken into account [32]. First-order
strategies ignore co-existence of other labels during learning, as BR does. Second-
order strategies, exemplified by Calibrated Label [10], consider pairwise relations
between labels. High-order strategies, such as Random k-labelsets [28], consider
relations among more labels.

Although high-order strategies potentially model wider label correlations,
they are usually computationally more demanding. In this work, the problem
transformation/first-order strategy BR is used for classification.

2.2 Feature selection

FS for multi-label text datasets often applies single-label feature evaluation mea-
sures, i.e., measures to score the quality of features, after using problem transfor-
mation approaches, such as BR [6,31]. Moreover, these measures usually follow
the filter approach [16]. Unlike the wrapper and embedded approaches, filters re-
move irrelevant and/or redundant features regardless of the learning algorithm,
which can save computational resources when working with large datasets. Both
FS measures used in this work agree with these popular choices.

CS and BNS share the same notation [8]. Let tp, fp, fn and tn be the number
of (feature) true positives, false positives, false negatives and true negatives in
a binary dataset. In this scenario, tp counts when a feature and a label under
evaluation co-occur, i.e., both are positive, while fp counts the cases in which
only the feature is positive. Defining the remaining notations is straightforward.

Chi-squared estimates the independence between the occurrence of a feature
Xj and the occurrence of a label yi, such that the higher the measure value,
the more related Xj and yi are. CS is defined by Equation 1, where Ppos =
(tp + fn)/(tp + fp + fn + tn), Pneg = (fp + tn)/(tp + fp + fn + tn) and
t(count,expect) = (count− expect)2/expect.

CS(tp,fp,fn,tn) = t (tp, (tp + fp)Ppos) + t (fn, (fn + tn)Ppos) +

t (fp, (tp + fp)Pneg) + t (tn, (fn + tn)Pneg) . (1)

Bi-Normal Separation measures the separation between two thresholds (pos-
itive and negative classes) in a Gaussian function. This measure models the
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occurrence of a feature Xj in the documents as a random Normal variable ex-
ceeding a hypothetical threshold, such that the frequency of Xj corresponds
to the area under the curve past the threshold. As defined by Equation 2, the
higher the difference between the thresholds, the better the feature Xj is. Let
F−1 be the standard Normal distribution inverse cumulative probability function
(z-score), tpr = tp/(tp + fn) and fpr = fp/(fp + tn).

BNS(tp,fp,fn,tn) = |F−1(tpr)− F−1(fpr)|. (2)

2.3 Related work

FS has been an active research topic in supervised learning, with several related
publications and comprehensive surveys [34,26,16]. Most of this research has
been mainly proposed to support single-label classification, but there are also
many publications on feature selection for multi-label text classification.

The systematic review process, a method to perform a wide, replicable and
rigorous literature review, was carried out in [22] and recently updated to search
for multi-label FS publications. Most of the methods found are filters, which
are useful to save time/space when working with large textual datasets. Table 2
summarizes some publications on filter FS. As mentioned, many publications use
only few datasets to evaluate their methods. Moreover, Information Gain (IG)
and CS, two potentially related measures [31], are the most usual ones.

Table 2. Multi-label filter feature selection publications.

Paper
Number of

Feature evaluation measure
datasets used

[31] 2 IG, CS, document frequency, term strength and mutual information
[24] 2 IG
[18] 1 CS
[15] 1 CS
[35] 1 IG, CS, correlation coefficient, odds ratio, odds ratio-square and signed IG
[20] 1 IG, CS and document frequency
[3] 2 IG, CS and orthogonal centroid feature selection
[19] 1 conditional mutual information
[21] 1 minimal redundancy maximal relevance
[28] 3 CS
[2] 1 mutual information
[17] 1 BNS
[29] 5 Hilbert-Schmidt independence criterion
[6] 6 IG
[13] 8 symmetrical uncertainty
[14] 3 mutual information
[23] 10 IG and ReliefF

3 Multi-label feature selection methods

After transforming a multi-label dataset into q binary datasets by BR and count-
ing the number of (feature) true/false positives/negatives, any feature evalua-
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tion measure for binary data can be applied according to the macro-averaged
approach [15], exemplified in [23,25,28,20].

