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Abstract. We propose a scheme for explicitly modeling and represent-
ing negation of word n-grams in an augmented word n-gram feature
space. For the purpose of negation scope detection, we compare 2 meth-
ods: the simpler regular expression-based NegEx, and the more sophisti-
cated Conditional Random Field-based LingScope. Additionally, we cap-
ture negation implicitly via word bi- and trigrams. We analyze the impact
of explicit and implicit negation modeling as well as their combination on
several data-driven machine learning-based sentiment analysis subtasks,
i.e. document-level polarity classification, both in- and cross-domain, and
sentence-level polarity classification. In all subtasks, explicitly modeling
negation yields statistically significant better results than not modeling
negation or modeling it only implicitly.
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1 Introduction

Negations as in example (1)

(1) Don’t ask me!

are at the core of human language. Hence, negations are commonly encountered
in natural language processing (NLP) tasks, e.g. textual entailment [1, 2]. In
sentiment analysis (SA), negation plays a special role [3]: Whereas example (2)
expresses positive sentiment, the only slightly different example (3) expresses
negative sentiment.

(2) They are 〈comfortable to wear〉+.

(3) They are 〈not 〈comfortable to wear〉+〉−.1

1 In this work, struck out words are considered as negated.



Therefore, negations are frequently treated in compositional semantic approaches
to SA [4–8], as well as in bag of words-based machine learning (ML) techniques
[9, 10].

Research on negation scopes (NSs) and negation scope detection (NSD) was
primarily driven by biomedical NLP, particularly research on the detection of
absence or presence of certain diseases in biomedical text. One of the most
prominent studies in this field is [11], that identifies negation words and their
scope using a variety of ML techniques and features. Only quite recently, the
impact of NSD on SA became of increasing interest: [12–14] detect NSs using
parse trees, typed dependencies, semantic role labeling and/or manually defined
negation words. [15] compare several baselines for NSD, e.g. they consider as
NS the rest of the sentence following a negation word, or a fixed window of 1
to 4 words following, preceding or around a negation word. [16, 17] study NSD
based on Conditional Random Fields (CRFs). All these studies concur in their
conclusion that SA, or more precisely polarity classification, benefits from NSD.

We model NSs in word n-gram feature space systematically and adopt recent
advances in NSD. We believe this endeavor is worthwhile, as this allows machines
to learn by themselves how negations modify the meaning of words, instead of
being taught by manually defined and often ad hoc rules. Our work focuses
on data-driven ML-based models for SA that operate in word n-gram feature
space and do not rely on lexical resources, e.g. prior polarity dictionaries like
SentiWordNet [18]. While various methods and features have been proposed for
SA, such data-driven word n-gram models proved to be still competitive in many
recent studies [19–21].

This paper is structured as follows: In the next section we describe our ap-
proach to modeling and representing negation in data-driven ML-based SA. In
Sect. 3 we evaluate our approach in experiments for several SA subtasks and dis-
cuss their results. Finally, we draw conclusions and point out possible directions
for future work in Sect. 4.

2 Negation Modeling

We now describe our approach to implicitly and explicitly modeling and rep-
resenting negation in word n-gram feature space for data-driven ML-based SA.
When explicitly modeling negation, we incorporate our knowledge of negation
into the model; when implicitly modeling negation, we do not.

2.1 Implicit Negation Modeling

As pointed out in [3], negations are often implicitly modeled via higher order
word n-grams, e.g. bigrams (“n’t return”), trigrams (“lack of padding”), tetra-
grams2 (“denied sending wrong size”) etc. That aside, higher order word n-grams
also implicitly capture other linguistic phenomena, e.g. comparatives (“larger
than”, “too much”).

2 Tetragrams are also referred to as quad-, four- or 4-grams.



2.2 Explicit Negation Modeling

Although it is convenient, there is a drawback to solely relying on higher order
word n-grams when trying to capture negations: Long NSs as in example (4)
occur frequently (cf. Sect. 3.3), but typically word n-grams (n < 5) are not able
to properly capture them.

(4) The leather straps have never worn out or broken.

