
Evaluating Negotiation Cost for
QoS-aware Service Composition

Claudia Di Napoli
Istituto di Cibernetica “E. Caianiello”
C.N.R., Via Campi Flegrei 34, 80078

Pozzuoli, Napoli, Italy
c.dinapoli@cib.na.cnr.it

Dario Di Nocera*
Dipartimento di Matematica e Applicazioni,

Università degli Studi di Napoli
“Federico II”, via Cintia MSA,

80126 Napoli, Italy
dario.dinocera@unina.it

Silvia Rossi
Dipartimento di Ingegneria Elettrica

e Tecnologie dell’Informazione,
Università degli Studi di Napoli
“Federico II”, via Claudio 21,

80125 Napoli, Italy
silvia.rossi@unina.it

Abstract—The value of commercial Service-Based Applica-
tions (SBAs) will depend not only on their functionality, but also
on the value of their non-functional properties, known as QoS
attributes, that are not tied to a specific functionality, but rather
to its delivery features. QoS values may vary according to the
provision strategies of providers as well as users’ requirements
expressed as global constraints on the SBA QoS. Automatic
negotiation is a viable approach to drive QoS-aware selection
of services for SBAs, but its adoption may result computationally
expensive due to the communication overhead among the involved
negotiators, so limiting its application to real service-based
scenarios. In this paper, an empirical evaluation of the impact
of negotiation communication costs occurred when composing
services to deliver a QoS-aware SBA is carried out, in order
to estimate the advantages and disadvantages of negotiation in
a market of services, and to identify negotiation parameters
settings for which communication costs can be compensated by
an increased probability for the negotiation to succeed.

I. INTRODUCTION

The increased popularity of the Service-Oriented-
Computing (SOC) paradigm [1] is enhancing the development
of Service Based Applications (SBAs) that are distributed
applications obtained by combining existing services in a
loosely coupled manner that collectively fulfill a requested
task. Services are independent and autonomous entities
provided by different service providers to be consumed by
users requesting a given application. Users do not need to be
aware of the actual composition as long as the functional and
non-functional requirements are satisfied [2]. The consumption
of these services is commonly governed by an agreement
among providers and consumers, known as Service Level
Agreement (SLA), which regulates terms and conditions of
service provision [3]. Agreements on service provisioning
may include not only the provider’s commitment to execute
a given task (coming from functional requirements), but they
also include terms about performance levels (or quality levels)
of services [4] (coming from non-functional requirements).
Service non-functional requirements refer to service attributes
known as Quality of Service (QoS) attributes that play an
important role in service selection.

In a previous paper [5] we proposed a market-based ne-
gotiation mechanism among service providers and a service

* Ph.D. scholarship funded by Media Motive S.r.l, POR Campania FSE
2007-2013.

consumer to select the suitable services to compose QoS-
aware SBAs. The approach allows for the selection of ser-
vices according to the values of their quality attributes that,
once aggregated, have to meet end-to-end user QoS con-
straints/preferences. The negotiation-based mechanism allows
to take into account the variability of service QoS attribute
values typical of the future market of services since service
providers may change these values during the negotiation
according to their own provision strategies, and market trends.

The negotiation protocol is designed as a one-to-many-to-
many iterative protocol since the service consumer negotiates
at the same time with the different providers of each function-
ality required in the SBA, as well as with the providers of the
different functionalities required in the SBA in a coordinated
way. In fact, when dealing with end-to-end QoS requirements
typical of SBAs, the QoS values of each functionality are
not independent from one another, but it is necessary to
find a set of interrelated QoS values. So, the negotiation
process may require several iterations to successfully end,
becoming computationally expensive in terms of the involved
communication costs.

In this paper we propose an experimental evaluation of the
proposed negotiation mechanism in terms of its computational
costs due to the communication overhead coming from the
possibility to negotiate with all the available providers during
each iteration of the negotiation. The aim of the evaluation is
to compare the cost of negotiation with respect to the potential
benefit of having a success at the end of the process, and to
evaluate the pros and cons in negotiating with all available
providers until the negotiation ends.

