
A Lightweight Formalism for the Integration of
BPMN Models with Domain Ontologies

Giuseppe Della Penna1, Roberto Del Sordo3, Benedetto Intrigila2, Nicoló
Mezzopera3, and Maria Teresa Pazienza2

1 Dept. of Engineering, Computer Science and Mathematics, University of L’Aquila,
L’Aquila, Italy

2 Dept. of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
3 SinergieIT srl, Rome, Italy

Abstract. The widespread use of BPMN to describe business processes
is highlighting the need to integrate the description of the operational
flow with domain specific information. In most cases the domain knowl-
edge is already represented in domain ontologies or can be derived from
the existing documentation. To preserve the simplicity of the original
BPMN model specifications our approach is to integrate the seman-
tic and BPMN information through a separate view that can be semi-
automatically built relying on the capabilities of the SyBeL modeling
language. This unified view can be used to produce different artifacts
to support the implementation phases of the executable process, while
keeping track of the formal specifications.

Keywords: Ontology; BPMN; Modeling Formal Language

1 Introduction

The Business Process Modeling Notation (BPMN) is the new standard to model
business process flows and web services [8]. Created by the Business Process
Management Initiative (BPMI), the first goal of BPMN is to provide a notation
that is readily understandable by all business users.

In particular, the business analysts can directly operate with the BPMN
to create the initial drafts of the new processes to be realized. Therefore their
ideas can easily and precisely conveyed to the technical developers responsible
for implementing the technology that will perform those processes. It is the
mentioned combination of easiness of use with the precision of a formally well
defined notation system which is responsible for the enormous success of BPMN.
[2]

Being a formalism for the modelization of processes, BPMN gives a limited
support to the modelization of data. This is not an issue when the data models
needed to implement the processes can be routinely constructed from a direct
analysis of the business components involved. Here we focus on software projects
that require a deeper semantic understanding of complex aspects of the domain.



In many cases, the required semantic information can be obtained from pre-
viously defined ontologies (see, e.g., [11]). In other cases, one has to rely on
documents. However existing tools, such as Semantic Turkey [9], are making
easier and easier the task of formalizing into ontologies the knowledge dispersed
in the documents. Semantic Turkey is a free open-source platform for Semantic
Bookmarking and Ontology Development.

Users can adopt Semantic Turkey to keep track of relevant information from
textual documents and organize collected content according to imported/per-
sonally edited ontologies. Domain experts and ontology developers can build
ontologies starting from the very raw source of information which they find on
the web, without any need of interconnecting different heterogeneous tools and
applications.

Therefore it is reasonable to have a formal ontology as a source of the needed
knowledge about the domain. Now the problem arises on how to combine the
information formalized by means of ontological descriptions with the BPMN
graphical models. To this aim several approaches are possible. The most direct
one is to extend the BPMN formalism to allow semantic annotations [10, 1]. This
solution has the advantage of a more complete modelization at the cost of the
complexity of building up a unique comprehensive model.

Here we want to explore a different approach, which is directed towards
the implementation layer. We use the SyBeL formalism [3] to suitably merge
the process and ontological information in a single, integrated view. With this
approach, we do not modify or substitute any of the source formalisms (i.e.,
ontologies and BPMN descriptions), but only create an intermediate view which
is useful to drive the implementation without loosing traceability with respect
to the original specifications.

Indeed, SyBeL has been devised to support the modelization of software sys-
tems with a strong focus on the behavioural aspects and a limited but completely
formal support for the modelization of data. These characteristics (that we syn-
thetically expose in the next section) allow, on one hand, a direct translation
of the BPMN models and, on the other, the extraction of limited data models
from the ontology level. In our opinion, such a compromise is suitable when the
implementation does not require a relevant modelization effort but there is still
the need of a good documentation of the system for an appropriate maintenance
of the system itself.

2 The SyBeL Modeling Language

SyBeL is an XML based language to specify the overall behaviour of a soft-
ware system. Thanks to underlying XML technologies, SyBeL can be read and
written by humans, but it also represents a formal, unambiguous specification
that can be easily manipulated by a machine. In this way, SyBeL tries to be a
good compromise between natural language descriptions and formal, compilable
specifications, i.e., it preserves the advantages provided by a natural language
description, while it is also formal enough to avoid ambiguity and allow a sys-



tematic reuse of the specifications throughout different phases of the software
development process.

