
Higher-order Logic Description of MDPs to
Support Meta-cognition in Artificial Agents

Vincenzo Cannella, Antonio Chella, and Roberto Pirrone

Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica,
Viale delle Scienze, Edificio 6, 90100 Palermo, Italy
{vincenzo.cannella26,roberto.pirrone}@unipa.it

Abstract. An artificial agent acting in natural environments needs meta-
cognition to reconcile dynamically the goal requirements and its internal
conditions, and re-use the same strategy directly when engaged in two in-
stances of the same task and to recognize similar classes of tasks. In this
work the authors start from their previous research on meta-cognitive
architectures based on Markov Decision Processes (MDPs), and propose
a formalism to represent factored MDPs in higher-order logic to achieve
the objective stated above. The two main representation of an MDP are
the numerical, and the propositional logic one. In this work we propose
a mixed representation that combines both numerical and propositional
formalism using first-, second- and third-order logic. In this way, the
MDP description and the planning processes can be managed in a more
abstract manner. The presented formalism allows manipulating struc-
tures, which describe entire MDP classes rather than a specific process.

Keywords: Markov Decision Process, ADD, Higer-order logic, u-MDP,
meta-cognition

1 Introduction

An artificial agent acting in natural environments has to deal with uncertainty
at different levels. In a changing environment meta-cognitive abilities can be
useful to recognize also when two tasks are instances of the same problem with
different parameters. The work presented in this paper tries to address some
of the issues related to such an agent as expressed above. The rationale of the
work derives from the previous research of the authors in the field of planning
in uncertain environments [4] where the “uncertainty based MDP” (u-MDP)
has been proposed. u-MDP extends plain MDP and can deal seamlessly with
uncertainty expressed as probability, possibility and fuzzy logic. u-MDPs have
been used as the constituents of the meta-cognitive architecture proposed in [3]
where the “meta-cognitive u-MDP” perceives the external environment, and also
the internal state of the “cognitive u-MDP” that is the actual planner inside the
agent. The main drawbacks suffered by MDP models are both memory and com-
putation overhead. For this reason, many efforts have been devoted to define a
compact representation for MDPs aimed at reducing the need for computational

resources. The problems mentioned above are due mainly to the need of enumer-
ating the state space repeatedly during the computation. Classical approaches
to avoid enumerating the space state are based on either numerical techniques or
propositional logic. The first representations for the conditional probability func-
tions and the reward functions in MDPs were numerical, and they were based
on decision trees and decision graphs. These approaches have been subsequently
substituted by algebraic decision diagrams (ADD) [1][8]. Numerical descriptions
are suitable to model mathematically a MDP but they fail to emphasize the
underlying structure of the process, and the relations between the involved as-
pects. Propositional or relational representations of MDPs [6] are variants of the
probabilistic STRIPS [5]; they are based on either first-order logic or situation
calculus [2] [10][9][7]. In particular, a first-order logic definition of Decision Dia-
grams has been proposed. In this work we propose a mixed representation that
combines both numerical and propositional formalisms to describe ADDs using
first-, second- and third-order logic. The presented formalism allows manipulat-
ing structures, which describe entire MDP classes rather than a specific process.
Besides the representation of a generic ADD as well as the implementation of
the main operators as they’re defined in the literature, our formalism defines
MetaADDs (MADD) as suitable ADD abstractions. Moreover, MetaMetaADDs
(MMADD) have been implemented that are abstractions of MADDs. The classic
ADD operators have been abstracted in this respect to deal with both MADDs
and MMADDs. Finally, a recursive scheme has been introduced in order to re-
duce both memory consumption and computational overhead.

2 Algebraic Decision Diagrams

A Binary Decision Diagram (BDD) is a directed acyclic graph intended for rep-
resenting boolean functions. It represents a compressed decision tree is. Given a
variable ordering, any path from the root to a leaf node in the tree can contain
a variable just once. An Algebraic Decision Diagram (ADD) [8][1] generalizes
BDD for representing real-valued functions f : {0, 1}n → R (see figure 1). When
used to model MDPs, ADDs describe probability distributions. The literature in
this field reports the definition of the most common operators for manipulating
ADDs, such as addition, multiplication, and maximization. A homomorphism
exists between ADDs and matrices. Sum and multiplication of matrices can be
expressed with corresponding operators on ADDS, and suitable binary operators
have been defined purposely in the past. ADDs have been very used to repre-
sent matrices and functions in MDPs. SPUDD is the most famous example of
applying ADDs to MDPs[8].