The paper is organized as follows. In Section II some
works related to service composition are reported; Section
III describes the main features of the negotiation mechanism
adopted in the present work; in Section IV the rationale of the
experiments set to evaluate the cost of the negotiation protocol
is reported, together with the decision making mechanisms
adopted by the service compositor and the service providers
during the negotiation. Then the experiments carried out,
and the evaluation of the obtained results are described and
discussed in Subsections IV-B, and IV-C. Finally, Section V
reports some conclusions and planned future works.

II. RELATED WORKS AND BACKGROUND

Service composition allows to aggregate autonomous and
independently developed services in order to build added
value applications (SBAs). With the pervasive growth of avail-
able services, it is widely recognized that multiple services
providing the same functionality may be available, but they
may differ in their non-functional features, usually known
as Quality of Service, such as cost, execution time, and so
on. In this context, users will require SBAs specifying their
own preferences/constraints on the global QoS values of the
application, so it becomes crucial to select the appropriate
component services, i.e., services whose QoS attribute values,
once aggregated, meet users’ preferences/constraints.

Several research efforts addressed this challenge proposing
approaches that mainly apply static methods to find the set
of services whose QoS values meet the global constraints set
by the users. Some works propose algorithms to select service
implementations relying on the optimization of a weighted sum
of global QoS parameters as in [6] by using integer linear
programming methods. In [7] local constraints are included
in the linear programming model used to satisfy global QoS
constraints. In [8] Mixed Integer Programming is used to
find the optimal decomposition of global QoS constraints into
local constraints so that the best services satisfying the local
constraints can be found. Typically, these works rely on static
approaches assuming that QoS values of each service are pre-
defined by providers and do not change during the selection
process.

In dynamic markets where service provision is regulated
by demand and supply mechanisms, it is likely that different
users may have different QoS requirements for the same (from
a functional point of view) application, as well as QoS attribute
values for the same service may change in time according to
dynamic circumstances affecting service provision strategies.
In this context, it becomes crucial to provide service-oriented
infrastructures with mechanisms enabling the selection of
services with suitable QoS attribute values so that QoS re-
quirements can be satisfied when forming new added-value
applications through service composition. Such mechanisms
should allow to manage the dynamic nature of both QoS
values, and QoS requirements. Negotiation has gained more
and more attention in SOC applications as a viable approach to
drive the selection of suitable component services. It allows to
address the dynamic nature of both the provided and required
QoS since the offered QoS value of single services may change
as soon as new offers and counteroffers are exchanged.

Practical negotiation mechanisms for B2B applications
must be computationally efficient [9]. This implies that the
interaction rules have to guarantee the quick end of the process
and that agents behaviors and negotiation strategies should be
developed based on the assumption of bounded rather than
perfect rationality [10]. One of the common requirements for
a negotiation protocol is the monotonicity of the utilities of
the offers as in [11]. This allows to guarantee the end of the
process without a deadline: either an agreement is reached
(sooner or later), or a conflict is reached in the case all agents
stop to concede in utility.

Most approaches, that use negotiation mechanisms to se-
lect services according to their QoS values, usually apply

negotiation for each required service independently from the
others relying on bilateral one-to-one negotiation mechanisms
[4], [12]. Attempts to propose a coordinated negotiation with
all the providers of the different required services in a com-
position have been proposed as in [2], but they introduce a
Negotiation Coordinator that instructs the negotiation of the
single component services by decomposing end-to-end QoS
into local QoS requirements, so making the negotiation process
computationally heavier from the point of view both of the
involved negotiators, and of the necessary decision making
mechanisms.

III. ONE-TO-MANY-TO-MANY NEGOTIATION PROTOCOL

In this work we adopt the iterated negotiation mechanism
proposed in [5], starting from the assumption that SLAs for
QoS-aware SBAs have to be set by coordinating the single
agreements of each component service.

