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Abstract. This early stage interdisciplinary research contributes to smart
grid advancements by integrating information and communications tech-
nology and electric power systems. It aims at tackling the drawbacks
of current demand-side energy management schemes by developing an
agent-based energy management system that coordinates and optimizes
neighbourhood-level aggregate power load. In this paper, we report on
the implementation of an energy consumption scheduler for reschedul-
ing “shiftable” household appliances at the household-level; the sched-
uler takes into account the consumer’s time preferences, the total hourly
power consumption across neighbouring households, and a fair electricity
billing mechanism. This scheduler is to be deployed in an autonomous
and distributed residential energy management system to avoid load syn-
chronization, reduce utility energy costs, and improve the load factor of
the aggregate power load.

1 Introduction

Electric utilities tend to meet growing consumer energy demand by expand-
ing their generation capacities, especially capital-intensive peak power plants
(also known as “peakers”), which are much more costly to operate than base
load power plants. As this strategy results in highly inefficient consumption be-
haviours and under-utilized power systems, demand-side energy management
schemes aiming to optimally match power supply and demand have emerged.

Currently deployed demand-side energy management schemes are based on
the interactions between the electric utility and a single household [18], as in
Fig.1(a). As this approach lacks coordination among neighbouring households
sharing the same low-voltage distribution network, it may cause load synchro-
nization problems where new peaks arise in off-peak hours [15]. Thus, it is essen-
tial to develop flexible and scalable energy management systems that coordinate
energy usage between neighbouring households, as in Fig.1(b).

2 Background

The smart grid, or the modernized electric grid, is a complex system comprising
a number of heterogeneous control, communication, computation, and electric
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(a) (b)

Fig. 1. The interactions between the utility and the consumers in demand-side energy
management schemes are either: (a) individual interactions, or (b) neighbourhood-level
interactions

.

power components. It also integrates humans in decision making. To verify the
states of smart grid components in a simultaneous manner and take human
intervention into account, it is necessary to adopt autonomous distributed system
architectures whose functionality can be modelled and verified using agent-based
modelling and simulation.

Multi-agent systems (MAS) provide the properties required to coordinate
the interactions between smart grid components and solve complex problems in
a flexible approach. In the context of a smart grid, agents represent producers,
consumers, and aggregators at different scales of operation, e.g. wholesale and
retail energy traders [7]. MAS have been deployed in a number of smart grid
applications, with a more recent focus on micro-grid control [6, 17] and energy
management [10, 12] especially due to the emerging trend of integrating dis-
tributed energy resources (DER), storage capacities, and plug-in hybrid electric
vehicles (PHEV) into consumer premises.

In agent-based energy management systems, agents may aim at achieving a
single objective or a multitude of objectives; typical objectives include: balancing
energy supply and demand [4]; reducing peak power demand [13, 16]; reducing
utility energy costs [8, 16] and consumer bills [16]; improving grid efficiency [4];
and increasing the share of renewable energy sources [1, 12] which consequently
reduces the carbon footprint of the power grid. Agent objectives can be achieved
using evolutionary algorithms [8] or a number of optimization techniques such
as integer, quadratic [5,13], stochastic [4] and dynamic programming [5]. As for
the interactions among agents, game theory provides a conceptual and a formal
analytical framework that enables the study of those complex interactions [19].
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3 Research Objectives

This research aims at optimizing the energy demand of a group of neighbouring
households, to reduce utility costs by using energy at off-peak periods, avoid
load synchronization that may occur due to rescheduling appliance usage, and
improve the load factor (i.e. the ratio between average and peak power) of the
aggregate load. A number of energy consumption schedulers have been proposed
in the literature [14, 16, 21]; however, those schedulers do not leverage an accu-
rately quantified and fair billing mechanism that charges consumers based on
the shape of their power load profiles and their actual contribution in reducing
energy generation costs for electric utilities [3]. In this paper, we implement and
evaluate an energy consumption scheduler that optimizes the operation times
of three wet home appliances and a PHEV at the household-level based on the
total hourly power consumption across neighbouring households, consumer time
preferences, and a fair electricity billing mechanism.