Here, a word trigram captures “never worn out” but not “never [..] broken”.
While a word 5-gram is able to capture “never [..] broken”, learning models using
word n-gram features with n ≥ 3 usually leads to very sparse representations,
depending on how much training data is available and how homogeneous [22]
this training data is. In such cases, learning from the training data what a certain
higher order word n-gram contributes to the model is then backed up by only
very little to almost none empirical findings. Therefore, we model negations also
explicitly.

Negation Scope Detection Vital to explicit negation modeling is NSD. E.g.,
in example (5), we need to detect that “stand up to laundering very well” is in
the scope of “don’t”.

(5) They don’t stand up to laundering very well, in that they shrink up quite a
bit.

For that purpose, we employ NegEx3 [23], a simpler regular expression-based
NSD and LingScope4 [24], a more sophisticated CRF-based NSD trained on the
BioScope corpus [25]. NegEx was chosen as a strong baseline: its detected NSs are
similar to a weak baseline NSD method frequently used [9, 10]: consider all words
following a negation word as negated, up to the next punctuation. LingScope
was chosen to represent the state-of-the-art in NSD. Additionally, both NegEx
and LingScope are publicly available.

To improve NSD, we expand contractions like “can’t” to “can not”, “didn’t”
to “did not” etc. Please note that while NegEx considers the negation itself to
be part of the NS, we do not. NegEx’s NSs are adjusted accordingly.

Representation in Feature Space Once NSs are detected, negated and non-
negated word n-grams need to be explicitly represented in feature space. There-
fore, we resort to a representation inspired by [9], who create a new feature NOT f

when feature f is preceded by a negation word, e.g. “not” or “isn’t”.
Let W = {wi}, i = 1, . . . , d be our word n-grams and let X = {0, 1}d be

our word n-gram feature space of size d, where for xj ∈ X , xjk = 1 denotes
the presence of wk and xjk = 0 denotes its absence. For each feature xjk we
introduce an additional feature x̆jk that encodes whether wk appears negated
(x̆jk = 1) or non-negated (x̆jk = 0). Thus, we obtain an augmented feature space

X̆ = {0, 1}2d. In X̆ we are now able to represent whether a word n-gram

3 http://code.google.com/p/negex/
4 http://sourceforge.net/projects/lingscope/



Table 1. Representation of example (5) in X̆ as described in Sect. 5.

bit don’t down laundering quite shrink stand up/up very well

[1, 0 1, 0 0, 0 0, 1 1, 0 1, 0 0, 1 1, 1 0, 1 0, 1]

– w is present (encoded as [1, 0]),
– w is absent ([0, 0]),
– w is present and negated ([0, 1]) or
– w is present both negated and non-negated ([1, 1]).

Representing an Example Assume we employ näıve tokenization that simply
splits at white spaces, ignore punctuation characters like “.” and “,” and extract
the presence and absence of the word unigramsWuni = {“bit”, “don’t”, “down”,
“laundering”, “quite”, “shrink”, “stand”, “up”, “very”, “well”}, i.e. Wuni is our
vocabulary. Representing example (5) in X̆ results then in a stylized feature
vector as shown in Table 1.

Note the difference between “laundering” and “up”. While “laundering” is
present only once and is negated and thus is represented as [0, 1], “up” is present
twice—once negated and once non-negated—and thus is represented as [1, 1].

3 Evaluation

We evaluate our negation modeling approach in 3 common SA subtasks: in-
domain document-level polarity classification, cross-domain document-level po-
larity classification (cf. Sect. 3.1) and sentence-level polarity classification (cf.
Sect. 3.2).

Our setup for all experiments is as follows: For sentence segmentation and to-
kenization we use OpenNLP5. As classifiers we employ Support Vector Machines
(SVMs) in their LibSVM implementation6 using a linear kernel with their cost
factor C set to 2.0 without any further optimization. SVMs were chosen because
(i) it has been shown previously that they exhibit superior classification power
in polarity classification experiments [9] and therefore (ii) nowadays SVMs are
a common choice for SA classification subtasks and text classification in general
[26].

