
Towards a Planning-Based Approach to the
Automated Design of Chemical Processes

Arman Masoumi1, Andrea Marrella2, and Mikhail Soutchanski1

1 Ryerson University, Toronto, Ontario, Canada
2 Sapienza Università di Roma, Rome, Italy

Abstract. The design of chemical processes is a central problem in organic
chemistry. A chemical process is a sequence of chemical reactions capable of
producing a target compound from some starting stage molecules. The manual
specification of such processes can be time-consuming and error-prone, due to
the high number of reactions involved and their complex chemical conditions. To
tackle this issue, we propose a planning-based approach and a framework for the
automated design of chemical processes. Specifically, we argue that this problem
can be reduced to a planning problem in Artificial Intelligence. To this end, we
adapt the situation calculus and PDDL to the task of modeling molecules and
capturing semantics of generic chemical reactions, and we conduct experimental
study including empirical assessment of a PROLOG planner and two state-of-
the-art planners on a set of benchmark problems.

1 Introduction

Business Process Management [22] (BPM) is a very active research area, because it is
highly relevant from a practical point of view while at the same time it offers many
challenges for researchers. BPM is based on the observation that each product that a
company provides to the market is the outcome of a number of activities. Business
processes are the key instruments to organizing these activities and to improving our
understanding of their interrelationships. Traditionally, BPM has focused on the sup-
port of predictable and repetitive business processes, that include mainly production
and administrative processes (such as manifacturing, order handling, etc.) [12]. In re-
cent years, the maturity of process management methodologies has led to the appli-
cation of process-oriented approaches in new knowledge-intensive scenarios [6], such
as healthcare [19] and emergency management [15]. In a knowledge-intensive process,
the sequence of activities depends heavily on the specifics of the context (e.g., which
resources and what particular options exist at the time of the process definition). Such
processes do not have the same level of repeatability as classical business processes,
and their instances may change on a case-by-case basis, depending on the context [19].

An interesting and challenging example comes from the field of Organic Chemistry,
where the design of chemical processes is central for the generation of complex chemi-
cal compounds starting from natural raw materials. It enables chemists to discover new
drugs by producing compounds that do not form naturally. Basically, a chemical process
consists of a sequence of chemical reactions, that lead to the transformation of one set of
chemical substances to another. Chemical substances are made up of atoms of different
elements, joined together by chemical bonds. A chemical reaction is characterized by a
chemical change that produces one or more final substances, by involving the breaking
of existing bonds and the formation of new ones. The correct execution of a chemical
process aims at generating a complex compound by involving several chemical reac-
tions to be enacted in sequence. However, to identify which reactions are capable of
producing the target compound is a complex activity to be handled manually, even for
the most skilled chemists. In fact, each reaction, for being enacted, requires that certain
chemical conditions are satisfied at a specific point of the chain, possibly when other
reactions have already been performed and further substances have been produced.

To tackle this issue, building on our previous work [16], we propose a planning-
based approach and a framework for the automated design of chemical processes.
Specifically, we allow a chemist to select a set of starting molecules from a specific
library and to establish the target compound to achieve, and we leverage on planning
techniques developed in Artificial Intelligence (AI) for generating a chemical process
that can transform the starting molecules into the target ones. This problem is also re-
ferred as the CAOS (Computer-Assisted Organic Synthesis) problem [3]. We show that
the CAOS problem can be conveniently formulated as a planning problem in Situation
Calculus [20], a well-known logical formalism used in AI for representing and reason-
ing on actions, and in PDDL (the Planning Domain Definition Language [7]). Specif-
ically, we adapt the situation calculus and PDDL to the task of modeling molecules
and capturing semantics of generic chemical reactions, and we formulate the process
design problem as a planning problem in AI. We investigate two different computa-
tional approaches to solving this kind of planning problem. One of the planners that
we conducted research solves the planning problem directly in situation calculus and
accepts PROLOG encoded specification of the problem. This planner can take advan-
tage of domain-specific declarative heuristics built ad-hoc for reducing significantly the
search space [16]. Then, we solve the same planning problem with two state-of-the-
art planners working with a PDDL input and domain-independent heuristics. Finally,
we present a comparative analysis of the performance of the tested planners in solving
different process design problems.

