
Trust Negotiation for Automated Service Integration

Filippo Agazzi, Michele Tomaiuolo
Dipartimento di Ingegneria dell'Informazione

Università di Parma
Parma, Italy

{agazzi, tomamic}@ce.unipr.it

Abstract—This paper presents a generic Trust Negotiation
framework for Web services, based on the WS-Trust standard. It
allows users to create trust incrementally, by disclosing
credentials step by step. This way, services and resources can be
shared in an open environment, and access can be realized on the
basis of peer-to-peer trust relationships. The paper also describes
a practical implementation of the framework, which integrates a
modular trust engine and a rule engine, which is used as a policy
checker.

Security; trust; Web services; rule-based systems

I. INTRODUCTION

The automatic or assisted management of trust relationships
is a fundamental requirement to allow the provision and use of
disparate services in an open environment. At the global scale,
the assumption that all users are known in advance, or they can
be easily managed through a traditional Access Control List, is
not realistic. In fact, the potential user base of an application
provided on the open Internet is still growing, with the mass
adoption of social networking tools. Since nowadays contacts
among people may develop fully online, possibly with no body
of knowledge to associate with a name, more flexible schemes
are needed. Currently, no general solutions are available for the
problem of identity management, assuming a global database
of names and personal profiles is both unfeasible and
undesirable. Moreover, online interactions may involve human
users together with software agents, possibly with a common
understanding of the exchanged messages, on the basis of
Semantic Web technologies [1]. Given such a new way people
are using the Internet today, the approach of Automated Trust
Negotiation (ATN) [2][3] is becoming relevant, because it
allows unknown users and agents desiring to share any
resource or service, to establish a level of trust in an
incremental way through the exchange of credentials.

In this scenario, the open selection and composition of
services is made possible, since ATN simplifies the creation
and management of trust bounds. In fact, delegation and
workflow composition [4] may only be applied on the basis of
careful protection of resources and information. This requires a
clear analysis of risks and opportunities associated with local
trust bounds, on the basis of their socio-cognitive constituents
[5], including competence, disposition, dependence and
fulfillment. The problem of authorization can thus be solved in
a fully distributed way, as access rights can be assigned and
delegated on the basis of the local trust assumptions, in a
typical Trust Management scheme [6].

This paper is organized as follows: Section II presents an
overview and a literature review of ATN; Section III describes
a generic trust negotiation framework for Web services, based
on the WS-Trust standard; Section IV provides details about
practical implementation and use of such a framework,
including first performance results; finally, some concluding
remarks are provided.

II. BACKGROUND

A credential is generally defined as a digital certificate
attesting, via a digital signature, the association of one or more
attributes to an entity, identified through its public key. This
entity, i.e. the certificate subject, can attest the ownership of the
presented credential by demonstrating to possess the
corresponding private key. Notably, the entity that originally
issued and signed the certificate is not necessarily requested to
participate directly in the verification process.

Attributes in a credential can be considered sensible or not.
The case of non-sensible attributes does not require any
particular care. On the contrary, for the case of sensible
attributes, it is necessary to build a certain level of trust
between negotiating parties via a structured list of release
conditions. Such release conditions are generally known as
policies. An access policy for a resource R is a boolean
function, which allows or denies access depending on disclosed
credentials. It can be written as: fR(C1, C2, … Cn), where each
Ci is a credential which may be possessed by the requester. A
credential itself often holds sensitive information, and it needs
to be protected. Thus a credential disclosure policy should be
defined for revealing a certain credential C. It will be a boolean
function of the form: fC(C1, C2, … Cn). Finally, for selecting the
credentials to disclose, a client could need to access a service
policy P. But also this policy can be considered reserved. In
this case, it should be associated with a policy disclosure
policy: fP(C1, C2, … Cn). That is, credentials and policies are to
be considered as sensitive resources, and thus they need to be
protected by access policies, along other kinds of resources.
Access control can be implemented on the basis of different
kinds of security credentials, including X.509 certificates and
SAML assertions. Moreover, different languages have been
defined to represent policies [7][8] in an appropriate and
expressive way.

