
Ontology and Goal Model in Designing BDI
Multi-Agent Systems

Patrizia Ribino∗, Massimo Cossentino∗, Carmelo Lodato∗, Salvatore Lopes∗, Luca Sabatucci∗, and Valeria Seidita†∗
∗Istituto di Calcolo e Reti ad Alte Prestazioni - Consiglio Nazionale delle Ricerche

Email: {cossentino, lodato, lopes, ribino, sabatucci}@pa.icar.cnr.it
†Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica

Email: valeria.seidita@unipa.it

Abstract—Nowadays several methodological approaches exist,
each of them tightly tied up with the implementation platform
supporting it. In this paper we propose an intermediate step
toward the definition of a methodological approach for supporting
the JACAMO framework. This paper resumes a previous work,
focused on modeling BDI organizations, and we now address
the requirements analysis phase. In particular, we propose the
use of an ontological model and a goal model for representing
requirements and the domain formalization respectively. The two
portions of design process are connected by a heuristic process
that allows to extract goals from the ontological model. The
resulting models are also used for completing each other and for
enhancing the problem description that is considered an input to
our process. In the paper we use the well-known case study of
the conference management system for illustrating the proposed
portion of process.

I. INTRODUCTION

It is widely accepted that methodological approaches offer
significant advantages for system development. Accordingly,
several complete methodological approaches have been pro-
posed. Many of them are tightly tied up with the implemen-
tation platform supporting it. Each implementation platform
gives support for the abstractions the methodology deals with
and normally cannot be fit to methodologies different from the
ones it has been created for.

In the past, we created and used AO methodologies such as
PASSI [5] and ASPECS [6] that are strictly tied respectively
to JADE [2] and Janus[11]. In the first case Jade allows to
implement agents that principally are a state machine, whereas
the second allows the implementation of holonic structures. A
specific platform is suitable for a methodology in the sense
that it supports its features, for instance we could not easily
implement holonic structures/organizations with plain Jade.

In the latest period we have been experimenting the Ja-
CaMo framework and its feature. JaCaMo is based on the
BDI paradigm [15] and it provides an integration of tools and
languages for programming the following dimensions: agents
(Jason), environment (Cartago), and organisations (Moise)
[16]. Our work is focused on the normative and organizational
aspects of developing BDI multi-agent systems under both the
notational and methodological points of view. As regard the
former, in [8] we illustrated a UML profile and a graphical
notation for describing MASs based on the Jason metamodel.
Whereas, as regard the methodological issues, our aim is to
define a complete methodological approach that will include
goal oriented analysis, the design of organizations and the

design of agents based on the Jason platform; a first part of this
work has been faced (see [7]) and a portion of methodology
for developing MASs organized in hierarchical structures,
implemented with Moise+, has been completed.

The methodology we are creating is based on some corner-
stones: (i) organizations, (ii) requirements expressed by goals
and (iii) an ontological formalization of problem domain. This
paper illustrates how we face goal modeling starting from a
problem domain model represented by means of an ontology.
Although we are aware that the use of ontologies is not
shared unanimously by the software engineering community,
we adhere to the trend that asserts ontologies may have a
significant role in the model driven engineering and may
offer several benefits to a design process (first of all to the
requirement analysis)[1][18][3][17].

In such a context, the contribution of this paper is twofold.
Firstly, we present two portions of design process able to cover
the early requirements analysis phase resulting in problem
specifications in terms of goals. Secondly, we propose the
use of an ontology as an analysis (i.e: descriptive) model
representing the reality of the problem domain in order to
address the ambiguities and the incompleteness of the problem
specifications. The two proposed activities result in an analysis
model composed of an ontology and a goal model. The first
one is used as a model for describing the problem domain
by a set of meta classes (Concept, Action and Predicate).
The second one is used to describe the objectives of the
stakeholders involved in the problem and the dependencies
among them. Hence, we have named these activities (portions
of design process) Problem Ontology Description and Goal
Identification respectively.

The ontological formalization we propose for performing
Problem Ontology Description activity is thought to describe
the intentional behaviors that typically characterize the class of
problems addressed with agent oriented technologies. To this
aim, inspired by the FIPA agent ontology [9], we introduce new
elements in order to explicitly model intentional behaviors.
These elements represent the problem domain entities able to
act, according to their desires, in order to change the state
of the world. Moreover, the instances of this kind of ontology
present recurrent structures (patterns) that provide some useful
information for identifying the goals that the solution of the
problem has to satisfy.