In particular, SyBeL includes a behaviour description language, which allows
to encode dynamic processes as flows of user-triggered and system-generated
events called interactions and happenings, respectively. Each event is defined in
terms of an action executed on a particular entity, and variables can be used
to capture action results and reuse them later, or to declare flow parameters.
Finally, flows can contain conditional branches (flow alternatives) and uncondi-
tioned jump instructions to resume the execution from an arbitrary step of the
flow.

Therefore, it is clear that SyBeL behaviours can easily encode any BPMN-
defined process. The BPMN-to-SyBeL translation is very straightforward and
can be performed without loss of information, thus SyBeL behaviours can be
also used to regenerate the corresponding BPMN process description.

SyBeL also allows to declare data structures and types using the SyBeL do-
main description language. The language defines five basic simple types (string,
number, boolean, binary and any) and two type constructors, i.e., collections,
which represent lists of recursively typed objects, and entity types, that are sets
of recursively typed properties and (possibly parametric) actions. Entity types
can be also derived from other entity types in a object-oriented fashion. These
features together create a quite complete but still abstract type system, allowing
to declare types and data structures which can be easily translated in a variety
of object-oriented languages. However the SyBeL type system, especially entity
types, was also designed with semantics in mind. Indeed, SyBeL entities can be
seen as a simplified, programmer-friendly view of ontologies, whose attributes
and relations are encoded using properties, actions and type derivations. This
semantic connection is made explicit by the modelReference attribute, which can
be used to annotate entity types as well as single properties and actions with
resource identifiers referencing elements of a semantic model.

Therefore, we can use the SyBeL domain language to extract suitable “views”
from the information given by the ontologies, generating data structures with
semantic annotations which encode the aspects most relevant to the implementa-
tion and are then used to give a type to any element (entity, variable, parameter,
etc) referenced in the process description.

Putting all together, SyBeL can be used to fill the gap between BPMN-
specified business processes, which describe the dynamic evolution of a system
without data types, and ontologies, which in turn are well suited to describe
data structures, but only statically. Moreover, by maintaining references to the
original BPMN and ontologic sources, SyBeL does not try to substitute such
formalisms, but only to offer an unified view which is useful both for documen-
tation purposes and, most notably, to drive the implementation without loosing
traceability with respect to the formal specifications.



3 Case Study

To explain our approach, we consider a case study which is of relevant interest
in its own right, the Alternative Dispute Resolution (ADR) system, also called
Mediation. Mediation is a system of resolution of disputes under civil and com-
mercial law which is increasingly adopted to facilitate access to justice: here we
refer to European and Italian legal systems ([7] and, respectively, [4]).

In the mediation a third party, called the mediator, assists the parties to
negotiate a settlement. Mediation process is applicable to disputes in a variety
of domains, such as commercial, legal, workplace, community and family matters.
Mediation can also be seen as a powerful mechanism of eGovernment as a large
part of the mediation process can be performed on the Web. It is clear that the
software implementation of such an important system is critical with respect to
several aspects, e.g., security, availability and reliability.

For space reasons, we consider here only the case of condominium disputes. It
is nevertheless a very important category, in particular in Nova Scotia (Canada)
there exists a specific ADR system for such kind of disputes [5] and in Italy there
is an estimated number of one million condominium disputes [6].

Also for space reasons, we limit ourselves to consider the subprocess of the
initial phase of the mediation request. The main actors involved in the subprocess
are the following:

– Proposer: the specific party, between the parties involved in the legal dispute,
that requires the mediation.

– Mediator: any third person who is asked to conduct a mediation in an effec-
tive, impartial and competent way.

– Coordinator: in the Italian mediation system the person who assesses the
mediation request and assigns it to a mediator.

The BPMN diagram of the subprocess is illustrated in Figure 1.

3.1 Ontological Aspects

A simple analysis of the starting subprocess shows that the only critical aspect
is the description of the object of the dispute. Indeed, in an eGovernment ap-
proach, we cannot assume that the parties are legal experts so that they are able
to insert an appropriate description and - what is more relevant - an appropriate
documentation. The risk is that the mediation request is poorly formulated so
that a lengthly and costly process of revision is needed to arrive to a decision.
Therefore, a valid system support is needed to ensure that the correct docu-
mentation is enclosed to the request. It is natural to base such support on an
ontological description of the condominium disputes able to relate the differ-
ent types of disputes with the appropriate evidence required for the mediator
decision. A suitably simplified version of such an ontology, inspired by [6], is
sketched in Figure 2. So, for instance, an aesthetic dispute needs photographic
evidence. Further information can also make clear that the author of the pho-
tographs should be the condominium administrator or a person appointed by