These are the cases where trust negotiation provides its full
benefits. Digital credentials are exchanged step by step, to
increase the level of trust between involved parties, and the
flow of credentials between two entities through a sequence of

requests and releases is what is actually intended with trust
negotiation.

A policy language for Trust Negotiation must allow to
specify all these conditions. A policy has to be considered
satisfied only when the requester discloses all the required
credentials, and this verification requires to use a formal policy
language, with precise semantics. Another important
consideration is that, to fit the wide Internet, such language has
to be comprehensible and agreed by all involved entities. In the
last years, scholars and firms have proposed various languages,
like the IBM Trust Policy Language or the Role-Based Trust
Management Language (RT). All those languages, however,
were related to some particular engines to compute and decide
about certain policies. Moreover, a number of languages are
being proposed by ongoing research works, but with a limited
scope of application, to be shared by some nodes which
interact using the same framework or the same software
infrastructure, for example in the context of Web Services.

With respect to the management and computation of
policies in a trust negotiation, a particularly important element
is the policy compliance checker. Starting from a policy and a
set of credentials, the policy compliance checker must be able
to find the credentials which satisfy the policy, if they are
effectively available as a subset of all disclosed credentials. For
this purpose, it is also necessary to translate each credential
from its original format into an assertion of the policy
language. Considering the example of a client requesting a
service, one of the problems to solve is how the client comes to
know which credentials it is required to present, and how the
policies protecting the service and the credentials are disclosed.

A. Negotiation Strategies

From the architectural point of view, each entity
participating in an Automated Trust Negotiation has a Security
Agent (SA). The SA has the fundamental responsibility of
managing the negotiation, computing available policies and
credentials, both the local ones and those disclosed by a remote
entity, and taking the decision to authorize the disclosure of
some credentials and policies at a given phase of a negotiation.
These decisions, as well as the exchanged messages and the
disclosure of policies and credentials, can be conducted in a
number of ways, which is essentially unlimited. A negotiation
strategy defines the protocol for the modality and decisions.

The main goal of a strategy is to reach a successful
completion of the negotiation protocol, in the respect of certain
requirements. A strategy decides when and which credentials
must be disclosed and inserted into a message to send to the
other party; how much computational load to dedicate to the
negotiation (e.g., the maximum number of rounds) and other
decisions about the behaviour to pursue during the negotiation.
Moreover, a negotiation is not always possible, since for
example one of the two parties does not possess sufficient
credentials: the strategy has to determine the moment to
abandon the negotiation, since it is not possible to conclude it
with success.

The execution of a negotiation requires some agreement on
a common protocol, with the intended agreement that each
subject is free to apply a possibly different strategy. The
characteristics of a negotiation are defined by the adopted
strategies. Some of the tasks of such strategies are related to

which credentials are released, when they are released, which
parties are required to unlock the release of another credential
and when the negotiation closes, successfully or not. The
success of a negotiation is not always possible. One of the
subjects could not have all the needed credentials, or one of the
subjects could implement a policy imposing a cyclic
dependency. Therefore, it is worth defining properties that
should be expressed, in the best possible way, by a strategy:

• A strategy should bring a negotiation to success, when
such a possibility exists. Strategy having such a
property are said to be complete.

• Ideally, a strategy should avoid the release of
information which is not strictly required to bring the
negotiation to an end.

• A strategy should truncate a negotiation when it
cannot bring to a successful conclusion.

• A strategy should recognize a cyclic dependency
among credentials and policies.

• The strategy should be reasonably efficient.

There is a vast choice of possible negotiation strategies,
each one with its peculiar features. An important distinction
can be drawn upon the level of prudence in the disclosure of
credentials and policies. In [2] and [7], the following strategies
are considered:

Eager Strategy. This strategy is complete and efficient.
Participants release all their credentials as soon as the relevant
policy is satisfied, without waiting the credential to be
requested. This strategy is very simple and brings the
negotiation to success whenever it is possible. Nevertheless, it
reveals more credentials than those strictly needed to create the
minimum level of trust.