The paper is organized as follows: section II focuses on
the problem and sets our objectives, section III describes the
portions of design process together with an example and,

finally, in section IV some conclusions are drawn.

II. MOTIVATION AND OBJECTIVES

The concept of goal is widely used in requirements en-
gineering since it allows, among other things, to reduce the
gap between analysts’ and stakeholders’ knowledge. Many
definitions exist for goals. In this paper, when talking about
goal, we mean a condition or state of the world that the
actor wants to achieve[19]. This definition highlights a very
interesting connection with the agent oriented paradigm since
it recalls the aspects of autonomy and proactiveness, typical
of software agents.

In most methodologies (not only agent oriented ones) the
analysis phase results in a model of the requirements and in a
model of the problem; this latter is constructed in agreement
with the used design paradigm and its abstractions. Usually, the
problem model includes at least one structural view and one
or more dynamic (behavioral) views, uses a domain specific
language and has a direct counterpart with the implementation
concepts. Some fundamental thoughts for the identification of
proper MAS design abstractions have been presented in [12].
Here the social level deals with abstractions like organizations,
collaborations, communications and other social aspects of the
agents’ life and the knowledge level sees agents as conceived
in terms of the goals they have to achieve and the actions they
may perform for pursuing them. An agent processes knowledge
in order to attain its goals [14].

As a consequence, we think that useful models for AO de-
veloping should include (i) a model of requirements in terms of
goals and (ii) a model of the problem in terms of abstractions
to be mapped onto the AO paradigm. Such abstractions should
come from both the social and knowledge levels: organization,
communication, actions, predicates (beliefs) and so on.

Thanks to these considerations we may argue that a good
MAS design methodology should include a goal model, an
ontology and a model of organizations. The ontology describes
the problem in terms of elements of the environment, their
significative states, and what it can be done on them to
achieve/mutate their states. Such an ontology should include,
concepts of the domain, predicates (used to represent beliefs
and significant states of the concepts), actions that can be done
on concepts and positions that may willingly execute actions;
such positions may represent human beings, agents or other
not-AO systems.

The goal identification is the preliminary activity of the
agent goal modeling phase in which analyst makes it explicit
the strategic objectives of the system (intended as the sum of
the software and its environment). User goals identification is
typically conducted in the early phases of requirement analysis.
In this phase the core task is to conquer a significant and
transferable understanding of the portion of the world where to
introduce the software. This knowledge influences subsequent
design decisions. It is frequent that agents’ behavior derives
from the goals and needs of stakeholders. So far, research has
mainly focused on the development of methods for modeling
and reasoning on goals, for optimizing their achievement and
for solving possible conflicts. We think there is room for novel
methods for systematically identifying goals from the domain
and from the users.

Starting from the hypothesis that the use of ontology
for describing the problem domain is fully used by current

Problem
Ontology

Description

Goal
Identification

Problem Domain
Specification

Fig. 1: The Cycle in the Early Requirements Analysis.

research [1][18][3][17], which considers ontologies a powerful
mean for requirements engineering, and since several AO
methodologies use ontologies for different aims, we propose a
way for identifying goals from an ontological model of the
problem. More specifically, our main contributions are two
portions of design process (to be put early in the analysis
phase) for constructing the problem domain ontology in a way
useful for identifying goals. The proposed way of creating the
domain ontology lets us support intentionality, it is based on
FIPA ontology and above all is characterized by some recurrent
structures useful for identifying goals.

Generally, some advantages we found in the use of ontol-
ogy are listed below:

• it is useful for formalizing knowledge and for disam-
biguation of terms;

• it helps in better understanding requirements and in
eliminating redundancies and ambiguities;

• it simplifies comprehension among stakeholders and is
useful for making clear the stakeholders’ knowledge;

• it lets the designer create categories for the elements
in the domain problem thus allowing to identify the
artifacts that will compose the environment.

The portion of process we propose covers the initial
activities of the requirement analysis for the methodological
approach we are working on [7]. We named these activ-
ities respectively Problem Ontology Description and Goal
Identification. The former is devoted to produce an in-depth
knowledge and a formalization of the problem domain the
software has to solve in terms of an ontology. The second one
is devoted to produce a goal model describing the objectives of
the stakeholders involved in the problem and the dependencies
among them.

In the following sections we give some details about how to
construct the problem domain ontology starting from a given
problem statement, how to use it and how to carry out the
goals identification from problem domain ontology.