In what follows, four aggregation strategies are described. Let tpyi , fpyi , tnyi

and fnyi be the number of (feature) true/false positives/negatives for a label yi,
i = 1..q and a feature Xj , j = 1..M .

The well-known Mean strategy (Mean) [31] averages the scores obtained after
applying the measure fe in the binary dataset related to each label yi (Equa-
tion 3). Max (Max), which returns the maximum score obtained across all labels
(Equation 4), is also popular.

Mean(Xj) =
1

q

q∑
i=1

fe (tpyi ,fpyi ,tnyi ,fnyi) . (3)

Max(Xj) =
q

max
i=1

fe (tpyi ,fpyi ,tnyi ,fnyi) . (4)

A finding that some feature evaluation measures can be blinded by a surplus
of strongly predictive features for frequent labels, while largely ignoring features
needed to discriminate hard (low frequency) labels, motivated the proposal of
Round-Robin (RoR) and Rand-Robin (RaR) [9]. After calculating q feature rank-
ings, the former variation takes the best feature in the ranking related to each
label in turn. On the other hand, the latter one takes the best feature for a label
randomly chosen with probability inversely proportional to its frequency. Each
feature taken in turn is removed from the q feature rankings.

Algorithm 3.1 suggests a generic implementation for all the strategies, which
can be optimized according to each one for code optimization. In what follows,
the main procedures and variables of this algorithm are described.

Textual data is often represented as sparse data, as not all features (words)
will occur in every instance (document). This property is considered by the
procedure invertedIndexes (Line 2) for countings. As result, there are M + q
rows, such that each row consists in the inverted indexes linking a feature or a
label to the instances they occur. Thus, a (feature) true positive is verified every
time a feature and a label co-occur in the same instance (Line 7). Based on the
number of inverted indexes, i.e., the frequency of each feature or label, fp, fn
and tn are easily set. Then the score calculated by a feature evaluation measure
fe (Line 15) is set to the matrix of feature rankings FRM .

Algorithm 3.1 ends with the application of one of the strategies in Line 19.
It should be emphasized that the Equations 3 and 4 would use the matrix FRM
instead of reapplying the feature evaluation measure fe.

Algorithm 3.1 implementation can support parallelization and serialization,
enabling user to save time/space in large datasets. First, the algorithm is split
into several independent tasks, which is helpful to successful parallelization [11].
Second, serialization is considered to enable the algorithm to save a stream of
bytes in the disk and load it back when necessary, releasing space in memory.
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Algorithm 3.1 Generic implementation for the aggregation strategies

Input: Multi-label dataset D
Output: Feature ranking FR
1: Initialize tp and FRM
2: {invertedFeatureIndexes,invertedLabelIndexes} ← invertedIndexes(D)
3: for each label of invertedLabelIndexes do
4: for each feature of invertedFeatureIndexes do
5: for each invertedIndexF of feature do
6: for each invertedIndexL of label do
7: if invertedIndexF = invertedIndexL then
8: tp← tp + 1
9: end if

10: end for
11: end for
12: fp← numberIndexes(feature)− tp
13: fn← numberIndexes(label)− tp
14: tn← N − (tp + fp + fn)
15: FRM [label][feature]← fe(tp,fp,fn,tn)
16: Reinitialize tp
17: end for
18: end for
19: FR← aggregationStrategy(FRM)
20: return FR

4 Experimental evaluation

In this work, 8 text FS methods (2 feature evaluation measures×4 strategies)
are applied in 20 benchmark datasets. The best methods are after compared with
the classifiers built using All Features (AF) and using the features selected by
Random Feature Selection (RFS) [8]. The RaR strategy and RFS were executed
three times due to their stochasticity, and the correspondent Micro F-Measure
values from RaR and RFS were averaged before calculating the average ranking.

Some implemented procedures use Weka [30] and LIBLINEAR [7] resources.
All the reported classification results were obtained by Mulan [27], a framework
for multi-label classification, using 10-fold cross-validation with paired folds.