3 Representing ADDs in Higher-order logic

In our work ADDs have been described in Prolog using first-order logic as a fact
in a knowledge base to exploit the Prolog capabilities of managing higher-order
logic. An ADD can be regarded as a couple 〈S,v〉 where S is the tree’s structure,

which is made up by nodes, arcs, and labels, and v is the vector containing the
values in terminal nodes of the ADD. Let’s consider the ADD described in the
previous section. Figure 1 shows its decomposition in the structure-vector pair.
Terminal nodes are substituted with variables, and the ADD is transformed into
its structure. Each element of the vector v is a couple made up by a proper
variable inserted into the i-th leaf node of the structure, and a probability value
that was stored originally into the i-th leaf node.

Fig. 1. The decomposition of an ADD in the corresponding structure-vector pair 〈S,v〉.

In general, ADDs can be represented compactly through a recursive definition
due to the presence of isomorphic sub-graphs. At the same manner, a structure
can be defined recursively. The figure 2 shows an example.

A 0.1

B 0.2

C 0.3

D 0.4

v

p

A B

high low

left right
p

C D

left right

p

VA VB

left rightS= v= =
T1

VA

VB

vhigh low

S= T1

VA A
VB B

T1

VA C
VB D

Fig. 2. Each structure can be defined recursively as composed by its substructures.
A structure can be decomposed into a collection of substructures. Each substructure
can be defined separately, and the original structure can be defined as a combination
of substructures. Each (sub)structure is described by the nodes, the labels and the
variables in its terminal nodes. Such variables can be unified seamlessly with either
another substructure or another variable.

Following this logic, we can introduce the concept of MetaADD (MADD),
which is a structure-vector pair 〈S,v〉 where S is the plain ADD structure, while
v is an array of variables that are unified with no value (see figure 3). A MADD
expresses the class of all the different instances of the same function, which
involve the same variables but can produce different results.

An operator op can be applied to MADDs just like in the case of ADDs.
In this way, the definition of the operator is implicitly extended. The actual

Fig. 3. The MetaADD corresponding to the ADD introduced in the figure 1.

implementation of an operator op applied to MADDs can be derived by the cor-
responding operator defined for ADDs. Given three ADDs, add1, add2, and add3,
and their corresponding MADDs madd1, madd2, and madd3, then add1 op add2 =
add3 ⇒ madd1 opmadd2 = madd3.

The definition of the variables in madd3 depends on the operator. We will
start explaining the implementation of a generic operator for ADDs. Assume
that the structure-vector pairs for two ADD’s are given: add1 = 〈S1,v1〉, add2 =
〈S2,v2〉. Running the operator will give the following result:

add1 op add2 = 〈S3,v3〉

Actual execution is split into two phases. At first, the operator is applied to
both structures and vectors of the input ADDs separately, then the resulting
temporary ADD is simplified.

Stemp = S1 op S2

vtemp = v1 op v2

simplify(Stemp,vtemp)→ 〈S3,v3〉

Here op is the “expanded” form of the operator where the structure-vector
pair is computed plainly. The equations above show that Stemp depends only
on S1 and S2, and it is the same for vtemp with respect to v1 and v2.The
simplify(·, ·) function represents the pruning process, which takes place when
all the leaf nodes with the same parent share the same value. In this case, such
leaves can be pruned, and their value is assigned to the parent itself. This process
is repeated until there are no leaves with the same value and the same parent in
any location of the tree (see figure 4). Such a general formulation of the effects
produced by an operator on a couple of MADDs can be stored in memory as
Abstract Result (ABR). ABRs are defined recursively to save both memory and
computation too. An ABR is a t-uple 〈M1,M2, Op,M3, F 〉, where M1, M2 and
M3 are MADDs, Op is the operator that combines M1, M2 and returns M3,
while F is a list of relationships between the variables in M1, M2 and M3, which
in turn depend on Op. We applied the abstraction process described so far, to
MADDs also by replacing its labels with non unified variables. The resulting
structure-vector pairs have been called MetaMetaADDs (MMADD) (see figure

v

p

v1 v2

high low

left right
p

v3 v4

left right

v

p

w1 w2

high low

left right
p

w3 w4

left right

v

p

s1 s2

high low

left right
p

s3 s4

left right

+ =

Formulas = <s1=v1+w1; s2=v2+w2; s3=v3+w3; s4=v4+w4>

v1 v2 v3 v4 w1 w2 w3 w4 s1 s2 s3 s4

Fig. 4. Two MADDs are added, producing a third MADD. Results are computed
according to the formulas described inside the box.

