
A Conceptual and Computational Model for
Knowledge-based Agents in ANDROID

Fabio Sartori, Lorenza Manenti and Luca Grazioli
Department of Informatics, Systems and Communication,

University of Milano-Bicocca,
Viale Sarca 336/14, 20126, Milano, Italy

Email: {sartori, manenti}@disco.unimib.it,
l.grazioli3@campus.unimib.it

Abstract—Today ANDROID is the most popular mobile operat-
ing system in the world: the development of ANDROID, together
with the performance improvement offered by modern PDAs, like
smart-phones and tablets, has allowed many users to know new
kinds of applications that were not accessible to them in the
recent past.

In this paper we present a framework for programming agents
in the ANDROID world, based on the Knowledge Artifact notion
to develop knowledge-based systems.

This framework has been modeled as a client–server archi-
tecture, with the aim to show how the implementation of agents
modeled on the basis of Knowledge Artifacts can help everyone
to design, implement and use decision support systems for a
specific domain, with many potential benefits in their day-by-
day activities.

The framework application will be presented in a prototype
to support operators of Italian Fire Corps and Civil Protection
Department in critical situations, like geographically distributed
fires and earthquakes management.

I. INTRODUCTION

Nowadays ANDROID is the most popular mobile operating
system in the world, and reaches out to touch peaks of
diffusion, in some countries, more than 90% of the total
smartphone market1. The development of ANDROID together
with the performance improvement offered by modern PDAs,
like smartphones and tablets, has allowed many users to
keep in touch with new kinds of applications that were not
accessible to them in the recent past.

Among them, applications related to the Agent Oriented
Programming (AOP) paradigm [1] are particularly influenced
by the wide diffusion of personal devices, thanks to their
intrinsic mobile nature. Different open-source frameworks
devoted to the development of agent-based programs, like
JADE2 [2], JASON3 [3] and CArtAgO4 [4] have been recently
imported into ANDROID by means of the implementation of
specific add-ons or ad-hoc frameworks (e.g. [5], [6]).

In this paper we present a framework for programming
agents in the ANDROID world, making it transparent to the
programmer, basing it on the Knowledge Artifact [7] notion.

1Data extracted from http://www.androidworld.it/2013/04/29/
android-in-italia-al-625-e-nel-mondo-al-642-secondo-le-ultime-stime-153115/

2Available at http://jade.tilab.com/
3Available at http://jason.sourceforge.net/wp/
4Available at http://cartago.sourceforge.net/

While the artifact concept is often described as the result of a
disciplined human activity, following rules based on training
and experience, Knowledge Artifacts [11] are artifact spe-
cializations devoted to represent expert knowledge in object–
manufacturing or service–delivery fields. The final aim of our
Knowledge Artifact is generating executable rule–based sys-
tems written in JESS5, minimizing the knowledge engineering
effort. To this scope, correlated tools for the representation
of functional and structural knowledge (i.e. ontologies [8]),
procedural knowledge (i.e. influence nets [9]) and experiential
knowledge (i.e. task structures [10]) have been integrated into
a unique conceptual and computational framework, providing
the user with an opportune set of primitives for designing
and implementing decision support systems without a deep
knowledge on the specific language syntax.

This framework has been modeled as a client–server archi-
tecture, where the server is a knowledge-based agent having
two tasks, the creation of the rule-based system according
to the user (i.e. the expert) indications and the execution
of it according to the data sent it by the client, that is a
sort of reactive agent sending inputs and receiving outputs
from the knowledge-based agent: in this way, it was possible
to overcome the impossibility, at the current state of JESS
implementation6 to import JESS library under the ANDROID
OS.

The main aim of this paper is to show how the implemen-
tation of agents modeled on the basis of Knowledge Artifacts
can help everyone to design, implement and use decision
support systems for a specific domain, with many potential
benefits in their day-by-day activities.

The most interesting feature of the framework is its ca-
pability to act as a CAKE (Computer-Aided Knowledge
Engineering) environment: the implementation of KBSs has
been always conceived as a very specific task, which can be
only conducted by knowledge engineers with the support of
domain experts. Knowledge engineering methodologies, such
as CommonKads [12] and MIKE [13], have been proposed
in the past as standard and generalized solutions to overcome

5Acronym of Java Expert System Shell, available at http://herzberg.ca.
sandia.gov

6See the discussion at http://jess.2305737.n4.nabble.com/
JESS-Re-Jess-jar-on-Android-td3957868.html



the knowledge acquisition and representation bottlenecks, but
addressed to users highly skilled in the design of complex
software systems.