4 Methodology

We use the findings of Baharlouei et al. [3] to resolve a gap in the findings of
Mohsenian-Rad et al. [16]. Game-theoretic analysis is used by Mohsenian-Rad et
al. [16] to propose an incentive-based energy consumption game that schedules
“shiftable” home appliances (e.g. washing machine, tumble dryer, dish washer,
and PHEV) for residential consumers (players) according to their daily time pref-
erences (strategies); at the Nash equilibrium of the proposed non-cooperative
game, it is shown that the energy costs of the system are minimized. How-
ever, this game charges consumers based on their total daily electric energy
consumption rather than their hourly energy consumption. In other words, two
consumers having the same total daily energy consumption are charged equally
even if their hourly load profiles are different. This unfair billing mechanism may
thus discourage consumer participation as it does not take consumer reschedul-
ing flexibility into consideration. With this in mind, we propose leveraging the
fair billing mechanism recently proposed by Baharlouei et al. [3] to encourage
consumer participation in the energy consumption game.

5 Energy Consumption Scheduler

5.1 Formulation

Assuming a multi-agent system for managing electric energy consumption at the
neighbourhood-level, where agents represent consumers, each agent locally and
optimally schedules his “shiftable” home appliances to minimize his electricity
bill taking into account the following inputs: appliance load profiles, consumer
time preferences, grid limitations (if any), aggregate scheduled hourly energy
consumption of all the other agents in the neighbourhood, and the deployed
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electricity billing scheme. If the energy cost function is non-linear, knowing the
aggregate scheduled load is required for optimization.

After this optimization, each agent sends out his updated appliance schedule
to an aggregator agent, which then forwards the aggregated load to the other
agents to optimize their schedules accordingly. By starting with random initial
schedules, convergence of the distributed algorithm is guaranteed if household-
level energy schedule updates are asynchronous [16]. The electric utility may
coordinate such updates according to any turn-taking scenario.

We assume electricity distributed to the neighbourhood is generated by a
thermal power generator having a quadratic hourly cost function [23] given by
(1); as this equation is convex, quadratic, and has linear constraints, it can be
solved using mixed integer quadratic programming.

Ch (Lh) = ahL
2
h + bhLh + ch, (1)

where ah > 0, and bh, ch ≥ 0 at each hour h ∈ H = [1, ..., 24]. In (2), Lh and xh
m

denote the total hourly load of N consumers and consumer m, respectively [16].

Lh =
N∑

m=1

xh
m, (2)

To encourage participation in energy management programmes, it is essential
to reward consumers with fair incentives. By rescheduling appliances to off-peak
hours where electricity tariffs are cheaper, we save on utility energy costs and
consequently impose monetary incentives for consumers in the form of savings
on electricity bills. The optimization problem therefore targets the appliance
schedule xh

n that results in the minimum bill Bn for consumer (agent) n. The
billing equation proposed by Baharlouei et al. [3], which fairly maps a consumer’s
bill to energy costs (1), is given by (3).

Bn =

H∑
h=1

xh
n∑N

m=1 x
h
m

Ch

(
N∑

m=1

xh
m

)
, (3)

5.2 Set-up

To model the optimization problem such that each agent n individually and
iteratively minimizes (3), we use YALMIP — an open-source modelling lan-
guage that integrates with MATLAB. We consider a system of three households
(agents) and investigate the behaviour of one of those schedulers with respect
to fair billing, lower energy costs, and improved load factor. To model consumer
flexibility in scheduling, we consider two scenarios for the same household where
the consumer’s acceptance of rescheduling flexibility differ. We investigate the
two scenarios for four days in December, March, June and September.