2 Case Study

In this paper, we focus on organic chemistry, a discipline dedicated to studying
molecules involving carbon-hydrogen bonds and their reactions. Molecules are formed
by bonded atoms. It is common to represent atoms with their shorthand (e.g., the short-
hand for carbon is C) from the periodic table as vertices of a graph, and the chemical
bonds as edges of the graph connecting the atoms. The molecules presented in this
paper are formed using single bonds and double bonds. A single/double bond is repre-
sented as a single/double edge between atoms. The process of transforming one or more
molecules to a different set of molecules is referred to as a chemical reaction. A reaction
is described with a chemical equation, which graphically presents the molecules before
the reaction, known as substrates, and the new molecules that are created after the reac-
tion, called the products. If a molecule is unchanged before and after a reaction, but has
been necessary for the reaction to happen, then it is termed a catalyst. What changes in
a chemical reaction is essentially the bonds between the atoms of the molecules in the
substrate. Representing generic chemical reactions requires representing and identify-
ing classes of molecules. Molecules within the same chemical class have similar chem-
ical characteristics. For example, alkanes, alcohols and esters are well-known chemical
classes that display unique behaviors in reactions. A few generic chemical reactions are
in shown in Fig. 1, where R and R′ are alkyls, i.e., chemical compounds that consist
solely of acyclic single bonded carbon and hydrogen atoms with the generic formula
CnH2n+1. For example, methyl CH3- and ethyl CH3−CH2- are alkyls. Specifically:

– The reaction between ester and water results in a carboxylic acid and alcohol, cf.
Fig. 1(a). This reaction needs a strong acid as a catalyzer.

– The reaction between an alcohol and strong base NaH results in an alkoxide salt
and hydrogen molecule H2, cf. Fig. 1(b).

– The reaction between alkoxide salt and an alkyl halide results in an ether and a salt,
cf. Fig. 1(c). Here, X is any halogen, and Y is any alkali metal. Halogens and alkali
metals are specific groups of atoms. For example, Fluorine F and Chlorine Cl are
halogens, and Sodium Na is an alkali metal.

– The reaction between ether and mineral acid HCl results in alcohol and alkyl
halide, cf. Fig. 1(d).

Fig. 1. The list of generic/specific reactions used for designing a chemical process.

In organic chemistry, a relevant problem consists of designing chemical processes, i.e.,
chains of chemical reactions that produce new molecules (i.e., a target compound) using
some starting stage molecules. Most often, there is no one reaction that can transform
the starting molecules to the desired goal molecules, rather a sequence of different reac-
tions is needed. We consider a simple case study that applies the above reaction schemas
for designing a chemical process that requires a sequence of four reactions. Our goal is
to synthesize an alcohol molecule and an ethyl chloride, starting from methyl acetate
CH3−COO−CH3, water H2O, hydrochloric acid HCl, sodium hydride NaH and ethyl
fluoride CH3−CH2−F. The goal molecule can be synthesized as follows:

– First, the methyl acetate (an ester), the water molecule, and the hydrochloric acid
react to produce methanol (an alcohol) and acetic acid (a carboxylic acid). Notice
that hydrochloric acid HCl is the catalyst in this reaction, cf. Fig. 1(e).

– Second, the methanol (an alcohol) reacts with the sodium hydride (a strong base)
to produce sodium methoxide (an alkoxide salt) and H2, cf. Fig. 1(f).

– Third, the sodium methoxide (an alkoxide salt) reacts with ethyl fluoride (an ethyl
halide) to produce methyl ethyl ether (an ether) CH2−O−C2H5, cf. Fig. 1(g).

– Lastly, the methyl ethyl ether reacts with the hydrochloric acid (a mineral acid) to
produce methanol (an alcohol) and ethyl chloride (an alkyl halide), cf. Fig. 1(h).