III. THE TWO PROPOSED PORTIONS OF DESIGN PROCESS

We propose an iterative approach to perform an early re-
quirements analysis starting from textual problem specification
(see Fig.1). Problem specifications are documents that could be
affected by ambiguities since they are susceptible to different
interpretations. Moreover, uncertainty in the interpretation of
these documents could be caused by the implicit knowledge
of domain experts. During knowledge elicitation, in fact, the
problem is commonly described by different perspectives and
by several stakeholders. This could generate overlapping terms

and redundancies that could be misinterpreted. Moreover, the
unconscious tendency of the stakeholder to neglect some
implicit knowledge he owns may cause lacks in the problem
description. The transition from a textual description to a
formal and structured representation of the knowledge (i.e:
the problem ontology activity) could make this gap visible.
We include the problem ontology description activity in an
iterative process in order to refine the domain knowledge and
to disambiguate the initial documentation.

We may obtain a better understanding of the problem by
deepening the domain knowledge using an ontology. Since
we use the problem domain ontology for identifying goals,
we expect an improvement in the goal identification. Thus
obtaining a more complete list of goals to be considered
during the system design. During the goal identification some
inconsistencies among goals or deficiencies may also arise.
These issues can be faced going back to the problem ontology
trying to discover their cause (if any) and to improve the
ontology. Otherwise, the origin of these issues could depend
on problem specification, as it can be seen in the whole cyclic
process of Fig.1.

Throughout this paper, we will use the conference man-
agement case study as defined in [20] in order to explain
our approach. “The conference management system is an open
multi-agent system supporting the management of international
conferences that require the coordination of several individuals
and groups. During the submission phase, authors should be
notified of paper receipt and given a paper submission number.
After the deadline for submissions has passed, the program
committee (PC) has to review the papers by either contacting
referees and asking them to review a number of the papers,
or reviewing them themselves. After the reviews are complete,
a decision on accepting or rejecting each paper must be
made. After the decisions are made, authors are notified of
the decisions and are asked to produce a final version of their
paper if it was accepted. Finally, all final copies are collected
and printed in the conference proceedings”.

In the following of this section we introduce the proposed
activities.

A. The Problem Ontology Description

The Problem Ontology Description (POD) activity allows
to describe the problem domain elements and their relation-
ships in a formal way. This activity grounds on an ontology
used as an analysis (i.e. descriptive) model for representing the
reality of problem domains typically addressed by agent ori-
ented technologies. This ontology is described by the Problem
Ontology metamodel shown in Fig.2. The Problem Ontology
metamodel, we propose, has been inspired by the FIPA (Foun-
dation for Intelligent Physical Agents) standard and ASPECS
ontology. Thus, similarly, our meta ontology describes what
are the elements of interest in a domain (Concept) with their
properties (Predicate) and how they act in the domain (Action)
(see the upper part of Fig.2) and it introduces some new
elements in order to explicitly model intentional behaviors.

In the following we give a detailed definition of each
element and relationship in the Problem Ontology metamodel.
(I) Concept is a term usually used in a broad sense to identify
“anything about which something is said”[4]. We use the term
Concept just for representing categories of domain entities.
Such categories may either be physical or logical (abstract);

(II) Action is defined as follow: “an action is the cause of an
event by an acting concept” (adapted from [13]). We classified
actions as intentional and unintentional [10].

Intentionality implies a kind of consciousness to act, the
capability to plan and enact strategies for the achievement of
a purpose. Therefore, the entity that performs an Intentional
Action should be able to carry out a more or less complex
reasoning such as having the ability to acquire and apply
knowledge. This means the entity should be endowed with
some kind of intelligence. Conversely, an Unintentional Action
is an automatic response governed by fixed rules or a particular
set of circumstances, in other words a purely reactive action
in the sense of automatics control theory. Usually, an action
can have different kinds of relations with the other elements
of the ontology. An action is related with (i) a concept that
performs it, (ii) a concept (the target) on which the action is
accomplished causing a change of this concept state, (iii) a
concept (the input) required from the action to be performed
even without changing the state of the input concept, (iv)
a position that is notified or receives the result of the ac-
tion, (v) a predicate that plays the role of precondition, i.e.
a condition under which the action can be performed and
(vi) a predicate that plays the role of postcondition, i.e. the
condition determined by executing the action. (III) Position is a
concept performing both Intentional Actions and Unintentional
Actions. Therefore, its actions can be part of a plan to fulfill
some purpose. Whilst Object represents all the concepts that
can perform only unintentional actions. Positions and Objects
can be both input and target of an action. (IV) a Predicate
is the expression of a property, a state or more generally a
clarification to specify a concept.