As features we use word uni-, bi- and trigrams extracted from the data7.
Word bi- and trigrams model negation implicitly as described in Sect. 2.1. We

5 http://opennlp.apache.org
6 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
7 We also experimented with word tetragrams, but found that they do not contribute

to the models’ discriminative power. This is not surprising, as in all used data sets
most word tetragrams appear only once. The word tetragram distribution’s relative
entropy [27], is greater than 0.99, i.e. here word tetragrams are almost uniformly
distributed.



perform no feature selection—neither stop words nor punctuation characters are
removed because we do not make any assumption about which word n-grams
carry sentiment and which do not. Additionally, we explicitly model the negation
of these word uni-, bi- and trigrams as described in Sect. 2.2. This is different
from [9]’s approach, who “[..] consider bigrams (and n-grams in general) to be an
orthogonal way to incorporate context.”. Explicitly modeling negation of higher
order word n-grams allows for learning that there is a difference between “doesn’t
work well” and “doesn’t work” in examples (6) and (7)

(6) The stand doesn’t work well.

(7) The stand doesn’t work.

just as an ordinary word {uni, bi}-gram model allows for learning the difference
between “work” and “work well”.

The in-domain document-level and sentence-level polarity classification ex-
periments are construed as 10-fold cross validations. As performance measure
we report accuracy A to be comparable to other studies (cf. Sect. 3.4). The level
of statistical significance is determined by stratified shuffling, an approximate
randomization test [28] run with 220 = 1, 048, 576 iterations as recommended
by [29]. The level of statistically significant difference to the corresponding base
model without negation modeling is indicated by ?? (p < 0.005) and ? (p < 0.05).

3.1 Document-level Polarity Classification

As gold standard for in- and cross-domain document-level polarity classification
we use [30]’s Multi-domain Sentiment Dataset v2.08 (MDSD v2.0), that contains
star-rated product reviews of various domains. We chose 10 domains: apparel,
books, dvd, electronics, health & personal care, kitchen & housewares, music,
sports & outdoors, toys & games and video. Those are exactly the domains
for which a pre-selected, balanced amount of 1,000 positive and 1,000 negative
reviews is available. [30] consider reviews with more than 3 stars positive, and
less than 3 stars negative—they omit 3-star reviews; so do we.

In-domain The evaluation results of our in-domain document-level polarity
classification experiments averaged over all 10 domains are shown in Table 2.

A word {uni, bi}-gram base model, LingScope for NSD and explicitly model-
ing negations for word {uni, bi}-grams yields the best overall result (A = 81.93).
This result is statistically significant different (p < 0.005) from the result the cor-
responding base model achieves using word {uni, bi}-grams alone (A = 81.37).

Cross-domain In our cross-domain experiments, for all 10!/(10-2)! = 90 source
domain–target domain pairs, there are 2,000 labeled source domain instances
(1,000 positive and 1,000 negative) and 200 labeled target domain instances (100

8 http://www.cs.jhu.edu/~mdredze/datasets/sentiment/



Table 2. Accuracies for in-domain document-level polarity classifications, averaged
over 10 domains from MDSD v2.0.

Base model NSD method Explicit negation modeling for
{uni} {uni, bi} {uni, bi, tri}

{uni}
none 78.77
LingScope 80.06 ? ?
NegEx 79.57?

{uni, bi}
none 81.37
LingScope 81.73 81.93 ? ?
NegEx 81.53 81.58

{uni, bi, tri}
none 81.27
LingScope 81.65? 81.55 81.59?
NegEx 81.28 81.3 81.28

positive and 100 negative) available for training, 1,800 labeled target domain
instances (900 positive and 900 negative) are used for testing. This is a typical
semi-supervised domain adaptation setting. If required by the method the same
amount of unlabeled target domain instances is available for training as there
are labeled source domain instances: 2,000.

We employ 3 methods for cross-domain polarity classification, Instance Se-
lection (IS) [31], “All” and EasyAdapt++ (EA++) [32]. While “All” simply
uses all available labeled source and target domain training instances for train-
ing, EA++ additionally uses unlabeled target domain instances and operates
via feature space augmentation and co-regularization [33]. IS selects source do-
main training instances that are most likely to be informative based on domain
similarity and domain complexity of source and target domain.

Table 3 shows the evaluation results for “All”. Due to space restrictions,
we only present the best results for IS and EA++. Full evaluation results are
available at the authors’ website9.