Fig. 1(i) shows the chemical process required for solving our synthesis problem. The
process is represented in BPMN [2] (Business Process Modeling Notation), a diagram-
ming language designed to specify a process in a standardized way. Intuitively, given
a set of starting molecules, an execution of the process starts at # and ends at �; an
activity � reflects a chemical reaction executed by the process; transitions are binary
relations describing in which order the reactions have to be performed. An execution of
the chemical process produces a set of target molecules, as shown in Fig. 1(i). In order
to find manually the sequence of reactions involved in a chemical process, a chemist
needs to first identify the chemical classes of each molecule at hand, and then refer to
her/his knowledge of chemical reactions to find out which of these molecules can react
with each other, and what would the product be if they reacted. The next task is to iden-
tify whether the hypothetical product is useful, and whether that product can react with
some other molecules at hand to produce yet another useful product and so on. These
tasks needs to be repeated until the goal molecule is synthesized, or when the chemist
realizes there is no known way of synthesizing the goal molecule from the molecules
at hand. The problem becomes more intricate when the number of molecules is large,
when the molecules are complex, and when a large number of reactions is needed be-
fore the goal molecule is synthesized. In practice, even the most skillful chemists cannot
solve synthesis problems exceeding from a small number of steps manually.

3 Preliminaries

Situation Calculus. The situation calculus (SC) is a logic language designed for repre-
senting and reasoning about dynamic domains [20]. In SC, a dynamic world is modeled
as progressing through a series of situations as a result of various actions being per-
formed. A situation s is a first-order term denoting the sequence of actions performed
so far. A special binary function symbol do(a, s) denotes the next situation resulting
from the performance of action a in situation s. The special constant S0 stands for the
initial situation, namely the empty action sequence. An Initial Theory DS0

represents
the set of axioms in S0, before any action has occurred.

Conditions whose truth value may change are modeled by means of fluents. Tech-
nically, these are predicates taking a situation term as their last argument. Fluents may
be thought of as “properties” of the world whose values may vary across situations.
Changes in fluents (resulting from executing actions) are specified through a set Dss of
successor state axioms SSAs. In particular for each fluent F we have a SSA as follows:
F (−→x , do(a, s)) ⇔ ΓF (

−→x , a, s), where ΓF (
−→x , a, s) is a formula with free variables

fully capturing the truth-value of fluent F on a tuple of objects −→x when action a is per-
formed in situation s. Besides successor state axioms, SC is characterized by a set Dpa

of action precondition axioms PAs, which specify whether a certain action is executable
in a situation. PAs have the form: Poss(a, s) ⇔ Πa(s), where the formula Πa(s) de-
fines the conditions under which the action a may be performed in the situation s.

A basic action theory (BAT) D = DS0
∪Dpa ∪Dss is the set of the relevant axioms

that is used to model actions and their effects in SC. BATs might also be augmented
with abbreviations. They are declared as predicates (with situation argument) defined
by means of a formula uniform in s that can mention only other abbreviations or fluents
at s. Abbreviations, unlike fluents, are not directly affected by actions. However, simi-
larly to fluents, their truth value may vary from situation to situation.
Planning Algorithms. Planning systems are problem-solving algorithms that operate
on explicit representations of states and actions [18]. The standard representation lan-
guage of classical planners is known as the Planning Domain Definition Language [7]
(PDDL); it allows one to formulate a problem PR through the description of the initial
state of the world initPR and of the desired goal condition goalPR. The domain PD
of the planning problem mostly introduces relational predicates and a set of possible
action definitions Ω. An action schema defines the condition under which an action
a ∈ Ω can be executed, called pre-conditions Prea and its effects Effa on the state
of the world. A planner that works on such inputs generates a sequence of actions (the
plan) that leads from the initial state to a state meeting the goal. In this paper, we
focus on classical planning techniques, characterized by fully observable, static, and
deterministic domains, in which plans can be computed in advance and then applied
unconditionally. Classical planning has made huge advances in the last twenty years,
leading to solvers able to create plans with thousands of actions for problems described
by hundreds of propositions. In this work, we represent planning domains and planning
problems making use of PDDL 2.2 [7], that is characterized for enabling the represen-
tation of planning domains including operators with derived predicates.