As concerns relationships, our ontology metamodel sup-
ports: (I) is-a that is the relationship between an ontological
element and a refined version of it; (II) part-of that is the part-
whole relationship, in which ontological elements representing
the components of something are associated with the ontologi-
cal element representing the entire assembly; (III) association
that is used in order to express all types of relations different
from the previous ones that can occur between two ontological
elements. Usually a label is used to specify the peculiarity.

Several manual and semi-automatic methods for building
an ontology exist in literature. In the following we propose
some guideline for building a model of our Problem Ontology
adapted from the ones proposed in literature. We suggest
this one as a quick and easy guidelines to follow, but the

Ontology
Element

ConceptAction

PredicatePosition

Solution Domain
Ontology

Intentional
Action

Unintentional
Action Object

Ontology
Relationship

is_a

part_of

association

executes

executes

Post-Condition

Pre-Condition

is input

has receiver

has target

is described by

Fig. 2: The Problem Ontology Metamodel

Author
<<Position>>

Paper
<<Object>>

Prog. Chair
<<Position>>

Submit
<<Int. Action>>

Formulate
<<Int. Action>>

Invitation
<<Object>>

Send
<<Int. Action>>

PC Member
<<Position>>

Create
<<Int. Action>>

Reviewer
<<Position>>

SubReviewer
<<Position>>

Accept
<<Int. Action>>

Assign
<<Int. Action>>

AcceptRevision/Decline
<<Int. Action>>

Delegate
<<Int. Action>>

Table(Reviewer,Paper)
<<Object>>

Make
<<Int. Action>>

Review
<<Object>>

Notify
<<Int. Action>>

AcceptForPubblication
<<Int. Action>>

targetinput

target

input

receiver

input

receiver

target

target

input

target

input

receiver

receiver

PrepareCameraReady
<<Int. Action>>

input

target

Collect
<<Int. Action>>

Proceedings
<<Object>>

target

input

target

PCMemberList
<<Object>>

target

Assemble
<<Int. Action>>

target

input

input

input

target

Date<dDeadline
<<Predicate>>

Date>Deadline
<<Predicate>>

Revised(Paper)
<<Predicate>>

Accepted(Paper)
<<Predicate>>

Manuscript
<<Object>>

Accepted(Paper)
<<Predicate>>

Submitted(Manuscript)
<<Predicate>>

Formulated(Invitation)
<<Predicate>>

CRSubmitted(Paper)
<<Predicate>>

revised(Paper)
<<Predicate>>

Fig. 3: The Problem Ontology Model for the Conference Management Case Study.

same results, or even better, may be achieved using different
approaches.

Guidelines - With the aim of building a model of our
Problem Ontology, we assume that a set of informal textual
documents describe the problem the analyst is dealing with.
Firstly, we extract the nouns from text and we create a
list of items grouped in different clusters according to their
grammatical function within the sentence. Thus, a noun used
as: (i) “subject” followed by a verb is a candidate Position if
the verb describes an Action on the domain; (ii) “adjective”
is a candidate Predicate of the noun it describes; (iii) “direct
object” is a candidate Object. Secondly, we identify verbs. In
a sentence, a verb may indicate: (i) an action performed by
the subject of the sentence thus becoming a candidate Action;
(ii) a relation among nouns such as aggregation (PART-OF),
inheritance (IS-A) or generic association. Finally, we identify
the adjective to be candidate as a Predicate. Starting from
these candidates we try to disambiguate the elements (if any)
by asking more information to domain experts or stakeholders.
Then we group in the same category the term with the same
meaning. These categories will be the elements of the problem
domain ontology.

Fig. 3 shows the ontology produced at the end of this ac-
tivity and related to the before mentioned specification for the
Conference Management case study. In this diagram the type
of ontology elements is indicated by means of stereotypes and
colors. Label on relationships indicates the type of ontological

relationship.