In the proposed approach a Service Compositor (SC),
acting on behalf of a service consumer, issues an SBA request
represented by a Directed Acyclic Graph, referred to as an
Abstract Workflow (AW), specifying the functionality of each
service component (AW nodes referred to as Abstract Services
ASs), and their functional dependence constraints (AW arcs),
together with the value(s) of the end-to-end QoS requirements
the user wants the application to provide. It is assumed that for
each AS a set of Concrete Services (CSs) are available on the
market, each one provided by a specific Service Provider (SP)
with QoS attributes whose values are set by the corresponding
SP dynamically. The protocol allows only the SPs to formulate
new offers, and only the SC to evaluate them. The rationale
of this choice is twofold: on one hand it makes it possible to
simulate what happens in a real market of services where an
SC does not have enough information on the SPs strategies
to formulate counteroffers; on the other hand it takes into
account that the offers for a single functionality cannot be
evaluated independently from the ones received for the other
functionalities. So, it is necessary to design a negotiation
mechanism that allows both to negotiate with the SPs providing
services for each required functionality in the AW, but at
the same time to evaluate the aggregated QoS value of the
received offers for all the required functionality in the AW
during the negotiation. Indeed, the SC is not able to make
single counter-proposals with respect to each received offer,
because the change of a value of a particular QoS can impact
the others QoS attributes of the same service, as well as the
constraints to be fulfilled by the QoSs of the other services. In
other words, negotiating over the attributes of the single AS
cannot be done independently from each other.

Since SC does not provide counteroffers the negotiation
could be model as simply an auction mechanism as in [13].
However, in order to model a real market of services, it cannot
be assumed that all providers, providing different functional-
ities, follow the same rules when bidding (such as Vickrey,
English, and so on), as it happens in auctions mechanisms.
In fact, rules may vary according to the type of provided
service (i.e., its functionality), and above all according to the
trends of the market that may vary quickly, and not in the
same way for all the QoS attributes. With auction mechanisms,
each bidder may have its own strategy, but once the type of
auction is decided, then all bidders know the rules and they

have to stick to them until the auction ends. Moreover, a simple
auction mechanism cannot be used in our setting because of the
interdependence among the QoS attributes of the component
services. In fact, it would not be possible to award an auction
winner without evaluating the offers for a given AS with
respect to the ones received for the other ASs in the AW.
We argue that these solutions do not model what happens in
real markets of services where predefined bidding mechanisms
cannot be assumed and fixed for all the service types and
for all the considered QoS attributes. Therefore, traditional
methods with the protocols and strategies hard-coded in the
agents would not work in real market of services that are open
systems.

This is why an hybrid negotiation approach was used,
where an auction-like protocol models the bidding of single
component services, but without relying on a specific auction
mechanism to allow SPs to adopt their own private strategies
when bidding, and also to change them if required by the
market trends.

Figure 1. The negotiation protocol.

In [5], we presented a one-to-many-to-many protocol
(OMM) for the dynamic selection of services, based on the
FIPA Contract Net Iterated Protocol [14], [15] (ICNET), one of
the most used protocols for negotiating SLAs [4]. As described
in Figure 1, the negotiation occurs between the SC, that is the
initiator of the negotiation, and the SPs available for each AS
of the AW, and it may be iterated for a variable number of times
until a deadline is reached or the negotiation is successful. The
deadline is the number of allowed rounds. The SC prepares m
call for proposals (cfps), one for each AS in the AW and,
assuming that there are n SPs for each of the m AS, it sends
m ∗ n cfps at each negotiation round. After waiting for the
time set to receive offers, if there are not offers for each AS
in the AW, the SC rejects the received proposals (reject
proposal) since it is not possible to find a CS corresponding
to each AS. Otherwise, it evaluates the received offers, and, if
the QoS value obtained by aggregating the received offers does
not meet the user request, it starts another negotiation round
sending m ∗ n reject proposals, and, at the same time,

new m∗n cfps. If the QoS values of the received offers, once
aggregated meet the user request, it accepts the offers sent by
the corresponding SPs (sending m accept proposals and
m ∗n−m reject proposals). If the deadline is reached
without a success, the negotiation ends.