The rest of the paper is organized as follows: Section II
will introduce the agent-based framework and the conceptual
model of Knowledge Artifact it is based on, also discussing
the computational model of the agents developed according to
it. Section III will present a case study to show how it can be
profitably used in a specific domain. In the end, in Section IV a
discussion on how this model can be implemented considering
the AOP paradigm will be presented along with a discussion
on the future developments and works.

II. THE AGENT-BASED FRAMEWORK AND THE KA
NOTION

In this Section we first present the agent–based framework
describing the main components of the model; then, we discuss
the conceptual model and the relative implementation of the
KA notion according to the agent–based model has been
developed.

A. Agent-based Framework
In relationship with the client-server architecture, our frame-

work is composed of two main elements:
• simple reactive agents a1, .., ai, .., an located on mobile

devices and that perceived and collected information on
the “state of the world”. These information can be de-
tected by means of device sensors (e.g. GPS, barometer,
pressure altimeter and so on) and directly provided by the
user of the system by means of an appropriate graphic
user interface (GUI);

• a knowledge-based agent KA-Agent that is responsible
for the management of its internal knowledge and the
elaboration of information received from agents ai. In
particular the goal of a KA-Agent is twofold: (i) it has to
interact with the domain expert by means of a graphic
user interface (GUI), obtaining information about the
domain in terms of concepts, relationships and rules, and
creating the corresponding ontology, influence network
and rule-based system; (ii) it has to interact with agents
ai and it has to elaborate the information they provide
with the expert system previously created.

Fig. 1 graphically represents the components and the inter-
actions in our framework: expert users interact with the KA-
Agent GUI in order to create the expert system, while non-
expert users interact with agent ai GUI in order to provide
information that will be used by KA-Agent in elaborating
knowledge.

Since the KA-Agent represents the main relevant part of our
system, in the follow we will focus on the KA notion upon
which it is based on, considering the conceptual model and
the relative implementation.

B. The Conceptual Model of Knowledge Artifact
In our approach, the Knowledge Artifact is described as

a 3–tuple 〈O, IN, TS〉, where O is an ontology of the in-
vestigated domain, IN is an Influence Net to represent the

causal dependencies among the ontology elements and TS
are task structures to represent how one or more outputs can
be produced by the system according to a rule–base system
strategy.

In the KA model, the underlying ontology is a taxonomy:
the root is the description of the problem to be solved, the
inner nodes are system inputs or partial outputs and the leaves
of the hierarchy are effective outputs of the system.

The Influence Net model is a structured process that allows
to analyse complex problems of cause-effect type in order
to determine an optimal strategy for the execution of certain
actions, to obtain an optimal result. The Influence Net is a
graphical model that describes the events and their causal
relationships. Using information based on facts and experience
of the expert, it is possible to analyze the uncertainties created
by the environment in which we operate. This analysis helps
the developer to identify the events and relationships that can
improve or worsen the desired result. In this way you can
determine the best strategy.

The Influence Net can be defined as a 4–tuple 〈I, P,O,A〉,
where:

• I is the set of input nodes, i.e. the information needed to
the KBS to work properly;

• P is the set or partial output nodes, i.e. the collection of
new pieces of knowledge and information elaborated by
the system to reach the desired output;

• O is the set of output nodes, i.e. the effective answers of
the system to the described problem; outputs are values
that can be returned to the user;

• A is the set of arcs among the nodes: an arc between two
nodes specifies that a causal relationship exists between
them; an arc can go from an input to a partial node or
an output, as well as from partial node to another one
or an output. Moreover, an arc can go from an output to
another output. Every other kind of arcs is not permitted.

Finally, Task Structures allow to describe in a rule–based
system way how the causal process defined by a given IN can
be modeled. Each task is devoted to define computationally
a portion of an Influence Net: in particular, sub–tasks are
procedures to specify how a partial output is obtained, while
tasks are used to explain how an output can be derived from
one or more influencing partial outputs and inputs. A task
cannot be completed until all the sub–tasks influencing it have
been finished. In this way, the TS modeling allows to clearly
identify all the levels of the system. The task and sub–task bod-
ies are a sequence of rules, i.e. LHS(LeftHandSide)− >
RHS(RightHandSide) constructs.