B. Goal Identification

The problem domain ontology gives a deeper knowledge on
the problem domain, especially when we perform some kind
of reasoning on it. Thus moving in our context and reasoning
about the elements and the relationships of our ontology, we
determined many of the possible semantic combinations that
could occur. We consider that the ontology is constructed by
following the meta classes in Fig. 2, in so doing it presents
repetitive semantic structures (hereafter patterns). Reasoning
on these patterns, and on the meaning of the involved ontolog-
ical elements, we deduced some useful information about the
goals of the problem. A pattern contains many combination of
elements useful for identifying at least one goal. In a pattern,
at least one intentional action performed by one position is
present. Intentionality implies a kind of consciousness to act,
capacities to plan and enact strategies for achieving specific
purposes. Consequently the intentional action may provide
evidences to identify goals.

We have discovered many elementary and composed pat-
terns. For space concerns, here we present only some of the
elementary patterns we have found. We will show all possible
patterns in a specific future work. The three patterns we present
in this paper (see Fig.4) are elementary patterns we say atomic.
These elementary structures may be surely found looking at
each action and reasoning on its significance, on the position
performing it and on the related input and target concepts.

Position1 Act Object1Position1 Act
executes targetexecutes

Position2Position1 Act
executes target

Pattern N°1

Name: To+ <Act_name> + <Object1_name>
State: <Act_name> + 'ed' (<Object1_name>)
Who: Position1 is responsible for achieving the goal
Dependency: None

Goal Information
Goal type: Achieve

Name: To+ <Act_name>
State: <Act_name> + '-ing' (<Position_name>)
Who: Position1 is responsible for achieving the goal
Dependency: None

Goal Information
Goal type: Maintain

Name: To+ <Act_name> + <Position2_name>
State: <Act_name> + 'ed' (<Position2_name>)
Who: Position1 is responsible for achieving the goal
Dependency: None

Goal Information
Goal type: Achieve

Pattern N°2 Pattern N°3

PreCondition: None PreCondition: None PreCondition: None
Note: it may also be Position1=Position2

Fig. 4: Patterns Used for Identifying Goals

Each pattern is completed by a set of information useful for
completely describing the goal:

• the Goal Type. We identified two possible types of
resulting goal: the achieve goal describes the achieve-
ment of a particular state of affair (e.g: win the game)
while the maintain goal describes the maintenance of
some state of affair (maintain temperature below 100
degrees);

• the Name of the resulting goal encapsulating the goal
semantics. The name is gathered from the specific
pattern (see Fig.4);

• the State that is the desired condition or state of the
world achieved or maintained.

• Who is responsible for achieving the goal. It may differ
from who has the real interest in achieving that state
of the world;

• some kinds of Dependency that is a relationship be-
tween the current and another goal. It indicates that
the achievement/maintenance of a goal depends on the
achievement/maintenance of the other goal.

The pattern number 1 presents a Position (Position1) that
executes an Action (Act). The pattern number 2 presents a
Position (Position1) that executes an Action (Act) on a target
Object (Object1). Finally, the pattern number 3 presents a
Position (Position1) that executes an Action (Act) on another
receiver or target Position (Position2). When pattern 2 occurs
in a problem ontology model, we can deduce that the resulting
goal type is achieve because the effect of the action is to
change the current state of the object and to achieve a desired
state by the position performing the intentional action. The
name of the resulting goal is obtained as combination of the
basic form of the verb representing the action along with
the infinitive marker “to” and the name of the object. The
state is obtained by using the past simple of verb representing
the action along with the name of the object, in such a way
we indicate that the state is reached. On the contrary, in the
pattern 1, no object states are changed by the action so the
associated goal type is maintain and the -ing form of the verb
is used to highlight the progressive (or continuous) aspect of
this state. The pattern 3 is similar to the 2, the action is made
on a position instead of on an object and the information for
describing the goal are the same.

These patterns are the basic configurations we may find
but they may be composed with other ones and actions may
have inputs or not. Dependencies can be deduced from the

composition or extension of patterns and above all from the
input to actions. For this reason, we do not have information
on dependency for patterns of Fig.4.

The goal information we retrieve are very useful later in
the design phase in order to obtain system goals, to identify
their dependencies, to identify roles to be assigned to agents,
to represent agent beliefs and so on.

Guidelines - In order to perform the goal identification
activity, we assume that the problem ontology model has been
sketched and, in each pattern, actions may have inputs. In the
case there are not inputs the goal does not depend on another
goal (see Fig. 4). Therefore, we accomplish the following
three steps: Prepare Goals List, Describe Goals, Prepare Goals
Diagram. These three steps may be done sequentially or
iteratively, in the sense that the analyst may decide to initially
identify the whole list of goals, then describe them etc. or (s)he
may complete the description and insertion in the diagram of
one goal every time.