IV. EVALUATING THE NEGOTIATION COST

We evaluate experimentally the efficiency of the negotiation
mechanism with respect to two performance measures: negoti-
ation outcome (i.e., utility of the solution and/or the negotiation
success rate), and communication complexity (i.e., the number
of exchanged messages), by varying the parameters affecting
the OMM protocol that are the number of allowed negotiation
rounds, and the number of SPs involved in the interaction.

A. Compositor and Providers Utility Functions and Strategies

Here, we briefly describe the decision making algorithm
for the SC evaluation of proposals, and the strategies adopted
by SPs to generate an offer, as proposed in [5], considering
the case of a single additive QoS parameter (the parameter
considered here is the “price”).

Following the approach formulated in [8], the SC first
evaluates the utility of the offer provided by the jth SP for
the ith AS, with respect to both the other offers for the
same AS (local evaluation), and to the entire workflow (global
evaluation):

USC(oi,j) =
maxk(pricei,k)− pricei,j∑m

i=1(maxk(pricei,k)−mink(pricei,k))
(1)

where i identifies one of the m ASs and the j identifies
one of the n SPs. Once the most promising offer for each
AS is selected according to Eq. 1, we modeled the global
requirements satisfaction problem in terms of SC’s global
utility. This utility is related to the distance between the QoS
preferences, expressed at the time the request is issued, and
the aggregated QoS values obtained by combining the the best
selected offers. It is normalized so that it is 1 in case the
requirements are met, and in [0, 1] otherwise. The SC’s utility
is expressed as follows:

USC =

1 if

∑m
i=1 pricei,s < reqPrice

1−
∑m

i=1 pricei,s−reqPrice

reqPrice otherwise

(2)

where, pricei,s is the price offered for the ith AS by the
selected sth SP,

∑m
i=1 pricei,s is the aggregated value for the

price, and reqPrice is the user requested price.

On the contrary, SPs apply their own strategies to formulate
their offers. These strategies are modeled as a set of functions
that are both time and resource dependent [16], and they take
into account both the computational load of the provider,
and the computational cost of the provided service. The
computational load of the provider accounts for the number
of requests it agreed to fulfill, i.e., the amount of service
implementations it will deliver, while the computational cost

of the service represents a measure of the complexity of the
provided service, i.e., the more complex the service is the
higher its expected cost is. SPs strategies to concede in utility
are modeled as Gaussian distributions [5]. The mean value of
the distribution maxU is the best offer the SP may propose
in terms of its own utility and as such it has the highest
probability to be selected. The standard deviation σ represents
the attitude of the SP to concede during negotiation and it
varies from SP to SP providing the same AS, so that the
lower the SP’s computational load is, the more it is available
to concede in utility and the lower its reservation value is. The
best offer maxU is the same for all SPs of the same AS. This
assumption models a scenario where services providing the
same functionality have the same “market price” corresponding
to the maximum utility for the SP providing that service.
At each negotiation round, the SP generates, following its
provision strategy, a new value of utility corresponding to a
new offer to be sent to the SC by comparing the new offer with
the previously generated one to decide whether to submit it or
not. This is a variation of the standard negotiation mechanisms
where the utility of a new generated offer is compared with
the last one generated by the other negotiation partner.

B. Experimental Settings

The configurations considered for the experiments set five
different deadlines at 1, 10, 20, 30 and 40 rounds, and for each
deadline the number of SPs at 2, 4, 8, 16. Let us highlight
that for a deadline of 1 round, the protocol is based on m
concurrent ContractNet Protocols (CNET). We also considered
a configuration where the negotiation occurs only with one SP
for each AS, that is the best SP, in terms of USC(ox), according
to the offers received at round 1. In this case the deadline varies
from 10 to 40 rounds.