Parsimonious Strategy. In this strategy, the number of
exchanged credentials is minimized. It is reasonably efficient
and it concludes with success whenever it is possible. At the
beginning, parties exchange credential requests, but not the
credentials themselves. All possible release sequences are then
explored. The path that brings the negotiation to success with
the minimum number of exposed credentials is selected and
followed. Unfortunately, due to the possible limitations in the
level of cooperation between two subjects, the global minimum
solution is not guaranteed.

Prudent Strategy. This strategy allows establishing trust
without revealing irrelevant credentials, while remaining
reasonably efficient. In [9] the communication complexity is
shown to be O(n2), and the computational complexity to be
O(nm), where n is the number of credentials and m is the size of
the policy regulating the release of credentials.

In the heterogeneous world of Internet, each entity must be
free to choose the strategy that is the best compatible with its
own requisites and objectives. It is quite possible that two
unknown entities will choose different strategies. Thus, there is
a problem of how to make such strategies interoperable, and if
it is possible. In [10], a family of strategies, called DST
(Disclosure Tree Strategy), is proposed as a solution to this
problem. A family of strategies is defined as a set of
reciprocally compatible and interoperable strategies. An
important advantage regards the fact that a Security Agent can
choose, among a set of strategies belonging to the same family,
the closest one to its own requisites. Moreover, this way it can

adopt different strategies, during the different stages of a
negotiation.

III. APPLICATION OF ATN TO WSS

This section describes a generic trust negotiation protocol
for web services. The protocol is designed in conformance to
relevant standards for Web services security. Thus, it first
presents an overview of these standards.

A. Standard protocols for Web services security

SOAP Web services can exploit the SOAP header as an
extensible container for message metadata, which provides
developers with a set of options also covering the most typical
security issues. The so-called WS-* specifications are designed
in order to be composed with each other. WS-Security supports
the definition of security tokens inside SOAP messages and
uses XML Security specifications to sign or encrypt those
tokens or other parts of a SOAP message. It provides a level of
abstraction which allows different systems, using different
security technologies, to communicate securely using SOAP in
a way which is independent from the underlying transport
protocol. This level of abstraction allows developers to use
existing security infrastructure and established industry
standards for authentication, encryption and signature, but also
to incorporate new security technologies. Other specifications
provide additional SOAP-level security mechanisms.
WS-SecureConversation defines security contexts, which can
be used to secure sessions between two parties. WS-Trust
specifies how security contexts are issued and obtained. It
includes methods to issue, validate, renew and forward security
tokens, to exchange policies and trust relationships between
different parties. WS-Policy allows organizations to specify
various requirements and qualities about the Web services they
expose. This specification provides a general purpose model
and the corresponding syntax to describe the requirements and
constraints of a Web service as policies, using policy
assertions. WS-SecurityPolicy is based on the structure of
WS-Policy and allows an entity to define, through a set of
policy assertions, its own security constraints and
requirements. Moreover, a set policy subjects can be associated
with each specified assertion. WS-SecurityPolicy allows a Web
Service to define a set of assertions, and thus its own security
requirements, using a standard and interoperable format [8].

Apart from WS-* specifications, additional formats and
protocols are being defined by OASIS, to provide a higher
level of interoperability among services. The eXtensible
Access Control Markup Language (XACML) is a language for
specifying Role- or Attribute-Based Access Control policies.
The Security Assertion Markup Language (SAML), in
particular, is an open XML-based format to convey security
information associated with a principal. The generic structure
of a SAML assertion is very similar to what is usually called a
“digital certificate”, i.e., an issuer attests some properties about
a subject, defines the validity limit of the claim, and digitally
signs the document to prove its authenticity and to avoid
tampering. SAML itself deals with three different kinds of
assertions: (i) authentication, (ii) attribute, and (iii)
authorization decision [8].