In preparing the goals list, for each action that appears in
the ontology, the analyst has to identify the smallest pattern to
which it might belong. When the pattern is identified it may
be described so as it is evident in the patterns (Fig. 4).
The resulting work products of these two activities are two
text documents. Whereas listing goals is a trivial activity
because the analyst has only to scan the ontology and to
identify each couple action-position, and it is not important
which is the starting element, the description of the identified
goal prescribes some reasoning about the mutual position of
elements in order to discover dependencies. Indeed, for each
action presenting inputs, the analyst has to check if the input is
a target of another action, if yes probably there is a dependency
between the goals associated to that actions. The dependency
is given by the semantic relationships among actions and
concepts in a domain ontology. The following example in the
conference management system illustrates this point.
During the goals identification some considerations may be
done, they lead to reveal some inconsistencies, ambiguities,
mistakes or missing elements in the domain ontology.

In order to illustrate how to identify goals, let us consider
Fig. 3 and let us start from the AcceptForPublication action.
This action is performed by the Program Chair and the target
is the Paper that, after the action has been executed, is in
the state Accepted (the final state may be underlined by the
Predicate associated to the object and to the target relation
whereas the precondition for action is linked to the input
action). The pattern recognized is the second one where the
action also presents an input. Thus, the goal may be named To
AcceptForPubblication Paper and the final state is Accepted-

NAME: [to Submit Manuscript] STATE: [submitted(Manuscript)] WHO: Author
GOAL TYPE: Achieve PRE-CONDITION: [Date<deadline] DEPENDENCIES: []
NAME: [to PrepareCameraReady Paper] STATE: [PreparedCameraReady(Paper)] WHO: Author
GOAL TYPE: Achieve PRE-CONDITION: accepted(Paper) DEPENDENCIES: [To AcceptForPublcation Paper]
NAME: [To Collect Proceedings] STATE: [collected(Proceedings)] WHO: Prog.Chair
GOAL TYPE: Achieve PRE-CONDITION: [CRSumbitted(Paper)] DEPENDENCIES:[To PrepareCameraReady Paper]
NAME: [to Assign Reviewer] STATE: [assigned(Reviewer)] WHO: Prog.Chair
GOAL TYPE: Achieve PRE-CONDITION: [created (Table(Reviewer,paper))] DEPENDENCIES: [to Create Table(Reviewer,paper)]
NAME: [to Send To PC Member] STATE: [sentTo(PCMember)] WHO: Prog.Chair
GOAL TYPE: Achieve PRE-CONDITION: [formulated(Invitation)] DEPENDENCIES: [to Formulate Invitation]
NAME: [to Create Table(Reviewer,paper)] STATE: [created (Table(Reviewer,paper))] WHO: Prog.Chair
GOAL TYPE: Achieve PRE-CONDITION: [collected(PCMemberList)] AND [Date>deadline] DEPENDENCIES: [to Collect PCMemberList]
NAME: [to Collect PCMemberList] STATE: [collected(PCMemberList)] WHO: Prog.Chair
GOAL TYPE: Achieve PRE-CONDITION: [accepted(Invitation)] DEPENDENCIES: [to Accept Invitation]
NAME: [to AcceptForPublication Paper] STATE: [acceptedForPublication(Paper)] WHO: Prog.Chair
GOAL TYPE: Achieve PRE-CONDITION: Revised(Paper) DEPENDENCIES: [to Make Review]
NAME: [to Formulate Invitation] STATE: [formulated(Invitation)] WHO: Prog.Chair
GOAL TYPE: Achieve PRE-CONDITION: [] DEPENDENCIES:[]
NAME: [to Accept Invitation] STATE: [accepted(Invitation)] WHO: PC Member
GOAL TYPE: Achieve PRE-CONDITION: [] DEPENDENCIES:[]
NAME: [to Delegate SubReviewer] STATE: [delegated(SubReviewer)] WHO: Reviewer
GOAL TYPE: Achieve PRE-CONDITION: [] DEPENDENCIES: []
NAME: [to Notify Prog.Chair] STATE: [Notified(Prog.Chair)] WHO: Reviewer
GOAL TYPE: Achieve PRE-CONDITION: [made(Review)] DEPENDENCIES: [to Make Review]
NAME: [to make Review] STATE: [made(Review)] WHO: Reviewer
GOAL TYPE: Achieve PRE-CONDITION: [submitted(Manuscript)] DEPENDENCIES: [to Submit Manuscript]
NAME: [to Accept Revision/Decline Paper] STATE: [acceptedRevision(Paper)] WHO: Reviewer
GOAL TYPE: Achieve PRE-CONDITION:[] DEPENDENCIES: []

Goal Information

Fig. 5: The List of Goals for the Conference Management Case Study

To Collect
PCMembList

To Assign
Reviewer

To Delegate
SubRev.