4 The General Framework

One of the main obstacles in applying AI techniques to real problems is the difficulty to
model the domains. Usually, this requires that people that have developed the AI system
carry out the modeling phase, since the representation depends very much on a deep
knowledge of the internal working of the AI tools. Since we are aware that a chemist
that wants to automatically design a chemical process is probably not an expert of AI
techniques, we worked on a framework that allows non-experts entering knowledge on
molecules and chemical reactions through a user-friendly interface.

Fig. 2. The general framework for designing chemical processes.

Specifically, our approach for designing chemical processes relies on two main
logical layers as shown in Fig. 2. The Presentation Layer has a twofold purpose.
On one hand, it allows a chemist to visualize and quickly draw new molecules, to
retrieve generic chemical reactions from a dedicated Reactions Library or to define
completely new reactions. For these tasks we rely on ChemAxon products - http:
//www.chemaxon.com/, which provide free Java-based chemistry editors for draw-
ing, retrieving and visualizing chemical structures. Every entry in the Reactions Library
characterizes a reaction with a (i) name, (ii) a set of chemical conditions, that must be
satisfied for making the reaction executable (e.g., the list of required catalysts) and
(iii) the finite number of molecules involved in the reactions, i.e., the substrates and
the products. On the other hand, we provide a GUI-based tool named ChemAI. It can
be used by a chemist to specify a chemical case, i.e., a set of starting molecules (re-
trieved from a Database of known molecules) and a target compound to achieve. At
this point, ChemAI interacts with a Library of Chemical Processes that have been built
previously for specific chemical cases. If a chemical process exists for the current value
of the chemical case, it is graphically returned to the chemist, by showing the chain
of chemical reactions required for synthesizing the target compound. Otherwise, if no
process exists for the current value of the chemical case, ChemAI first retrieves from
the Reactions Library a set of generic reactions that conform with the chemical classes
of the starting molecules (i.e., they can be possibly used for generating the target com-
pound), then builds an XML file including the selected reactions and a representation
of the chemical case, and finally passes these information to the Generation Layer.

The Generation Layer is in charge of automatically designing a chemical process
whose execution leads from the starting molecules to the target compound. The Problem
Builder component acts as unique entry point from the Presentation Layer. It provides
two software modules, named XML-to-SC and XML-to-PDDL. They take in input the
XML specification received from ChemAI and, respectively, translate it in SC/PDDL
readable formats. The formalization of chemical reactions in SC BATs/PDDL requires
to explicitly represent molecules, their atoms and the bonds between them. Let’s focus
on the translation algorithm implemented in XML-to-SC, that works in three separate
steps. First, the algorithm identifies which atoms and which bonds between atoms are
involved in the starting molecules. This knowledge is used for: (i) representing atoms
with situation independent predicates. For example, Carbon(C1) means the constant
C1 represents a carbon atom; (ii) understanding which type of bond exists between
the atoms in the starting molecules. We use the fluent Bond(x, y, s) (respectively,

http://www.chemaxon.com/
http://www.chemaxon.com/

DoubleBond(x, y, s)) for describing if atom x has a single bond (respectively, a dou-
ble bond) with atom y in the situation s. Secondly, the translation algorithm analyzes
the selected chemical reactions and generates the sets Dpa, Dss and the abbreviations
required for reasoning over reactions in SC. Specifically, for each generic reaction X:

– a corresponding SC action ax is created. For example, the reaction be-
tween alcohol and strong bases can be represented as a SC action
a b r(oxOfAlcohol, hydOfAlcohol, xOfBase,metalOfBase), cf. Fig. 1(f).
Here, four atoms change bond, and they are listed as the arguments of the action;

– the substrates and the chemical conditions associated to X are used for
generating a PA for ax. A PA introduces the molecules on the left
hand side of the reaction (i.e., the substrates and the possible cata-
lysts). For example, the PA needed for executing the a b r reaction is
Poss(a b r(oxOfAlcohol, hydOfAlcohol, xOfBase,metalOfBase), s) ↔

alcohol(oxOfAlcohol, hydOfAlcohol, s)∧base(xOfBase,metalOfBase, s).
– the substrates and the products associated to X are elaborated for inferring the

SSA of ax. It takes into account all the bonds that are formed and cleaved as the
result of the reaction. For example, the effects of a b r are captured in the SSA:
Bond(x, y, do(a, s)) ↔ (∃ z, u)(a=a b r(x, z, u, y)) ∨ (...)