The WS-Trust standard [11] defines mechanisms for
mediating trust relations among entities in the context of Web
Services. It considers a security model in which a Web service

can request that a received message proves a set of claims (e.g.
name, key, privileges, etc) or, more commonly, that it carries a
security token representing a relation between the sender and
some other entity, trusted by the service provider. In this
context, a service provider can request a client, before
accessing its services, to present a token released by a trusted
entity. A new client would probably not possess a proper token
to access the service, in advance. For this reason, WS-Trust
defines a protocol for allowing a client to contact an authority,
trusted by the service provider, to request the token. Such an
authority is defined as a Security Token Service (STS). An
STS, on his turn, can define the requirements which clients
have to satisfy to obtain the release of a token. As a STS is
responsible for releasing those tokens, it is also known as a
“token issuer”.

Figure 1. WS-Trust architecture

In Fig.1, arrows represent possible paths of communication
among the Requestor (client), the Web service Provider, and
the STS. The Requestor contacts the STS for receiving a
token. The STS has the duty to verify that the Requestor
possess the necessary attributes for obtaining a token. In the
case if the policy of the STS is satisfied, the STS releases a
token. At this point, the Requestor can send a message to the
Web service Provider, attaching the obtained token.

The security token released by the STS must have some
features, in particular: (i) being verifiable as effectively
released by the STS, and (ii) effectively authorizing the
requester to the use of some services. These features depend on
the type of token being released: various technologies may be
used to implement the token, such as X.509 and SAML. SAML
is well fit for this scenario as it provides a secure way to make
assertions about some subjects and their attributes. Otherwise
these features may be guaranteed on the basis of a previous
agreement, i.e., a secret, shared between the Web service and
the STS bound to the service. In fact, an STS can be a
platform-level Web service, bound to one or more Web
services, for which it plays the role of a trusted authority. A
Web service may trust the signature of the STS, or it may
request an STS to validate the token, or validate it in
autonomously.

A Requestor may be informed about the necessity to use a
security token released by an STS, as the needed Web service
can publish a policy where a certain IssuedToken is requested.

The interaction between a client and an STS occurs through a
request-response protocol.

In particular, a RequestSecurityToken is used to request a
token, and a RequestSecurityTokenResponse for responding to
the request. Each request must be associated with an action
which identifies the possible actions to request to an STS, as
defines in the WS-Trust standard: to release, renew, cancel or
validate a token. The requestor can also add claims, expressed
in a certain “dialect” depending on the application. The
requestor may also specify a service which the request applies
to, if the STS is associated with multiple Web services; in this
case, the exact endpoint reference of the Web service has to be
specified.

The response may convey a token through a
RequestedSecurityToken element. Additionally, it may convey
other proofs through an RequestedProofToken element,
containing data which the Requestor may use to demonstrate to
be authorized for using the token. For example, it may contain
a secret encrypted with the public key of the Requestor.

B. A Generic ATN Protocol for Web Services

An STS is normally integrated into a system using a single
round of messages, i.e. a RequestSecurityToken (RST), sent
from the requestor to the STS, followed by a
RequestSecurityTokenResponse (RSTR), sent from the STS to
the requestor. However, in some scenarios, more steps may be
needed before a token is obtained. In fact, the WS-Trust
standard foresees the extension of this basic mechanism,
named “negotiation and challenge framework”, which is
depicted in Fig.2.

Figure 2. WS-Trust - Negotiation and challenge framework

The message exchange starts with a RST for requesting the
token, then an arbitrary number of RSTR messages can be
exchanged between the Requestor, or other entities, and the
STS. Those RSTR messages may convey any additional
information needed for completing the transaction, before
finally transmitting the token. The WS-Trust standard defines
some elements for proposing a “challenge” the other end,
including: SignChallenge, BinaryExchange,
KeyExchangeToken. However, it does not specify how to use
such elements, or even other arbitrary elements, in a
transaction. For example, Policy elements may be used by both
parties to exchange their respective policies.

In this work, we propose a generic protocol for ATN. We
decided to use some elements already proposed in [9], when
possible. However, we organized the protocol and the content
schemas to better distinguish the two fundamental phases of
the negotiation: (i) the initialization, and (ii) the real exchange
of credentials and policies.