To Accept
Rev/Decline

Paper

To Make
Review

To Prepare
Camera

Ready Paper

To Notify
Prog. Chair

To Submit
Manuscript

To AcceptFor
Publication

Paper

To Create
Table

To Accept
Invitation

To Collect
Proceedings

To Send to
PCMember

To Formulate
Invitation

Prog. ChairPCMemberReviewer Author

Fig. 6: The Goal Diagram Related to the Ontology in Fig. 3

ForPublication Paper. For pursuing this goal the related action
has to have as input a Paper in the initial state Revised. The
Paper is in this state after that Reviewer executes the Make
action. This means that the goal To AcceptForPubblication
Paper depends on the goal associated to the Make action;
looking at this latter action the pattern number 2 may be
identified, hence the related goal is To Make Review and the
dependency is from To AcceptForPubblication Paper to To
Make Review. Going on in this way the list of goals illustrated
in Fig. 5 can be identified and the Goal Diagram in Fig.6 can
be drawn. It is worth nothing that, during the first iteration
of the Problem Domain Ontology description, the top part of

Fig. 3 was in the form reported in Fig. 7, here we missed
some predicates and we did not well represented the concept
of Paper. We realized the omission while searching the To
AcceptForPubblication Paper dependency. In fact, we have
firstly realized the need for having a predicate RevisedPaper
for the object Paper and then we realized that there was no
actions devoted to change the state of Paper from submitted
to revised. For this reasons we added the Manuscript and the
Review as part-of Paper. In this way, we well represented the
elements in the domain and then we were able to coherently
find goal dependencies and the cycle presented in Fig. 1 was
useful for identifying mistakes and omissions.

Author
<<Position>>

Paper
<<Object>>

Prog. Chair
<<Position>>

Submit
<<Int. Action>>

Formulate
<<Int. Action>>

Invitation
<<Object>>

Send
<<Int. Action>>

PC Member
<<Position>>

Create
<<Int. Action>>

Reviewer
<<Position>>

SubReviewer
<<Position>>

Accept
<<Int. Action>>

Assign
<<Int. Action>>

AcceptRevision/Decline
<<Int. Action>>

Delegate
<<Int. Action>>

Table(Reviewer,Paper)
<<Object>>

Make
<<Int. Action>>

Review
<<Object>>

Notify
<<Int. Action>>

AcceptForPublication
<<Int. Action>>

target

input

target

input

receiver

input

receiver

target

target

input

target

input

input

receiver

receiver

PrepareCameraReady
<<Int. Action>>

input

target

Collect
<<Int. Action>>

Proceedings
<<Object>>target

input

target

PCMemberList
<<Object>>

target

Assemble
<<Int. Action>>

target

input

input

input

target

Date<Deadline
<<Predicate>>

Date>Deadline
<<Predicate>>

snip snip

Fig. 7: A Portion of the Initial Problem Ontology Description.

IV. DISCUSSIONS AND CONCLUSIONS

The presented work is a part of a larger plan in order
to cover the whole agent oriented requirement analysis for
developing multi-agent systems for the JACAMO framework.
This work addresses how to move from the problem formu-
lation to the problem specification in order to obtain analysis
models that can be fruitful employed for designing MASs.
We experimented that the use of ontology in an iterative
approach may allow to discover inconsistencies and lacks in
the problem description and to improve the communication
among stakeholders.

Moreover, the identification of goals from the ontological
model of the problem domain allows the analyst to correlate
goals with the corresponding portion of textual requirements.
This double loop allows to act on the requirements after
that the goal identification and problem ontology description
activities have been performed. For instance, from goals iden-
tification it may arise a deficiency in the problem domain
description that might thus be refined. Vice-versa a variation
of the requirements can influence the goals that derive from
them. This closed-chain process is ordered and not chaotic and
it may result in a useful contribution to the quality of both the
requirements elicitation and the analysis phase.