To test our energy consumption scheduler, we choose to schedule a PHEV
and three wet appliances: a clothes washer, a tumble dryer, and a dish washer.
Wet appliance power load profiles are based on survey EUP14-07b [22], which
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was conducted with around 2500 consumers from 10 European countries. For the
PHEV load, we use the power load profile of a mid-size sedan at 240V–30A [9].

We choose a budget-balanced billing system and calibrate the coefficients
of the hourly energy cost function (1) against a three-level time-of-use pricing
scheme used by London Hydro [11], where the kilowatt-hour is charged at 12.4,
10.4, and 6.7 cents for on-, mid-, and off-peak hours, respectively. Energy con-
sumption of neighbouring households and non-shiftable loads of the household
investigated are taken from a publicly available household electric power con-
sumption data set [2], for the period from December 2006 to September 2007.

5.3 Scenario 1

In this scenario, we assume the consumer is not flexible about appliance schedul-
ing and use common startup times: clothes washing starts at 7 a.m., drying starts
two hours directly after washing starts, dish washing starts at 6 p.m. [22], and
PHEV recharging starts at 6 p.m. [20].

5.4 Scenario 2

The consumer is assumed to be flexible about appliance scheduling in Scenario
2; clothes washing starts any time between 6 a.m. and 9 a.m., drying any time
after washing but before 11 p.m., washing dishes any time after 7 p.m, but before
11 p.m., and PHEV recharging any time after 1 a.m. but before 5 a.m.

6 Results

6.1 Fair Billing

Results indicate that the consumer’s electricity bill for operating household
“shiftable” appliances in Scenario 2 is lower by 70%, 57%, 32%, and 65% com-
pared to that in Scenario 1 for the days chosen in December, March, June, and
September, respectively. This clearly indicates that flexibility is awarded fairly
through the deployed billing mechanism. Figures 2 and 3 depict the appliance
schedules resulting in the minimum bill for the household under investigation
and the aggregate non-shiftable load of neighbouring households, for Scenario 1
and 2 in December, respectively.

6.2 Lower Energy Costs

As we chose a budget-balanced billing system and since appliances are resched-
uled to cheaper off-peak hours, utility energy costs are lower in Scenario 2 by
70%, 57%, 32%, and 65% compared to that in Scenario 1, for the days chosen
across the four seasons, respectively.
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Fig. 2. Scenario 1: the unscheduled “shiftable” appliance loads of the consumer under
investigation and the aggregate “non-shiftable” neighbourhood-level loads (December)

1

Fig. 3. Scenario 2: the scheduled “shiftable” appliance loads of the consumer under
investigation and the aggregate “non-shiftable” neighbourhood-level loads (December)

6.3 Improved Load Factor

As the “shiftable” appliances of the household under investigation are resched-
uled to operate during off-peak hours instead of peak hours, the load factor of the
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aggregate load in Scenario 2 is improved by 44%, 13%, 19%, and 28% compared
to that in Scenario 1, for the days chosen across the four seasons, respectively.
This indicates improved resource allocation in the power grid.

7 Conclusion

In this paper, we leverage the fair billing mechanism proposed by Baharlouei
et al. [3] to evaluate the energy consumption scheduling game proposed by
Mohsenian-Rad et al. [16]. We have implemented and evaluated a scheduler
that optimally allocates the operation of “shiftable” appliances for a consumer
based on his time preferences, the aggregate hourly “non-shiftable” load at the
neighbourhood-level, and a fair billing mechanism. As the deployed billing mech-
anism takes advantage of cheaper off-peak electricity prices, we show that it
helps in lowering utility energy costs and electricity bills, and improving the
load factor of the aggregate neighbourhood-level power load. We also conclude
that consumer flexibility in rescheduling appliances is rewarded fairly based on
the shape of his power load profile rather than his total energy consumption.

8 Future Work

Eventually, we intend to investigate an appliance scheduler that coordinates
electric energy consumption among a large number of households (agents).
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