In the initialization phase, the parties use an extensible
TNInit element in a single turn of messaging. It contains
information useful for defining the parameters of the following
negotiation, and for verifying if there is the necessary
compatibility, before beginning a real negotiation. A TNInit
element can contain: a SignatureMaterial, for proving the
possession of a private credential; a StrategyFamily, for
identifying a supported family of strategies; a TokenFormat, for
specifying the supported type of security token.

In the negotiation phase, the parties use an extensible
TNExchange element. It can contain PolicyCollection and
TokenCollection elements, for transporting policies and
credentials, respectively, disclosed to the other party during the
negotiation. Moreover, it can contain TokenType,
RequestedSecurityToken and OwnershipProof, for conveying
the requested token and other associated proofs.

IV. IMPLEMENTATION OF A PRACTICAL STS FRAMEWORK

Following the design of a generic Trust Negotiation
protocol for Web services, a practical implementation has been
realized. At this step, it is mainly an experimentation
framework, for testing both the functionality and performance
of the proposed protocol. However, part from prototype
services and clients, most of its components are reusable for
creating open SOA-based applications, especially in the case of
dynamic service selection and composition.

The framework is available as part of the open source
dDelega project [12], at https://github.com/tomamic/dDelega.
dDelega is the result of ongoing work started with the
development of a security layer for JADE, one the most
widespread FIPA-compliant multi-agent systems [13].

In particular, it integrates a trust engine, in compliance to
WS-Trust specifications. It also integrates an advanced rule
engine for compliance checking against disclosure policies.
These engines can be used by parties in a WS environment, by
means of translator components that has been realized, in order
to complete the integration. At a more basic level, the
implementation exploits a number of frameworks developed
under the Apache Foundation umbrella, including Axiom,
Axis, Rahas, Rampart.

A. Integrating a modular trust engine

The trust engine must be able to evaluate which policies
and credentials have to be inserted into the message at each
round of the negotiation, on the basis of current state of
negotiation and policies and credentials received at the
previous round.

TrustBuilder2 (TB2) is a framework for trust negotiation,
developed for providing a flexible and extensible tool in the
context of research about this problem area. It is the second
main version of the TrustBuilder tool and it has been developed
at the DAIS (Database and Information Systems) Laboratory of
the University of Illinois [14].

https://github.com/tomamic/dDelega

TrustBuilder2 has not been realized for usage in the context
of Web services, however his modular structure allows it to be
extended for: (i) using different policy languages, (ii)
implement different negotiation strategies, (iii) and provide
support for different types of credentials.

In particular, after a proper translation we defined, it is able
to evaluate policies expressed according to the
WS-SecurityPolicy language. Starting from received policies
and credentials, it is able to analyze them and take decisions
about which credentials and policies to disclose, according to
the chosen negotiation strategy. The framework uses a policy
compliance checker, which has the duty of finding one or more
minimal sets of credentials satisfying a given policy. In TB2,
the main components of ATN are represented as interfaces,
which can be implemented and extended to add new
functionalities. They can be distinguished as:

• Strategy module: regarding negotiation strategies.
• Policy compliance checker: regarding the problem of

finding a set of credentials satisfying a policy.
• Query interfaces: used to provide access to resources,

including local policies and credentials.
• Credential chain module: used to build and validate

chains of credentials, during the negotiation process.

TrustBuilder2 is designed according to a model of
negotiation with two main phases. The first phase is
characterized by the exchange of messages containing data
structures, called InitBrick, for communicating the information
needed to initialize a negotiation.

After this phase, the main negotiation rounds take place,
characterized by the exchange of data structures called
TrustMessage, i.e. objects containing policies and credentials
to exchange during the negotiation.

In this research work TrustBuilder2 is used as a trust engine
for automated trust negotiation. A mechanism has been realized
for translating “TB2 messages”, i.e. InitBrick and
TrustMessage objects, into “WS-Trust messages”, i.e. RSTR
messages containing TNInit and TNExchange elements, which
are exchanged in the context of a “negotiation and challenge
framework”, as defined by WS-Trust.