4.1 Datasets and experimental setup

Table 3 shows, for each dataset, its name the number of instances (N), features
(M) and labels (q), the label cardinality (LC), which is the average number of
labels associated with each example, the label density (LD), which is a normal-
ized version of LC divided by the total number of labels, and the number of
distinct combinations (DC) of labels. The datasets were obtained from Mulan3

and Meka4 repositories.

3http://mulan.sourceforge.net/datasets.html
4http://meka.sourceforge.net/#datasets

http://mulan.sourceforge.net/datasets.html
http://meka.sourceforge.net/#datasets
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Table 3. Benchmark datasets used.

Name N M q LC LD DC

arts3 7484 23146 26 1.65 0.06 599
bibtex3 7395 1836 159 2.40 0.02 2856
bookmarks3 87856 2150 208 2.03 0.01 18716
business3 11214 21924 30 1.60 0.05 233
computers3 12444 34096 33 1.51 0.05 428
delicious3 16105 500 983 19.02 0.02 15806
education3 12030 27534 33 1.46 0.04 511
enron3 1702 1001 53 5.31 0.06 753
entertainment3 12730 32001 21 1.41 0.07 337
health3 9205 30605 32 1.64 0.05 335
medical3 978 1449 45 1.25 0.03 94
language log4 13929 1002 23 1.66 0.07 1147
rcv1v2 (subset1)3 6000 47236 101 2.88 0.03 1028
recreation3 12828 30324 22 1.43 0.06 530
reference3 8027 39679 33 1.17 0.04 275
science3 6428 37187 40 1.45 0.04 457
social3 12111 52350 39 1.28 0.03 361
society3 14512 31802 27 1.67 0.06 1054
slashdot4 3782 1079 22 1.18 0.05 156
tmc2007-5003 28596 500 22 2.21 0.10 1341

After applying each FS method in a dataset, the BR + Linear SVM (BRLL)
method, efficient to classify large sparse datasets [7], was used. BRLL classifiers
were built from data described by the best t features found by a FS method,
in which t = 10%, 20%, . . . , 90% of the number of features M . The learning
algorithm was executed with SVM C = 3, tolerance of stopping criterion e =
0.001 and remaining parameters with default values5.

All classification models built were evaluated according to Micro F-
Measure [26]. This evaluation measure, defined by Equation 5, has values in
the interval [0..1] and the higher its value, the better the multi-label classifier
performance is. Let TPyi

, FPyi
, TNyi

and FNyi
be, respectively, the number of

true/false positives/negatives for a label yj from the set of labels L.

MicroF -Measure(H,D) =
2
∑q

j=1 TPyj

2
∑q

j=1 TPyj
+

∑q
j=1 FPyj

+
∑q

j=1 FNyj

. (5)

4.2 Results and discussion

The micro F-measure of the 8 feature selection methods at the 9 percentages
of selected features for each one of the 20 datasets are available in an online
appendix6. Following the recommendations in [5], we will here compare different
feature selection approaches at specific percentages of selected features based on
their average rankings across all datasets.

We first discuss the relative performance of the 4 aggregation strategies (Max,
Mean, RoR, RaR) for each feature evaluation measure (CS, BNS) separately.

5Solvers in LIBLINEAR are insensitive to C.
6http://tiny.cc/e0ke3w

http://tiny.cc/e0ke3w


8

Table 4 shows the mean and standard deviation of the ranking of the 4 aggre-
gation strategies (columns) at the 9 different percentages of selected features
(rows) across all datasets for BNS (left) and CS (right). The best (lowest) av-
erage ranking for each evaluation measure and percentage of selected features is
highlighted in bold. Figure 1 presents the same values as graphs of the average
ranking (y-axis) with respect to the percentage of selected features (x-axis) for
BNS (left) and CS (right).