5). We called such computational entity meta-structure MS. It has neither values
nor labels: all its elements are variables. MS is coupled with a corresponding
vector v, which contains variable-label couples (see Figure 5). The definition of

v1

v1

v2

v2

v3

v4

v1

v2

A B

v1 v2

v3 v4

C D

v3 v4
v2

A

B

C

D

MetaMetaStructure

Fig. 5. The decomposition of a MADD structure into the pair 〈MS,v〉, and the cor-
responding MMADD

operators, their abstraction, and the concept of ABR remain unchanged also at
this level of abstraction.

4 Discussion of the Presented Formalism and Conclusions

The generalizations of ADDs to second- and third-order logic that were intro-
duced in the previous section, allow managing MDPs in a more efficient way than
a plain first-order logic approach. Most part of MDPs used currently, share many
regularities in either transition or reward function. As said before, such functions
can be described by ADDs. If these regularities appear, ADDs are made up by
sub-ADDs sharing the same structures. In these case, computing a plan involves
many times the same structure with the same elaboration in different steps of
the process. Our formalism allows to compute them only once and save it in a
second- and third-order ABR. Every time the agent has to compute structures

that have been used already, it can retrieve the proper ABR to make the whole
computation faster. Computation can be reduced also by comparing results in
different MDPs. In many cases, two MDPs can share common descriptions of the
world, similar actions, or goals, so the results found for a MDP could be suitable
for the other one. A second-order description allows comparing MDPs that man-
age problems defined in similar domains, with the same structure but different
values. Finally, a third-order description allows to compare MDPSs, which man-
age problems defined in different domains but own homomorphic structures. In
this case, every second- and third- order ABR computed for the first MDP can
be useful to the other one. This knowledge can be shared by different agents.
Adding ABRs to the knowledge base enlarges the knowledge of the agent, and
reduces the computational effort but implies a memory overhead. Our future in-
vestigation will be devoted to devise more efficient ways for storing and retrieving
ABRs thus improving the overall performances of the agent.

References

1. R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. In Computer-
Aided Design, 1993. ICCAD-93. Digest of Technical Papers., 1993 IEEE/ACM
International Conference on, pages 188–191, 1993.

2. Craig Boutilier, Raymond Reiter, and Bob Price. Symbolic Dynamic Programming
for First-Order MDPs. In IJCAI, pages 690–700, 2001.

3. Vincenzo Cannella, Antonio Chella, and Roberto Pirrone. A meta-cognitive ar-
chitecture for planning in uncertain environments. Biologically Inspired Cognitive
Architectures, 5:1 – 9, 2013.

4. Vincenzo Cannella, Roberto Pirrone, and Antonio Chella. Comprehensive Un-
certainty Management in MDPs. In Antonio Chella, Roberto Pirrone, Rosario
Sorbello, and Kamilla R. Johannsdottir, editors, BICA, volume 196 of Advances
in Intelligent Systems and Computing, pages 89–94. Springer, 2012.

5. Richard Dearden and Craig Boutilier. Abstraction and approximate decision-
theoretic planning. Artif. Intell., 89(1-2):219–283, January 1997.

6. Charles Gretton and Sylvie Thiébaux. Exploiting first-order regression in inductive
policy selection. In Proceedings of the 20th UAI Conference, UAI ’04, pages 217–
225, Arlington, Virginia, United States, 2004. AUAI Press.

7. Jan Friso Groote and Olga Tveretina. Binary decision diagrams for first-order
predicate logic. J. Log. Algebr. Program., 57(1–2):1 – 22, 2003.

8. Jesse Hoey, Robert St-aubin, Alan Hu, and Craig Boutilier. Spudd: Stochastic
planning using decision diagrams. In In Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, pages 279–288. Morgan Kaufmann, 1999.

9. Saket Joshi, Kristian Kersting, and Roni Khardon. Generalized first order decision
diagrams for first order markov decision processes. In Craig Boutilier, editor,
IJCAI, pages 1916–1921, 2009.

10. Saket Joshi and Roni Khardon. Stochastic planning with first order decision di-
agrams. In Jussi Rintanen, Bernhard Nebel, J. Christopher Beck, and Eric A.
Hansen, editors, ICAPS, pages 156–163. AAAI, 2008.