In the configurations there are 5 ASs, AS1, AS2, AS3,
AS4, AS5, with a computational costs decreasing from AS1

to AS5. The user requested price is 1500$ (reqPrice). For
each AS a default price bestPricei is set, and the corre-
sponding SPs will send as initial offer a price randomly
extracted in the neighborhood of bestPricei [bestPricei −
5%∗bestPricei, bestPricei]. This is because, even though the
market price of services corresponding to the same AS is the
same, to model a real market of services the variability of the
first offered price is introduced. In the experiments, the market
prices for the ASs are: bestPrice1 = 540$, bestPrice2 =
468$, bestPrice3 = 351$, bestPrice4 = 270$, bestPrice5 =
216$. The σ value randomly varies for each SP in the range
[0.0, 0.5], so including the possibility that SPs with the
maximum computational load are not willing to concede.

C. Evaluation of Results

In all the experiments 100 tests were performed for each
of the described configurations.

Table I. SUCCESS RATE VARYING THE NUMBER OF ROUNDS WITH
ONLY THE “BEST” SP FOR EACH AS.

Rounds 10 20 30 40
1SP for AS 1% 6% 12% 12%

In Figure 2 the percentage of negotiation successes varying
the number of rounds and the number of SPs (from 2 to

Figure 2. Success rate varying the number of rounds and the number of SPs
for each AS.

16) for each AS is plotted. In Table I the same percentage
is plotted, varying the number of rounds, but in the case of
negotiation with only the “best” SP for each AS. As expected,
for a deadline of 1 round (simple CNET protocol) we have
100% of failures since the specific settings of the tests require
a negotiation phase to find a solution. In Table I the results
show that selecting the best SP at round 1 does not reduce
the negotiation cost. In fact, only the 12% of success rate is
obtained with 30 or 40 rounds of negotiation allowed, so the
computational cost of the negotiation is not compensated by
an high rate of success. A better trend is obtained by adding
another provider for each AS (as shown in Figure 2). In fact,
in this case, with 30 or 40 rounds of negotiation allowed, 50%
of successes are obtained. Scaling up the number of SPs from
4 to 16 the success rate increases from 90% to 100% just after
10 rounds. These results support the choice to negotiate with
all the available SPs, as proposed by the OMM protocol, since
the cost of negotiation is partially compensated by an increase
in the negotiation success rate.

Table II. NUMBER OF MESSAGES VARYING THE NUMBER OF SPS AND
THE DEADLINE.

SPs
1 2 4 8 16

#
ro

un
ds

1 15 30 60 120 240
10 150 300 600 1200 2400
20 300 600 1200 2400 4800
30 450 900 1800 3600 7200
40 600 1200 2400 4800 9600

In order to evaluate the computational cost of the OMM
protocol, also the number of exchanged messages are consid-
ered. At each negotiation round the SC sends m ∗ n cfps,
receives at the most m∗n possible offers, and it sends back at
most m∗n accept and/or reject messages. This means that for
each round the cost of communication in terms of exchanged
messages is 3 ∗ n ∗m. The numbers of messages are reported
in Table II for all the experimental configurations.

A comparative evaluation of Table II and Figure 2 is
shown in Figure 3 that provides information on the trade-
off between communication costs and success rate. In par-
ticular from configurations with 2400 exchanged messages
to configurations with 9600 no variation in success rate is
obtained (that is stable at 100%). This means that from 2400
onward there is only a communication overhead without any
gain in the success rate. A first conclusion of this evaluation
is that negotiating with 16 SPs for each AS with respect to

Figure 4. The SC’s utility for different configurations in case of tests that led to a success (on the left) or to failure (on the right).

Figure 3. Success rate evaluated with respect to the number of messages.

negotiating with 8 SPs will not change the success rate, but it
will only require more exchanged messages. So, in this case,
selecting a subset of available providers reduces the cost of
communication without affecting the success rate. Moreover,
as already showed in Figure 2.b, such selection cannot be made
only evaluating current offers because promising providers
may change their concession strategy during the interaction.
However, a bigger number of SPs, as shown in the following
figures will provide a quicker achievement of the agreement,
so reducing the negotiation length. Such evaluation of the
number of exchanged messages with respect to the success
rate shows that, in the case of a relevant number of available
providers, long negotiation mechanisms are not necessary. So,
in the following experimets only negotiation deadlines smaller
than 40 rounds will be considered.