Table 4. Mean and standard deviation of the ranking of the 4 aggregation strategies
(columns) at the 9 different percentages of selected features (rows) across all datasets
for BNS (left) and CS (right).

t MaxBNS MeanBNS RoRBNS RaRBNS MaxCS MeanCS RoRCS RaRCS

10% 2.00 (0.7) 1.95 (1.4) 3.15 (0.8) 2.90 (1.0) 2.50 (1.0) 1.40 (0.8) 3.10 (0.9) 3.00 (1.0)

20% 2.10 (0.8) 2.05 (1.4) 3.05 (1.0) 2.80 (1.0) 2.50 (0.9) 1.65 (1.1) 2.80 (1.1) 3.05 (1.0)

30% 2.10 (1.0) 2.10 (1.4) 3.15 (0.9) 2.65 (0.9) 2.30 (1.0) 1.90 (1.2) 2.80 (1.0) 3.00 (1.0)

40% 2.40 (1.1) 2.15 (1.4) 3.10 (1.0) 2.35 (0.8) 2.25 (1.0) 1.95 (1.2) 2.50 (1.0) 3.30 (1.0)

50% 2.40 (1.1) 2.30 (1.5) 2.95 (1.1) 2.35 (0.7) 2.00 (0.8) 2.20 (1.3) 2.80 (1.1) 3.00 (1.0)

60% 2.50 (1.1) 2.50 (1.3) 2.95 (0.9) 2.05 (1.1) 1.90 (1.1) 2.15 (1.0) 2.60 (0.9) 3.35 (1.0)

70% 2.65 (1.4) 2.68 (1.3) 2.48 (0.9) 2.20 (0.8) 2.00 (1.0) 2.20 (1.0) 2.80 (1.0) 3.00 (1.2)

80% 2.80 (1.1) 2.55 (1.4) 2.50 (1.2) 2.15 (0.8) 2.25 (1.2) 2.35 (1.0) 2.65 (1.2) 2.75 (1.1)

90% 2.90 (1.1) 2.40 (1.2) 2.30 (1.1) 2.40 (1.1) 2.10 (1.2) 2.70 (0.9) 2.65 (1.2) 2.55 (1.2)
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Fig. 1. Average rankings of the eight methods.

We notice that for both CS and BNS the Mean aggregation performs best
when the percentage of features is low (up to 50% for BNS and 40% for CS). For
larger percentages of features RaR (and RoR in the case of 90%) performs best
for BNS, while Max performs best for CS. Recall that for each feature, Mean
averages the scores across all labels, while Max, RoR and RaR are based on a
single label. Therefore, at lower number of features, it is probably the case that
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Max, RoR and RaR are not considering enough features for some of the labels
in contrast to Mean. As the percentage of selected features increases, Max, RoR
and Rar manage to select enough features for all labels and outweigh Mean,
which is selecting features that work well for all labels on average.

The finding that Mean and Max lead to good classification models agrees
with earlier publications which combine them with different feature evaluation
measures, such as ReliefF and IG [23], CS [25,28,20] and mutual information [31].

We now focus on methods that in the previous comparison achieved the
best average ranking for more than one percentage of selected features. These
are: MeanBNS, RaRBNS, MaxCS and MeanCS. We will discuss the relative
performance of these methods along with the baselines of using All Features
(AF) and Random Feature Selection (RFS). Table 5 shows the corresponding
average rankings and standard deviations. Note that the performance of AF is
the same independently of the percentage of selected features, yet its relative
ranking with respect to competing methods can and does differ.

Table 5. Mean and standard deviation of the ranking of MeanBNS, RaRBNS, MaxCS,
MeanCS, RFS and AF (columns) at the 9 different percentages of selected features
(rows) across all datasets.

t MeanBNS RaRBNS MaxCS MeanCS RFS AF (t = 100%)

10% 3.60 (1.4) 4.15 (1.2) 3.10 (0.9) 2.25 (1.1) 5.35 (1.1) 2.55 (2.2)

20% 3.60 (1.4) 4.05 (1.3) 2.75 (1.2) 1.95 (1.0) 5.40 (1.1) 3.25 (2.0)

30% 3.35 (1.0) 4.05 (1.4) 2.45 (1.5) 2.15 (1.1) 5.40 (1.1) 3.60 (1.9)