For “All”, just like for in-domain polarity classification, a word {uni, bi}-gram
base model, LingScope for NSD and explicitly modeling negations for word {uni,
bi}-grams yields the best overall result (A = 77.31, p < 0.005). The same applies
to IS (A = 77.71, p < 0.005). For EA++, a word {uni, bi}-gram base model,
NegEx for NSD and explicitly modeling negations for word unigrams yields the
best overall result (A = 77.5, p < 0.005). A word {uni, bi, tri}-gram base
model, LingScope for NSD and explicitly modeling negations for word unigrams
performs almost as good and yields A = 77.48 (p < 0.005).

9 http://asv.informatik.uni-leipzig.de/staff/Robert_Remus



Table 3. Accuracies for cross-domain document-level polarity classification (“All”),
averaged over 90 domain-pairs from MDSD v2.0.

Base model NSD method Explicit negation modeling for
{uni} {uni, bi} {uni, bi, tri}

{uni}
none 74.25
LingScope 75.46 ? ?
NegEx 75.35 ? ?

{uni, bi}
none 76.61
LingScope 77.23 ? ? 77.31 ? ?
NegEx 77.18 ? ? 77.13 ? ?

{uni, bi, tri}
none 76.44
LingScope 77.01 ? ? 77.13 ? ? 77.12 ? ?
NegEx 76.97 ? ? 76.83 ? ? 76.81 ? ?

Table 4. Accuracies for sentence-level polarity classification of SPD v1.0.

Base model NSD method Explicit negation modeling for
{uni} {uni, bi} {uni, bi, tri}

{uni}
none 74.56
LingScope 75.85 ? ?
NegEx 75.08

{uni, bi}
none 77.69
LingScope 77.93 77.55
NegEx 77.72 77.36

{uni, bi, tri}
none 77.62
LingScope 77.85 77.99 78.01?
NegEx 77.71 77.23 77.36

3.2 Sentence-level Polarity Classification

As gold standard for sentence-level polarity classification we use [34]’s sentence
polarity dataset v1.010 (SPD v1.0), that contains 10,662 sentences from movie
reviews annotated for their polarity (5,331 positive and 5,331 negative).

Evaluation results are shown in Table 4. Here, a word {uni, bi, tri}-gram base
model, LingScope for NSD and explicitly modeling negations for word {uni, bi,
tri}-grams yields the best result (A = 78.01, p < 0.05).

3.3 Discussion

Intuitively, explicit negation modeling benefits from high quality NSD: The more
accurate the NSD, the more accurate the explicit negation modeling. This intu-
ition is met by our results. As shown by [24], LingScope is often more accurate

10 http://www.cs.cornell.edu/people/pabo/movie-review-data/



Table 5. Evaluation results of LingScope and NegEx on SPD v1.0.

NSD method Precision Recall F-Score

LingScope 0.696 0.656 0.675
NegEx 0.407 0.5 0.449

Table 6. Negation scope statistics. # number of NSs, #̄ average number of NSs per
document/sentence, w/ percentage of documents/sentences with detected NSs, l̄ aver-
age NS length in tokens, l = 1, 2, 3,≥ 4 distribution of NSs of the according length.

Data set NSD # #̄ w/ l̄ l = 1 l = 2 l = 3 l ≥ 4

MDSD v2.0
LingScope 3,187.5 1.6 67.4% 6.6 1.4% 13.5% 12.7% 72.5%
NegEx 2,971.2 1.5 67.3% 10.7 1.8% 6.6% 8.4% 83.2%

SPD v1.0
LingScope 2,339 0.2 20.5% 6.8 2.2% 9.8% 13.8% 74.2%
NegEx 2,085 0.2 19.6% 12.1 1.9% 3.8% 5.9% 88.3%

than NegEx on biomedical data. This also applies to review data: We evaluated
LingScope and NegEx on 500 sentences that were randomly extracted from SPD
v1.0 and annotated for their NSs. Table 5 shows the results: LingScope clearly
outperforms NegEx with respect to precision and recall. So although BioScope’s
genre domain which LingScope and NegEx were trained and/or tested on differs
greatly from the genre and domains of MDSD v2.0 and SPD v1.0, models learned
using LingScope yield the best or almost best results for all our SA subtasks.

Compared to ordinary word n-gram models that do not model negation
(n = 1) or model negation only implicitly (2 ≤ n ≤ 3), word n-gram mod-
els that additionally model negation explicitly achieve statistically significant
improvements—given an accurate NSD method.