Policy and credentials are represented as abstract classes
and credentials in TB2, in such a way to make the tool
independent from the type of policies and credentials used. The
authors of TB2 have also implemented the support for X.509
credentials; in fact, the implementation of this research work
uses X.509 credentials. In TB2, credentials are organized in
chains; i.e. when a credential, released by an authority, is sent,
then the whole chain has also to be sent. In fact, TB2 does not
process single credentials, but chains of credentials, through
the CredentialChainMediator component, which uses
algorithms to build and validate chains of credentials. This
allows administrators to create decentralized authorities, valid
for the different parties participating in a negotiation process;
moreover, it allows TB2, when processing a chain, to verify the
issuer of a credential released by an entity, starting from the
verification of the root certificate of the chain.

Moreover, our implementation requires a user to specify,
though configuration files, information about some

Figure 3. System architecture

components to be used by a client and a server, with respect to
TB2 functionalities. This allows users to customize negotiation
strategies, types of credentials and policy languages to be used
in a certain application. The credential loader module can also
be customized to load particular credentials into the system; it
has access to a list of available credentials. The profile
manager module uses the same customization to decide which
class loader to use, according to the type of credentials used by
the PolicyManager. A policy loader contains information for
the PolicyManager, to decide which policy class loader to use.

B. Using a rule engine as a policy checker

A fundamental aspect of TB2 is the logic it uses for the
functioning of its compliance checker component. In TB2, the
problem of finding a set of credentials satisfying a policy is
reformulated into the so-called “many pattern/many object
match” problem, i.e., to find the objects matching the given
patterns. Here, credentials are considered as objects and
policies as patterns, in a problem which can be solved using a
production rule engine. The rules of such engines have a
standard format, with: an LHS (left hand side), the part of the
rule defining the conditions; and an RHS (right hand side), the
part of the rule defining the action to perform in the case when
the conditions of the LHS are satisfied.

TB2 includes the Clouseau component, that is an expert
system using the Jess (Java Expert System Shell) rule engine,
which provides APIs for integration into a Java application.
The rules, representing the policies of a trust negotiation
process, define constraints on credentials. Jess implements the
Rete algorithm [15], which allows to solve the “many
pattern/many object match” problem. Using an engine of this
kind in a trust negotiation process requires to introduce rules
for representing policies, which specifies the patterns. The
knowledge base, instead, is determined by acquired credentials.
An inference can be realized by finding a set of credentials
satisfying the policy, which is exactly the duty of the policy
checker in TB2. Thus, a policy checker is nothing more than an
expert system based on production rules.

Jess does not support natively any object for representing
credentials or policies. Instead, to use credentials in Jess and to
insert them into its working memory, it is necessary to define
their format explicitly. Then, through JessComplianceChecker
class, an assert command must be constructed and executed.
This requires quite cumbersome code, for constructing thse
command as an “assert(...)” string, starting from the object
representing the credential.

Instead, in this work we have customized the
TrustBuilder2, extending it for using a different rule engine as
a policy checker. In particular, we used the Drools rule engine
[16] for the policy checker component instead of Jess,
supported by the currently available version of TB2. Drools is
based on the so-called ReteOO algorithm, i.e., an adaptation of
the Rete algorithm for object oriented systems. In Drools there
are two main storage areas: a Production Memory, where rules
are stored, and a Working Memory, where known facts are
stored. For trust negotiation, the Production Memory can be
used for storing the policies as rules, while the Working
Memory can be used for storing the credentials as facts. An
important advantage with respect to Jess is that facts in Drools
are represented as Java objects, which can be put directly into
the Working Memory. This has allowed us to develop a policy

checker with a much leaner code than the Jess policy checker.
Moreover, the tool is completely open-source, at the contrary
of Jess; it is continuously updated, with the addition of new
features, and it has the attentions of a vast and lively
community of developers.