Each LHS contains the conditions that must be verified so
that the rule can be applied: it is a logic clause, which turns
out to be a sufficient condition for the execution of the action
indicated in the RHS. Each RHS contains the description of
the actions to conduct as a result of the rule execution. The
last step of our model is then the translation of all the task and
sub–task bodies into production rules of a specific language
(JESS in our case).



Fig. 1: Graphical representation of the agent-based model: agents ai, KA-Agent, and interactions among them and with domain
expert

C. Knowledge Artifact Implementation: the KA-Agent

The implementation of the different elements composing
the knowledge engineering framework has exploited the XML
language. A proper schema has been developed for each of
them, as well as dedicated parsers to allow the user to interact
with them. Following the conceptual model briefly introduced
in the previous section, the first schema is the ontological one,
defining opportune tags to specify inputs, where the name of
the input can be put together with a description and a value for
it. Moreover, it is possible to define an 〈affects〉 relationship
for each input, in order to explain how it is involved in the
next steps of the elaboration (i.e. which output or partial output
does it contribute to state?).

A partial output (i.e. an inner node between an input and
a leaf of the taxonomy) is limited by a specific pair of tags.
The fields are the same as the input case, with the difference
that a partial output can be influenced by another entity too:
this is the sense of the 〈influencedBy〉 relationship. Finally,
the 〈output〉 tag allows to describe completely an effective
output of the system, i.e. a leaf of the taxonomy developed to
represent the problem domain.

To produce an Influence Net, the taxonomy is bottom–up
parsed, in order to identify the right flow from inputs to outputs
by navigating the influencedBy relationships designed by the
user. In this way, different portions of the under development
system can be described. Outputs, partial outputs and inputs

are bounded by arcs which specify the source and the target
nodes.

Finally, an XML schema for the task (subtask) element of
the framework have been developed. The parser produces an
XML file for each output considered in the Influence Net. The
tags input and subtask allows to define which inputs and partial
outputs are needed to the output represented by the task to
be produced. The body tag is adopted to model the sequence
of rules necessary to process inputs and results returned by
influencing subtasks: a rule is composed of an 〈if〉 ... 〈do〉
construct, where the if statement permits to represent the LHS
part of the rule, while the do statement concerns the RHS part
of the rule.

The XML files introduced so far have been incorporated
into the KA–Agent knowledge base: they allow the definition
of a rule–based system to solve problems in specific domains.
The developed GUI permits the user to interact with the KA–
Agent to design the underlying taxonomy, influence net and
tasks/subtasks. Moreover, it is possible to transform the task
into a collection of files containing rules written in the JESS
language: Figure 2 shows a sketch of the supporting tool for
this scope.

III. A CASE STUDY

Once the KA–Agent has been created and programmed as
a rule–based system, it is able to interact with one or more



Fig. 2: The KA–Agent GUI for supporting domain experts in
the creation of rule–based system from task structures

clients to receive inputs and send outputs. Clients are reactive
agents in our model: they are spatially distributed and detect
observations about the knowledge domain under investigation.
They can send to the KA–Agent these observations in order
to get suggestions about the action to take. These suggestions
are elaborated by the KA–Agent according to its KA model.
This scenario has been successfully tested in a case study
inspired us by the STOP7 handbook supplied to the Italian
Fire Corps and Civil Protection Department of the Presidency
of Council of Ministers for the construction of safety building
measures for some building structures that have been damaged
by an earthquake. After L’Aquila’s earthquake in 2009, this
document has been prepared in order to standardize the steps
to follow in similar situations.

The structure of this document is suitable for the creation of
a rule-based system, being modular and with specific and well
defined cases. Using the created application, two knowledge
models have been created (the first for the safety of the walls
through rakers, the other for the safety of the openings through
special scaffoldings).

A. The STOP–Agent: an ANDROID Client

Every operator involved in the emergency procedures to
make safe buildings and infrastructures is provided with an

7Acronym of Schede Tecniche di Opere Provvisionali, see http://www.
vigilfuoco.it/aspx/notizia.aspx?codnews=8293 for details.

ANDROID application on his/her smartphone: this application
has been modeled as a reactive agent, namely the STOP–
Agent, communicating with the KA–agent via the client–server
architecture introduced above: Figure 3 shows the interface
for its initialization. Each STOP–Agent sends to the KA–
agent data about the conditions of the site it is analyzing:
according to the STOP handbook, these data allow to make
considerations about the real conditions of the building walls
after the earthquake in order to understand which raker or
scaffolding to adopt.