Insert/complete anagraphical data Insert application dispute information Automatic formal control
Application evaluation

KOOKComplex disputeNot applicableSimple disputeIncorrect/Incomplete data
Assign dispute management to pool of mediatorsNo proceedingsAssign dispute management to single mediator

New application Validation OK?
Coordinator evaluationCoordinator

Proposer

Fig. 1. BPMN of the subprocess

DisputePets Dispute Odors DisputeShared Spaces DisputeNoises Dispute Balcony Irrigation DisputeArrearage Dispute Aesthetic Dispute
Application

Proposer UserOpponent Mediator
Evidence Photographic Evidence

Recording Evidence
Written EvidenceIs_a

Is_aIs_a

Is_aIs_a
mediates

evidences
opposesproposes

Is_a

Is_a Is_aIs_aIs_a Is_aIs_a Is_aevidencesdocuments
Fig. 2. Ontology describing the data used in the subprocess

the administrator. It is clear that with such support we make a step towards the
basic aim of mediation, to ensure a facilitated access to justice.



3.2 SyBeL modeling

By integrating the information given by the ontology with the BPMN process
description, we build SyBeL domain describing the data model needed to support
the process.

<entityType name=”DisputeType” s p e c i a l i z a t i o n s=”Aestet icDisputeType
NoiseDisputeType PetDisputeType” modelReference=” c c : d i s pu t e ”>

<p r op e r t i e s>
<property name=” reques t ”><baseType>s t r i n g</baseType></ property>
<property name=” ev idence s ” modelReference=” c c : d i s pu t e / c c : e v i d en c e s ”>
<co l l e c t i onType>
<entityType>EvidenceType</ entityType>

</ co l l e c t i onType>
</ property>
<property name=” ev idenceVa l ida t i on ” modelReference=” c c : d i s pu t e /

c c : e v i d e n c e v a l i d a t i o n ”><baseType>any</baseType></ property>
</ p r op e r t i e s></ entityType>

<entityType name=”EvidenceType” s p e c i a l i z a t i o n s=”
PhotographicEvidenceType” modelReference=” c c : e v i d en c e ”>

<p r op e r t i e s>
<property name=”author ” modelReference=” c c : e v i d en c e / cc : au thor ”>
<baseType>s t r i n g</baseType></ property>

<property name=”date ” modelReference=” c c : e v i d en c e / c c : da t e ”>
<baseType>s t r i n g</baseType></ property>

</ p r op e r t i e s></ entityType>

<entityType name=”Aestet icDisputeType ” base=”DisputeType” modelReference
=” c c : a e s t h e t i c d i s p u t e ”>

<p r op e r t i e s>
<property name=” ev idence s ” modelReference=” c c : d i s pu t e / c c : e v i d en c e s ”>
<co l l e c t i onType>
<entityType>PhotographicEvidenceType</ entityType>

</ co l l e c t i onType></ property>
</ p r op e r t i e s></ entityType>

<entityType name=”PhotographicEvidenceType” base=”EvidenceType”
modelReference=” cc :photog raph i c ev idence ”>

<p r op e r t i e s>
<property name=”photo” modelReference=” cc :photog raph i c ev idence /

cc :photo ”><baseType>binary</baseType></ property>
</ p r op e r t i e s></ entityType>

Fig. 3. A fragment of the SyBeL data model

An excerpt of the domain XML definition is shown in Figure 3, where the
DisputeType, EvidenceType, AesteticDisputeType and PhotographicEvidenceType
entities are declared through the entityType construct. Note that the hierarchy
defined at ontological level by the “is a” relations is transformed in a set of
suitable entity derivations using the specializations and base attributes. Other
semantic relations are transformed to properties referencing the corresponding
entities: as an example, the evidences relation between the dispute and the evi-
dence becomes the evidences property of the DisputeType entity, which is defined
as a collection of EvidenceType entities. Finally, all the relevant elements are an-



notated with the modelReference attribute which connects the SyBeL constructs
with the corresponding concepts of the semantic model.

UsernamesurnameuserNamepasswordemail
ApplicationIdentifieropenDateclassification

mediator proposer documentation DisputerequestevidenceValidation
AestheticDisputeNoiseDispute PetDispute

Evidenceauthordate PhotographicEvidencephotoevidences (1,n) evidences (1,n)

Fig. 4. Graphical view of the SyBeL data model

A graphical representation of the SyBeL model is shown in Figure 4, which
can be easily compared with the ontology shown in Figure 2.