C. Initial evaluation

The ATN process, as described in the previous sections,
was analyzed from the point of view of performance. The
evaluation regarded the influence of the various components of
the system and the conversions required by those components
for communicating. For this tests, a scenario has been realized,
in which:

• the client requests a token;
• the STS sends a policy requesting a chain of

credentials;
• the client, on the other hand, protects one of the

credentials in the chain with a policy, which he
discloses to the STS;

• then, the STS discloses the credentials satisfying the
client's policy;

• thus, the client discloses the credential chain initially
requested by the STS;

• finally, the STS sends the requested token.

Including the initialization phase, the whole process takes 4
rounds, in which both the client and the STS send a message to
the other party.

4 rounds, with Enc & Sign 6.0s
4 rounds, w/o Enc & Sign 4.8s
3 rounds, w/o Enc & Sign 4.0s
3 rounds, 1 credential requested by STS 3.0s
4 rounds, TB2, no WS 1.2s

Table 1. Initial performance results

As shown in Tab.1, the execution times vary around a mean
value of 6 seconds, including the signature and encryption of
SOAP messages, and 4.75 seconds without any signature and
encryption. Considering instead a minimal negotiation process
of three rounds, the execution time is around 4 seconds.
Decreasing the credentials required by the policy from 3 to 1,
the execution time does not vary proportionally, but it is
reduced only by around 1 second. This means that a significant
part of the computation load is absorbed by TB2, for the
evaluation of policies, in addition to the basic workload
imposed by the WS-* stack [17][18].

These qualitative results are in accordance with those
conducted by some authors of TB2 [19], which report that
almost half of the total time of execution is used by the policy
checker. Another significant comparison is with the execution
of a negotiation using only the TB2 tool, in which a TB2Client
and a TB2Server communicate directly, through a dedicated
socket, without any conversion, signature or encryption: in the
same scenario with 4 rounds, as described above, the process
takes 1.2s in TB2, against the 6s required by the whole Web
services infrastructure implemented in this work.

It is worth noting that more efforts may be dedicated to the
optimization and fine tuning of various components the system.
Thus, performance may be improved in many aspects. For

example, the inclusion of policy statements into Drools is now
a process involving various steps and conversions. In future
releases of the framework, this process will be streamlined,
enabling a more direct inclusion of policies and improving
efficiency.

V. CONCLUSIONS

This paper presented the design and implementation of a
generic Trust Negotiation framework for Web services. It
allows users to create trust automatically, by incrementally
disclosing credentials. Modular applications can integrate
services provided in an open environment, on the basis of
peer-to-peer trust relationships. Interoperability among such
services is guaranteed by the conformance to standard
protocols for Web services. The realized ATN system is
composed of various components and requires various format
conversions for messages, policies and credentials. For these
reasons, the complete execution of a negotiation process is
quite costly and imposes a significant computational overhead.
Thus, it is advisable to release tokens which can be used for
accessing a number of cohesive services in a given time
interval, without repeating the negotiation.

Besides using the framework in generic Web-based
applications, further research work will also investigate the
possibility of using an Automated Trust Negotiation protocol in
distributed social platforms [20]. In fact, especially in the case
of location-aware applications, unknown users may need to
establish some level of trust before interacting, when meeting
at a certain place or at a certain event.

In this sense, the framework described in this work will
provide a solid ground for further analysis in different
application scenarios, above all for its generality and
modularity, which permit to exploit a powerful trust engine and
a well known rule engine with very different kinds of protocols
and credentials.

REFERENCES
[1] A. Poggi. Developing Ontology Based Applications with O3L. WSEAS

Trans. on Computers 8(8): 1286-1295, 2009.

[2] Winsborough, W. H., Seamons, K. E., & Jones, V. E. (2000). Automated
trust negotiation. In DARPA Information Survivability Conference and
Exposition, 2000. DISCEX'00. Proceedings (Vol. 1, pp. 88-102). IEEE.