In Figure 4 the variation of the SC’s global utility is
reported at different negotiation rounds varying the number of
available SPs and the deadline of the negotiation. In particular,
on the left cases leading to success are considered varying the
number of SPs for each AS from 2 to 16, and the deadline

from 10 to 30 rounds. On the right cases leading to a failure
are considered with the same deadlines as before, but varying
the number of SPs for each AS from 2 to 4 since by increasing
the number of SPs only successes are obtained from the round
10th onward. Let us note that the success is obtained as soon
as the SC’s utility becomes equal to 1, and it is reached in a
less number of rounds by increasing the number of SPs for
each AS. In case of failure, the SC’s utility varies very little
by increasing the number of the negotiation rounds, so making
proceeding with negotiation expensive without any benefit.

Table III. SC’S UTILITY VARIATION IN CASE OF FAILURES.

Round Range
10/20 20/30 30/40

#S
Ps 2 0,0223 0,0082 0,0042

4 0,0221 0,0043 0,0083
Average 0,0222 0,0063 0,0062

STD 0,0002 0,0028 0,0029

In Table III the SC’s utility variation in case of failure
is reported in order to allow the SC to dynamically stop the
negotiation according to its trend, i.e., according to whether
and in which measure its utility is varying. The variation is
calculated as a difference between the value of the SC’s utility
respectively at rounds 10 and 20 (for the first column), at
rounds 20 and 30 (for the second column), at rounds 30 and 40
(for the third column). The variation is evaluated varying the
number of SPs (2 and 4). The average SC’s utility variation,
and the corresponding standard deviation are also reported. As
shown in Table III, in the configurations with the number of
SPs equal to 2 and 4, by increasing the number of rounds
the SC’s utility variation is less than 1% after 20 rounds, so
indicating that keeping on negotiating is not likely to lead to
a success.

V. CONCLUSIONS AND FUTURE WORKS

Software agent negotiation is considered a promising
approach for modeling the interactions between a service
consumer and service providers when composing QoS-aware
Service Based Applications. It is well recognized that the pro-
vision of such applications will be regulated by an agreement
between the application consumer and the providers of the
component services stating agreed terms and conditions related
to both functional and non-functional application features. In
particular, the negotiation mechanism is suitable to model the
interactions occurring among consumers and providers when
services are provided according to market-based mechanisms
and when dynamic features, like QoS ones, have to be con-
sidered.

Nevertheless, automated negotiation did not succeed in real
service-oriented market scenarios since it is computationally
expensive in terms of the involved decision making mech-
anisms, and the communication overhead deriving from the
complexity of the communication patterns.

In this work, an evaluation of the cost of the negotiation
mechanism proposed in [5] is carried out with the aim to
extract useful information to limit the length of the negotiation
and also its communication overhead.

The experiments were carried out for different configura-
tions obtained by varying the two parameters affecting the cost
of communication that are the number of involved negotiators,
i.e., the number of SPs, and the number of negotiation rounds
determining the length of the negotiation. The results showed
that the increase in communication costs due to the possibility
of negotiating with all the SPs instead of just one for each
service type, is partially compensated by the fact that by
increasing the number of SPs the success rate of the negotiation
increases. In fact, in the case the best SP is selected to
continue the negotiation, a 100% failure is obtained also by
increasing the length of the negotiation. This is because in
a market of services, that is dynamic by nature, it is not
possible to assume that a promising provider will keep on
sending promising offers, because a less promising provider
may change its strategy in the meantime according to market
trends and/or market strategies that are tied also to the specific
service or quality attribute. So, the choice of negotiating with
all the SPs is supported by the obtained results. Furthermore,
in most configurations, the overhead due to the communication
cost is partially compensated by a decrease in the negotiation
length, i.e its overall computational cost.

In some cases the negotiation progress in terms of the
distance between the requested QoS and the QoS obtained at
each negotiation round shows that it is not worth to proceed
with the negotiation after a certain number of rounds since no
gain is obtained in the success rate. This means that in these
cases the negotiation can be stopped without any loss in terms
of consumer’s utility, so limiting the cost of negotiation in
terms of its length. Of course, these results are related to the
considered configurations, and also to the specific strategies
adopted for the SPs.