In addition, our approach allows to transform knowledge
from an unstructured form to a structured one. This could result
in an extra effort in the case of small size problems where it
could be more easy to directly identify goals from the domain
description, user interviews, etc. But the proposed approach
can be an advantage in the case of large size problems. In fact,
when the problem size grows up, the effort spent in managing
unstructured information raises more quickly than the effort
spent in applying our process.

Finally, the goal identification approach based on patterns
we propose can be profitably used by an analyst with a limited
expertise in goal identification and it could be automatized ap-
plying techniques of pattern recognition on problem ontology
models.

REFERENCES

[1] Uwe Aßmann, Steffen Zschaler, and Gerd Wagner. Ontologies, meta-
models, and the model-driven paradigm. Ontologies for Software
Engineering and Software Technology, pages 249–273, 2006.

[2] F. Bellifemine, A. Poggi, and G. Rimassa. JADE–A FIPA-compliant
agent framework. In Proceedings of PAAM, volume 99, pages 97–108.
Citeseer, 1999.

[3] Verónica Castañeda, Luciana Ballejos, Ma Laura Caliusco, and Ma Rosa
Galli. The use of ontologies in requirements engineering. Global
Journal of Researches In Engineering, 10(6), 2010.

[4] O. Corcho and A. Gómez-Pérez. A roadmap to ontology specifica-
tion languages. Knowledge Engineering and Knowledge Management
Methods, Models, and Tools, pages 80–96, 2000.

[5] M. Cossentino. From requirements to code with the PASSI methodol-
ogy. In Agent Oriented Methodologies, chapter IV, pages 79–106. Idea
Group Publishing, Hershey, PA, USA, June 2005.

[6] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam.
ASPECS: an agent-oriented software process for engineering complex
systems. Autonomous Agents and Multi-Agent Systems, 20(2):260–304,
2010.

[7] M. Cossentino, C. Lodato, S. Lopes, P. Ribino, V. Seidita, and A. Chella.
Towards a design process for modeling MAS organizations. In
M. Cossentino, M. Kaisers, K. Tuyls, and G. Weiss, editors, Multi-
Agent Systems, volume 7541 of Lecture Notes in Computer Science,
pages 63–79. Springer Berlin Heidelberg, 2012.

[8] Massimo Cossentino, Antonio Chella, Carmelo Lodato, Salvatore
Lopes, Patrizia Ribino, and Valeria Seidita. A notation for modeling
jason-like bdi agents. 2010 International Conference on Complex,
Intelligent and Software Intensive Systems, 0:12–19, 2012.

[9] Foundation for Intelligent Physical Agents. FIPA RDF Content Lan-
guage Specification, 2001.

[10] H.G. Frankfurt. The problem of action. American Philosophical
Quarterly, pages 157–162, 1978.

[11] N. Gaud, S. Galland, V. Hilaire, and Koukam A. An organisational
platform for holonic and multiagent systems. In In Proceedings of
Programming Multi-Agent Systems (PROMAS) workshop, 2008.

[12] N.R. Jennings. On agent-based software engineering. In Artificial
Intelligence, volume 117, pages 277–296, 2000.

[13] E.J. Lowe. A survey of metaphysics. Oxford University Press Oxford,
2002.

[14] A. Newell. The knowledge level. Artificial Intelligence, 1982.
[15] Anand S Rao, Michael P Georgeff, et al. Bdi agents: From theory to

practice. In ICMAS, volume 95, pages 312–319, 1995.
[16] A. Ricci, M. Viroli, and A. Omicini. Carta go: A framework for

prototyping artifact-based environments in mas. Environments for Multi-
Agent Systems III, pages 67–86, 2007.

[17] M. Shibaoka, H. Kaiya, and M. Saeki. GOORE: Goal-oriented and
ontology driven requirements elicitation method. In Advances in
Conceptual Modeling–Foundations and Applications, pages 225–234.
Springer, 2007.

[18] K. Siegemund, E. J Thomas, Y. Zhao, J. Pan, and U. Assmann. Towards
ontology-driven requirements engineering. In Workshop Semantic Web
Enabled Software Engineering at 10th International Semantic Web
Conference (ISWC), Bonn, 2011.

[19] Eric Yu. Modelling strategic relationships for process reengineering.
Social Modeling for Requirements Engineering, 11:2011, 2011.

[20] Franco Zambonelli, Nicholas R Jennings, and Michael Wooldridge.
Organisational rules as an abstraction for the analysis and design of
multi-agent systems. International Journal of Software Engineering
and Knowledge Engineering, 11(03):303–328, 2001.