[3] Winslett, M., Yu, T., Seamons, K. E., Hess, A., Jacobson, J., Jarvis, R.,
& Yu, L. (2002). Negotiating trust in the Web. Internet Computing,
IEEE, 6(6), 30-37.

[4] A. Negri, A. Poggi, M. Tomaiuolo, P. Turci. Dynamic Grid Tasks
Composition and Distribution through Agents. Concurrency and
Computation: Practice and Experience, 18(8):875-885, 2006.

[5] Venanzi, M., Piunti, M., Falcone, R., & Castelfranchi, C. (2011, July).
Facing openness with socio-cognitive trust and categories. In
Proceedings of the Twenty-Second international joint conference on
Artificial Intelligence – Vol. One (pp. 400-405). AAAI Press.

[6] Li, N., Mitchell, J. C., & Winsborough, W. H. (2005). Beyond
proof-of-compliance: security analysis in trust management. Journal of
the ACM (JACM), 52(3), 474-514.

[7] Yu, T., Ma, X., & Winslett, M. (2000, November). PRUNES: an efficient
and complete strategy for automated trust negotiation over the Internet.
In Proceedings of the 7th ACM conference on Computer and
communications security (pp. 210-219). ACM.

[8] Bertino, E., Martino, L. D., Paci, F., & Squicciarini, A. C. (2010).
Standards for web services security. In Security for Web Services and
Service-Oriented Architectures (pp. 45-77). Springer Berlin Heidelberg.

[9] Lee, A. J., & Winslett, M. (2008, June). Towards Standards-Compliant
Trust Negotiation for Web Services. In Trust Management II:
Proceedings of IFIPTM 2008 (Vol. 263, p. 311). Springer.

[10] Yu, T., Winslett, M., & Seamons, K. E. (2001). Interoperable strategies
in automated trust negotiation. In Proceedings of the 8th ACM
conference on Computer and Communications Security (pp. 146-155).

[11] Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., & Granqvist, H.
(2009). WS-Trust 1.4. OASIS (February 2009).

[12] Tomaiuolo, M. (2013). dDelega: Trust Management for Web Services.
International Journal of Information Security and Privacy (IJISP), 7(3),
53-67. ISSN:1930-1650.

[13] Poggi, A., Tomaiuolo, M., & Vitaglione, G. (2005). A Security
Infrastructure for Trust Management in Multi-agent Systems. Trusting
Agents for Trusting Electronic Societies, Theory and Applications in
HCI and E-Commerce, LNCS, vol. 3577, R. Falcone, S. Barber, and M.
P. Singh, Eds. Berlin, Germany: Springer, 2005, pp. 162-179.

[14] Lee, A. J., Winslett, M., & Perano, K. J. (2009). Trustbuilder2: A
reconfigurable framework for trust negotiation. In Trust Management III
(pp. 176-195). Springer Berlin Heidelberg.

[15] Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial intelligence, 19(1), 17-37.

[16] Sottara, D., Mello, P., & Proctor, M. (2010). A Configurable Rete-OO
Engine for Reasoning with Different Types of Imperfect Information.
IEEE Transactions on Knowledge and Data Engineering, 22(11),
1535-1548.

[17] Novakouski, M., Simanta, S., Peterson, G., Morris, E., & Lewis, G.
(2010). Performance analysis of ws-security mechanisms in soap-based
web services (No. CMU/SEI9-2010-TR-023). Carnegie-Mellon
University, Software Engineering Institute.

[18] Rodrigues, D., Pigatto, D. F., Estrella, J. C., & Branco, K. R. (2011).
Performance evaluation of security techniques in web services. In Proc.
of the 13th International Conference on Information Integration and
Web-based Applications and Services (pp. 270-277). ACM.

[19] Lee, A. J. (2008). Towards practical and secure decentralized
attribute-based authorization systems. ProQuest.

[20] Franchi, E., Poggi, A., Tomaiuolo, M. (2013). Supporting Social
Networks with Agent-Based Services. International Journal of Virtual
Communities and Social Networking (IJVCSN), 5(1), 62-74.
ISSN:1942-9010.