Exploiting the ANDROID primitives, it has been possible
to create a stable mechanism for the communication with
the server. In particular, the following tools were useful to
implement the STOP–Agent:

• activities: a class that extends an Activity class is respon-
sible for the communication with the user, to support
him/her in setting the layout, assigning the listeners to
the various widgets (ANDROID’s graphical tools) and
setting the context menu;

• listener: a class that implements the interface OnClick-
Listener is a listener. An instance of this object is always
associated with a widget;

• asyncTask: a class that extends AsyncTask is an asyn-
chronous task that performs some operations concurrently
with the execution of the user interface (for example the
connection to a server must be carried out in a AsyncTask

Fig. 3: The STOP–Agent GUI for the activation of the two
application knowledge models



instance, not in an Activity one);
The typical mechanism to interface the client and the server is
the following one: the Activity object prepares the layout and
sets the widgets’ listeners and a container with the information
useful for the server; then, it possibly starts the AsyncTask
instance for sending the correct request to the server, passing
to it the previously created container. Before starting the
asynchronous task, in most cases, the listener activates a
dialog window that locks the user interface in waiting for the
communication with the server; the AsyncTask predisposes the
necessary Sockets for the communication and then performs its
request to the server, sending the information about the case
study observation (see Figure 4) enclosed in the container.
Before concluding, it closes (dismisses) the waiting dialog
window.

B. The KA–Agent: a JAVA Server

The KA–Agent creates an instance of the KA model for
each active STOP–Agents in communication with it. Then,
it executes the model according to the rule–based system
previously generated and sends answers to the STOP–Agent
that will be able to take the proper action, as shown in Figure
5.

The design of the server exploits an existent framework
for the rule-based systems creation. This framework allows
to produce a .clp file runnable under JESS and that contains

Fig. 4: The STOP–Agent GUI for sending information to the
KA–Agent

the rules describing the behavior of the rule-based system.
A Controller class has been added to this framework to
build up the interface between all the server’s classes and the
preexistent knowledge engineering environment.

The server, once activated, can accept both requests for the
creation of a new system and for the resolution of problems
on the basis of existing rule-based systems. To do this, con-
current programming is used: the server manages the different
requests concurrently, through an opportune thread, namely
MonitorThread. A MonitorThread instance starts the thread in
charge of listening the requests for the creation of a new rule-
based system (i.e. GestoreThread). Moreover, MonitorThread
allows to properly manage the ports on which other threads
will interface, and provides methods necessary for their correct
startup. Another thread, namely ManagingThread is instanced
by GestoreThread for the use of previously created rule–based
systems. This thread manages the .clp files archive, being sure
that inputs and outputs are correctly received and sent by the
right system and JESS’ libraries are correctly invoked.

IV. CONCLUSION AND FUTURE WORKS

This paper has presented an ongoing research project aiming
to design and implement tools for supporting the user in the
development of knowledge-based systems. This framework
is based on the Knowledge Artifact conceptual model and
is general enough to be adopted in different contexts and

Fig. 5: The KA–Agent sends characteristics on raker to use to
the STOP–Agent, in order to make safe a wall



programming paradigms.
In particular, we have integrated it into the AOP model,

according to a client–server architecture, to design and im-
plement KBSs remotely exploiting the potentialities of AN-
DROID OS: in this way, the framework can be executed
from every kind of PDAs, like smartphones and tablets, with
the possibility to create an ad–hoc KBS when necessary.
The framework was applied in a potential collaboration with
the Italian Fire Corps and the Civil Protection Department
of the Presidency of Council of Ministers, to provide each
firemen with tools to understand how to operate in critical
situations, like geographically distributed fires and earthquakes
management.

The developed system has shown an excellent level of
performance, especially about the client side of the project.
The ANDROID application requirements are minimal, espe-
cially considering the Internet consumption data (an actually
critical argument). On the other hand, the memory request by
the server is definitely high. This last statement also opens
the discussion on future developments which are certainly
ample and varied. The server is, without doubt, the component
that needs more attention; some modifications that could be
made range from the addition of new JESS features to the
improvement of memory management and a more efficient
management of concurrency.