40% 3.30 (1.2) 3.80 (1.3) 2.15 (1.2) 2.15 (1.3) 5.45 (1.1) 4.15 (1.6)

50% 3.50 (1.4) 3.55 (1.2) 2.00 (1.0) 2.00 (1.1) 5.45 (1.1) 4.50 (1.4)

60% 3.55 (1.2) 3.20 (1.2) 1.80 (1.1) 2.25 (1.1) 5.45 (1.1) 4.75 (1.3)

70% 3.25 (1.3) 2.85 (1.0) 2.15 (1.2) 2.40 (1.4) 5.45 (1.1) 4.90 (1.1)

80% 3.35 (1.4) 2.75 (1.2) 2.25 (1.3) 2.30 (1.1) 5.50 (1.0) 4.85 (1.2)

90% 3.38 (1.5) 2.90 (1.5) 2.15 (1.5) 2.78 (1.0) 5.55 (0.8) 4.25 (1.5)

We notice that the best (lowest) average ranking is achieved by Max and
Mean combined with CS. Besides obtaining better ranking than RFS, they also
outperform AF, fulfilling the requirements of any reasonable feature selection
method. CS, which behaves erratically for very small expected counts common
in text classification, was found worse than BNS for single-label classification [8].
However, we here see that this scenario is reversed in the case of multi-label
classification. The strategies Mean and Max seem to mitigate the disadvantage
of CS. This could be because they consider more than one label, with different
expected counts, when evaluating features.

We complete the comparison of the 8 feature selection methods by analyzing
the similarity of the feature subsets that are selected by each method. In par-
ticular, we calculate a similarity index between each pair of methods [12]. This
could be useful, for example, to identify diverse feature selection methods for
constructing ensembles [1]. In this analysis, only one run of RaR is considered.
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For the sake of saving space, Table 6 shows the similarity values averaged across
all datasets at a specific percentage of features (t = 50%), highlighting similarity
values larger than 0.7 with bold typeface. Nevertheless, the patterns found also
occur for other percentage of selected features.

Table 6. Similarity values of the feature subsets yielded by eight FS algorithms.

MaxBNS MeanBNS RoRBNS RaRBNS MaxCS MeanCS RoRCS RaRCS

BNS

Max 0.22 0.75 0.72 0.55 0.56 0.47 0.40

Mean 0.22 0.15 0.17 0.33 0.42 0.23 0.14

RoR 0.75 0.15 0.82 0.48 0.47 0.44 0.48

RaR 0.72 0.17 0.82 0.47 0.49 0.44 0.40

CS

Max 0.55 0.33 0.48 0.47 0.73 0.71 0.53

Mean 0.56 0.42 0.47 0.49 0.73 0.55 0.44

RoR 0.47 0.23 0.44 0.44 0.71 0.55 0.76

RaR 0.40 0.14 0.48 0.40 0.53 0.44 0.76

We first notice that CS methods are quite different from BNS methods, as one
would expect. Within BNS methods, we see that MeanBNS selects quite different
feature subsets from the ones found by the other BNS methods, which in turn
select relatively similar feature subsets. Within CS methods, we see 3 pairs of
methods selecting similar features: RaR/RoR, Mean/Max and Mean/RoR.

5 Conclusion

This work evaluated 8 FS methods to support multi-label text classification in
20 benchmark datasets. They are based on 2 feature evaluation measures and
4 strategies to consider label information while evaluating features. The best
methods from this group also highlighted in an experimental comparison with
the classifiers built using all features and using features randomly selected.

The popular algorithms MeanCS and MaxCS, which respectively rank fea-
tures according to the average or the maximum Chi-squared score across all
labels, led to most of the best classifiers while using less features. The former
was the best choice when the number of features was smaller. As the number of
features increased, the latter yielded the best classifiers.

Future work will apply some of the best FS methods and their optimized
implementation to rank features in large textual datasets. Furthermore, we plan
to evaluate efficient FS methods which are able to consider label information in
a higher level than the one considered by MeanCS and MaxCS [32].
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