To shed some light on the differences between the evaluated subtasks’ and
gold standards’ results, we analyze how many and what kind of NSs the NSD
methods detect (cf. Table 6). Generally, LingScope detects more negations than
NegEx. NSs detected by LingScope are on average shorter than those detected
by NegEx, hence they are more precise. While LingScope and NegEx detect
negations in about 67% of all documents in MDSD v2.0, only about 20% of all
sentences in SPD v1.0 contain detected negations.

It is noteworthy that only very little NSs have length 1, i.e. span 1 word
unigram, but many NSs have length 4 or longer, i.e. span 4 word unigrams or
more. That confirms the need for explicit negation modeling as mentioned in
Sect. 2.2, but also hints at a data sparsity problem: Parts of word n-grams in
the scope of negations re-occur, but the same NS basically never appears twice.
E.g., for MDSD v2.0 and LingScope as NSD, on average each NS overlaps only
on 0.18 positions with each other NS. Thus, overlaps as shown in example (8)
and (9), where “buy” appears in both NSs, are scarce:

(8) Don’t buy these shoes for running!



(9) Do not buy them unless you like getting blisters.

The picture is similar for SPD v1.0 with an overlap in 0.22 positions on average.

3.4 Comparison

For sentence-level polarity classification on SPD v1.0 our best performing model
(A = 78.01) outperforms 3 state-of-the-art models: [35]’s dependency tree-based
CRFs with hidden variables (A = 77.3), [8]’s linear Matrix-Vector Recursion
(A = 77.1) and [36] Semi-supervised Recursive Autoencoders (A = 77.7). It is
only beaten by [8]’s matrix-vector recursive neural network (A = 79) and [37]’s
SVM with näıve bayes features (A = 79.4).

For in-domain document-level polarity classification on MDSD v2.0, [27] re-
port results for 7 domains (dvd, books, electronics, health, kitchen, music, toys)
out of the 10 domains we used in our experiments. Their SVMs use word uni-
grams and bigrams of word stems as features and yield A = 80.29 on average;
on the same 7 domains our best performing model yields A = 81.49 on average.

For cross-domain document-level polarity classification on MDSD v2.0, our
best performing model (IS, A = 76.76) is inferior compared to more complex
domain adaptation methods, all of which are evaluated on 4 domains (dvd,
books, electronics, kitchen), i.e. 12 domain pairs: [30]’s Structural Correspon-
dence Learning (A = 77.97), [38]’s Spectral Feature Alignment (A = 78.75)
and [39]’s graph-based RANK (A = 76.9), OPTIM-SOCAL (A = 76.78) and
RANK-SOCAL (A = 80.12). It only outperforms [39]’s OPTIM (A = 75.3).

In summary, purely data-driven discriminative word n-gram models with
negation modeling prove to be competitive in several common SA subtasks.

4 Conclusions & Future Work

We conclude that data-driven ML-based models for SA that operate in word
n-gram feature space benefit from explicit negation modeling. In turn, explicit
negation modeling benefits from (i) high quality NSD methods like LingScope
and (ii) modeling not only negation of word unigrams, but also of higher order
word n-grams, especially word bigrams.

These insights suggest that explicitly modeling semantic compositions is
promising for data-driven ML-based SA. Given appropriate scope detection
methods, our approach may for example easily be extended to model other va-
lence shifters [40], e.g. intensifiers like “very” or “many”, or hedges [41] like
“may” or “might”, or even implicit negation in the absence of negation words
[42]. Our approach is also easily extensible to other word n-gram weighting
schemes aside from encoding pure presence or absence, e.g. weighting using rel-
ative frequencies or tf-idf. The feature space then simply becomes X̆ = R2d.

Future work encompasses model fine-tuning, e.g. accounting for NSs in the
scope of other negations as in example (10)

(10) I 〈don’t care that they are 〈not really leather〉〉.



and employing generalization methods to tackle data sparsity when learning the
effects of negations, modeled both implicitly and explicitly.
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32. Daumé III, H., Kumar, A., Saha, A.: Frustratingly easy semi-supervised domain
adaptation. In: Proceedings of the 2010 Workshop on Domain Adaptation for
Natural Language Processing (DANLP). (2010) 53–59
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