In the introduction we have already discussed the connection
between AOP paradigm and the connection with ANDROID
world: an idea to implement the model is to use JADE
framework, for several reasons. First of all, JADE framework
is a software framework fully implemented in Java language as
our native project, and it implements FIPA [2] specifications to
support communications and interactions among agents (and
we need to model interactions between simple agents ai and
KA-Agent).

More in detail, agents ai can be programmed using the
JADE-ANDROID add-on8, a JADE module that allows com-
bining the expressiveness of JADE agents communication with
the power of ANDROID platform. As already stated, another
relevant feature of JADE is the integration with JESS, the
rule engine that are the basis on which the expert system is
built on according to the KA conceptual model. In fact, KA-
Agent has the capability to create the expert system on the
basis of domain expert information and it can directly execute
it according to data sent it by client. In this way, it could
be explored the possibility to import JESS under ANDROID,
moving its execution from the current KA–Agent on the server
side to the mobile environment.

Concerning the conceptual model of KA–Agent, it should
be possible to create a multi-language environment, expanding
it to other rule–based languages, such as Drools9.

Furthermore, the definition of rules could be improved to
provide the user with the possibility to define new kinds of
constructs, like templates (and the relative slots), functions,

8Released with LGPLv2 Licence and available at http://jade.tilab.com/
9http://www.jboss.org/drools/

shadow facts and so on.

REFERENCES

[1] Y. Shoham, “Agent-oriented programming,” Artificial intelligence,
vol. 60, no. 1, pp. 51–92, 1993.

[2] F. Bellifemine, A. Poggi, and G. Rimassa, “Jade–a fipa-compliant agent
framework,” in Proceedings of PAAM, vol. 99, no. 97-108. London,
1999, p. 33.

[3] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-
agent systems in AgentSpeak using Jason. Wiley. com, 2007, vol. 8.

[4] A. Ricci, M. Piunti, M. Viroli, and A. Omicini, “Environment program-
ming in cartago,” in Multi-Agent Programming:. Springer, 2009, pp.
259–288.

[5] M. Ughetti, T. Trucco, and D. Gotta, “Development of agent-based, peer-
to-peer mobile applications on android with jade,” in Mobile Ubiquitous
Computing, Systems, Services and Technologies, 2008. UBICOMM’08.
The Second International Conference on. IEEE, 2008, pp. 287–294.

[6] A. Santi, M. Guidi, and A. Ricci, “Jaca-android: An agent-based
platform for building smart mobile applications,” in Languages,
Methodologies, and Development Tools for Multi-Agent Systems, ser.
Lecture Notes in Computer Science, M. Dastani, A. Fallah Seghrouchni,
J. Hbner, and J. Leite, Eds. Springer Berlin Heidelberg, JACA2011,
vol. 6822, pp. 95–114. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-22723-3 6

[7] S. Bandini and F. Sartori, “From handicraft prototypes to limited serial
productions: Exploiting knowledge artifacts to support the industrial
design of high quality products,” AI EDAM (Artificial Intelligence for
Engineering Design, Analysis and Manufacturing), vol. 24, no. 1, p. 17,
2010.

[8] C. Brewster and K. O’Hara, “Knowledge representation with ontologies:
the present and future,” Intelligent Systems, IEEE, vol. 19, no. 1, pp. 72–
81, 2004.

[9] J. A. Rosen and W. L. Smith, “Influence net modeling with causal
strengths: an evolutionary approach,” in Proceedings of the Command
and Control Research and Technology Symposium, 1996, pp. 25–28.

[10] B. Chandrasekaran, T. R. Johnson, and J. W. Smith, “Task-structure
analysis for knowledge modeling,” Communications of the ACM, vol. 35,
no. 9, pp. 124–137, 1992.

[11] G. Salazar-Torres, E. Colombo, F. S. C. da Silva, C. A. Noriega, and
S. Bandini, “Design issues for knowledge artifacts,” Knowl.-Based Syst.,
vol. 21, no. 8, pp. 856–867, 2008.

[12] G. Schreiber, B. Wielinga, R. de Hoog, H. Akkermans, and W. Van de
Velde, “Commonkads: A comprehensive methodology for kbs develop-
ment,” IEEE expert, vol. 9, no. 6, pp. 28–37, 1994.

[13] J. Angele, D. Fensel, D. Landes, and R. Studer, “Developing knowledge-
based systems with mike,” Automated Software Engineering, vol. 5,
no. 4, pp. 389–418, 1998.