Moreover, thanks to the tools provided by SyBeL, it is possible, e.g., to
automatically generate useful artifacts from the domain description, which can
be directly used to drive the data model implementation. As an example, Figure
5 shows the Java declarations generated from the domain fragment of Figure 3.

Now we are ready to generate a SyBeL behaviour from the BPMN process,
using the domain entities to type the involved objects. Figure 6 shows a fragment
of this file, in particular some parts of the main execution flow. Here, the BPMN
steps are transformed in corresponding actions executed on the domain entities
and encapsulated in interaction or happening events. Actions may have parame-
ters (such as details) and return values (such as applicationValidation), which are
also typed using the domain definitions. BPMN process branches are encoded in
alternative flows (such as applicationNotValid), which contain the corresponding
guard condition. Note that each event can be also textually described, to better
link it to the corresponding BPMN step.

Also in this case, the SyBeL tools provide an automatic way of generating
useful derived artifacts from the behaviour description. As an example, Figure
7 shows the HTML documentation of the process, which can be easily read and
interpreted both by domain experts, which may use it to further validate the pro-
cess, and programmers, which may take advantage from this typed, procedural
view to drive the process implementation.



// Semantic re ference : cc : d i spute
// Subc lasses : AesteticDisputeType NoiseDisputeType PetDisputeType
class DisputeType {
public St r ing reques t ;
// Semantic re ference : cc : d i spute /cc : evidences
public Col l e c t i on<EvidenceType> ev idence s ;
// Semantic re ference : cc : d i spute /cc : ev idenceva l ida t ion
public Object ev idenceVa l ida t i on ;

} ;
// Semantic re ference : cc : evidence
// Subc lasses : PhotographicEvidenceType
class EvidenceType {

// Semantic re ference : cc : evidence/cc : author
public St r ing author ;
// Semantic re ference : cc : evidence/cc : date
public St r ing date ;

} ;
// Semantic re ference : cc : a e s t h e t i c d i s pu t e
// Base c l a s s : DisputeType
class Aestet icDisputeType extends DisputeType {

// Semantic re ference : cc : d i spute /cc : evidences
public Col l e c t i on<PhotographicEvidenceType> ev idence s ;

} ;
// Semantic re ference : cc : photographicevidence
// Base c l a s s : EvidenceType
class PhotographicEvidenceType extends EvidenceType {

// Semantic re ference : cc : photographicevidence/cc : photo
public byte [ ] photo ;

} ;

Fig. 5. Java code generated from the SyBeL data model

4 Conclusions

In this paper we have presented our approach to integrate the description capa-
bilities of the BPMN with semantic information based on ontologies.

The consideration we started with is that, in most cases, it is necessary to
add to the process description some semantic information useful to define the
domain in which the process will operate, and that we can assume such semantic
information always codified by ontologies, preexisting or suitably generated by
tools such as Semantic Turkey.

Instead of directly integrating the BPMN model with semantic information,
which could overcharge the model making it more difficult to read by business
executives, we use the features of the lightweight SyBeL modeling language to
merge the process information provided by the BPMN with the information de-
rived from domain ontologies in an integrated view, which preserves the original
specifications. Then, thanks to the tools provided in SyBeL, it is possible to
produce a variety of artifacts and documents that can facilitate the subsequent
implementation steps of the executable process.

Acknowledgments. Authors would like to thank Andrea Palazzo for his con-
tribution to the analysis of the case study.



<f low main=” true ” name=”ApplicationOpen”>
< i n t e r a c t i o n stepName=” s t a r t ”>
<de s c r i p t i o n>Input user d e t a i l s</ d e s c r i p t i o n>
<actor>User</ actor>
<act ionExecute ac t i on=” i n s e r tU s e rDe t a i l s ”>
<va r i ab l e>P</ va r i ab l e>
<argument parameter=” d e t a i l s ”>
<va r i ab l e>A</ va r i ab l e>

</argument>
</ act ionExecute></ i n t e r a c t i o n>
. . .
<happening r e s u l tVa r i ab l e=” app l i c a t i onVa l i d a t i on ”>
<de s c r i p t i o n>Perform formal v a l i d a t i o n o f the app l i c a t i on</ d e s c r i p t i o n

>
<actor>System</ actor>
<act ionExecute ac t i on=” executeFormalVal idat ion ”>
<en t i t y>P</ en t i t y>