We plan to extend the proposed negotiation mechanism by
including the possibility for the SPs to change their strategies
on fly, and to carry out more experiments by considering

different set of strategies to evaluate the negotiation cost in
different experimental settings.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the EU FP7-ICT-2012-8 under the MIDAS Project
(Model and Inference Driven - Automated testing of Services
architectures), Grant Agreement no. 318786, and the Italian
Ministry of University and Research and EU under the PON
OR.C.HE.S.T.R.A. project (ORganization of Cultural HEritage
for Smart Tourism and Real-time Accessibility).

REFERENCES

[1] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” IEEE
Computer, vol. 40, no. 11, pp. 38–45, 2007.

[2] J. Yan, R. Kowalczyk, J. Lin, M. B. Chhetri, S. K. Goh, and J. Zhang,
“Autonomous service level agreement negotiation for service composi-
tion provision,” Future Generation Computer Systems, vol. 23, no. 6,
pp. 748 – 759, 2007.

[3] A. Keller and H. Ludwig, “The wsla framework: Specifying and
monitoring service level agreements for web services,” J. Network
System Management, vol. 11, no. 1, pp. 57–81, 2003.

[4] S. Paurobally, V. Tamma, and M. Wooldrdige, “A framework for web
service negotiation,” ACM Trans. Auton. Adapt. Syst., vol. 2, no. 4, Nov.
2007.

[5] C. Napoli, P. Pisa, and S. Rossi, “Towards a dynamic negotiation mecha-
nism for qos-aware service markets,” in Trends in Practical Applications
of Agents and Multiagent Systems, ser. Advances in Intelligent Systems
and Computing. Springer International Publishing, 2013, vol. 221, pp.
9–16.

[6] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,” IEEE
Transactions on Software Engineering, vol. 30, no. 5, pp. 311–327, may
2004.

[7] D. Ardagna and B. Pernici, “Adaptive service composition in flexible
processes,” IEEE Trans. on Software Eng., vol. 33, no. 6, pp. 369–384,
2007.

[8] M. Alrifai and T. Risse, “Combining global optimization with local
selection for efficient qos-aware service composition,” in Proceedings
of the 18th Int. Conf. on World Wide Web, ser. WWW ’09. New York,
NY, USA: ACM, 2009, pp. 881–890.

[9] R. Y. K. Lau, “Towards a web services and intelligent agents-based
negotiation system for b2b ecommerce,” Electronic Commerce Research
and Applications, vol. 6, no. 3, pp. 260–273, 2007.

[10] A. Lomuscio, M. Wooldridge, and N. Jennings, “A classification
scheme for negotiation in electronic commerce,” Group Decision and
Negotiation, vol. 12, no. 1, pp. 31–56, 2003.

[11] G. Zlotkin and J. S. Rosenschein, “Mechanism design for automated
negotiation, and its application to task oriented domains,” Artif. Intell.,
vol. 86, no. 2, pp. 195–244, 1996.

[12] F. Siala and K. Ghedira, “A multi-agent selection of web service
providers driven by composite qos,” in Proc. of 2011 IEEE Symposium
on Computers and Communications (ISCC). IEEE, 2011, pp. 55–60.

[13] P. R. Wurman, M. P. Wellman, and W. E. Walsh, “The michigan internet
auctionbot: a configurable auction server for human and software
agents,” in Proceedings of the second international conference on
Autonomous agents, ser. AGENTS ’98. New York, NY, USA: ACM,
1998, pp. 301–308.

[14] R. G. Smith, “The contract net protocol: High–level communication and
control in a distributed problem solver,” IEEE Trans. on Computers,
vol. 29, no. 12, pp. 1104–1113, 1980.

[15] “Fipa iterated contract net interaction protocol specification.”
[16] P. Faratin, C. Sierra, and N. R. Jennings, “Negotiation Decision Func-

tions for Autonomous Agents,” Robotics and Autonomous Systems,
vol. 24, pp. 3–4, 1998.