</ act ionExecute>
</happening>
<a l t e r n a t i v e f low=” app l i ca t ionNotVa l id ”>
<cond i t i on><comparison operator=”ne”>

<va r i ab l e>app l i c a t i onVa l i d a t i on</ va r i ab l e>
<baseValue>t rue</baseValue>

</ comparison></ cond i t i on></ a l t e r n a t i v e>
. . .
< i n t e r a c t i o n>
<actor>Coordinator</ actor>
<act ionExecute ac t i on=” setMediator ”>
<en t i t y>P</ en t i t y>
<argument parameter=”mediator ”>
<va r i ab l e>M</ va r i ab l e>

</argument>
</ act ionExecute></ i n t e r a c t i o n>
<su c c e s s />

</ f low>

Fig. 6. A fragment of the SyBeL behaviour

References

1. Born, M., Drr, F., Weber, I.: User-friendly semantic annotation in business process
modeling. In: Springer (ed.) Web Information Systems Engineering WISE 2007
Workshops. Lecture Notes in Computer Science, vol. 4832, pp. 260–271 (2007)

2. Business Process Trends: Case studies and success stories,
http://www.bptrends.com/ resources publications.cfm? publicationtypeID=
DFFB84D1-1031-D522-339E8B42679D513F

3. Della Penna, G., Intrigila, B., Magazzeni, D., Orefice, S., Del Sordo, R., Cardinale
Ciccotti, G.: SyBeL: a system modelling language enhancing automatic support in
the software development process. International Journal of Software Engineering
and Knowledge Engineering 23(2), 223–257 (3 2013)

4. Gazzetta Ufficiale della Repubblica Italiana: Legislative decree
4/3/2010, n. 28: mediation in civil and commercial matters,
http://www.gazzettaufficiale.it/eli/id/2010/03/05/010G0050/sg

5. Government of Nova Scotia: Condominium disputes applying for dis-
pute resolution, http://www.gov.ns.ca/snsmr/access/individuals/consumer-
awareness/condominiums/applying-for-dispute-resolution.asp

6. Istituto Nazionale per la Mediazione e L’Arbitrato: Il mediatore condominiale,
http://www.inmediar.it/il-mediatore-condominiale/



Open Application

Attributes

Description
A registered user opens an application about an aesthetic dispute. The application is automatically validated,
then approved by a coordinator who assigns it to a mediator

Author Giuseppe Della Penna
Stakeholder

Goal The application is filled, checked and assigned to a mediator
Date 2013-09-20

Revision 0

Parameters
Name Type Description

P ENTITY of type ApplicationType The application to be opened

A
COLLECTION of ENTITY of type
PersonalDetailsType

The user details

T ENTITY of type AestheticDisputeType The documents attached to the application
M ENTITY of type UserType The mediator

Trigger
User performs action Open on P

Event Flows
ApplicationOpen (main flow)
Input user details

start  User performs action insertUserDetails on P with details=A
Input application documentation

User performs action insertDocumentation on P with documents=T
Perform formal validation of the application

System invokes action executeFormalValidation of P and assigns the result to applicationValidation
if applicationValidation is not equal to true continue with flow applicationNotValid
The coordinator approves the application and assigns it to a mediator

Coordinator performs action evaluate on P
if Coordinator performs action changeApprovalStatus on P with status=false continue with flow
applicationNotApproved
Coordinator performs action changeApprovalStatus on P with status=true
Coordinator performs action setMediator on P with mediator=M
success

applicationNotValid
continue with flow ApplicationOpen from step start

applicationNotApproved
continue with flow ApplicationOpen from step start

Fig. 7. HTML documentation generated from the SyBeL behaviour

7. Official Journal of the European Union: European directove 2008/52/ec: on
certain aspects of mediation in civil and commercial matters, http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:136:0003:0008:En:PDF

8. OMG: Business process model and notation (bpmn), http://www.bpmn.org/
9. Pazienza, M.T., Scarpato, N., Stellato, A., Turbati, A.: Semantic turkey: A

browser-integrated environment for knowledge acquisition and management. Se-
mantic Web Journal 3(2) (2012)

10. Seitz, C.: Patterns for semantic business process modeling. Tech. Rep. 2008-07,
Institut fr Informatik, University of Augsburg (2008)

11. W3C: Ontology driven architectures and potential uses of
the semantic web in systems and software engineering,
http://www.w3.org/2001/sw/BestPractices/SE/ODA/