∨ (Bond(x, y, s) ∧ (¬∃u, z)(a=a b r(x, y, u, z)) ∨ (...).
From the first line, we can infer that after the a b r reaction the oxygen of the
alcohol forms a single bond with the metal of the base (they correspond to the first
and the fourth argument of the a b r action), and from the second line we derive
that the oxygen of the alcohol molecule and its hydrogen cleave their bond (they
correspond to the first and the second argument of the a b r action).

– the substrates and the products associated to X are used for individuating
the chemical classes involved in the reaction, that will be represented as
SC abbreviations, i.e, situation-dependent predicates that describe the molecu-
lar structure of interest. For example, the abbreviation for alcohol R−OH is:

Alcohol(o, h, s)
def
= Hydroxy(o, h, s) ∧ ∃c(Alkyl(c, s) ∧ Bond(o, c, s)) where

Hydroxy(o, h, s) and Alkyl(c, s) are defined with further abbreviations.

Thirdly, the algorithm analyzes the specific chemical case and leads to the definition of
the initial theory DS0

(reflecting the instantiation of the values for the Bond and Dou-
bleBond fluents in in the initial situation S0), and of a goal condition representing the
target compound to achieve. We use again abbreviations for representing goal molecules

of the chemical case. For example, the formula Goal(s)
def
= (∃o, h)Alcohol(o, h, s) ∧

(∃cl, c)Ethyl Chloride(cl, c) states that our goal is to reach a situation s in which
there are atoms identifying an alcohol molecule and an ethyl chloride.

At the heart of the Generation Layer lies the PROLOG Planner. This software mod-
ule reasons on available molecules and chemical reactions formalized in SC for iden-
tifying a chain of reactions whose execution leads to a target compound. The search
algorithm relies on a simple iterative deepening depth-first planning algorithm with
declarative heuristics built ad-hoc for reducing the search space and help the program
to find the synthesis route more quickly. The declarative heuristics are domain specific,
but not planning problem instance specific. These heuristics identify duplicate unnec-
essary actions, as well as the irrelevant actions to the actions that have been taken so
far. With this knowledge at hand, the PROLOG planner can avoid useless actions, and
thus reduce the search space, which ultimately results in expediting finding the correct
sequence of actions satisfying the goal. The interested reader can refer to [16] for more
information about the details of the SC formalization and of the declarative heuristics.

If the PROLOG planner fails to generate a chemical process (it may happen that
no declarative heuristic has been still developed for the specific chemical case), or the
generated process is of insufficient quality (it possibly includes more reactions than the

ones expected), the task of process design is delegated to one or more state-of-the-art-
planners. To this end, we developed a Planners Manager component, that takes as input
the PDDL specification of the chemical reactions and of the chemical case as sent from
the XML-to-PDDL component and invokes some external planners plugged to it. The
XML-to-PDDL module works similarly to the XML-to-SC’s one. Specifically, it pro-
duces two files conforming with PDDL 2.2. The first file contains the PDDL Planning
Domain, where (i) each generic reaction and its associated information (i.e., substrates,
products and catalysts) are represented with a PDDL action schema, (ii) chemical bonds
(respectively, double bonds) are translated in basic predicates and (ii) chemical classes
are defined as derived predicates. The second file is the Planning Problem; here, the ini-
tial state is obtained by instantiating the existing bonds between the starting molecules,
and the goal condition is inferred by the target compound as specified in the chemical
case. It is worth noting that the PDDL Planning Problem roughly corresponds to the
initial theory DS0 in BATs, the PDDL Planning Domain roughly corresponds to PAs
and SSAs in BATs, and PDDL derived predicates correspond to SC abbreviations. The
Planners Manager allows to interact with several planners that are able to accept as
inputs a planning domain and a planning problem defined with PDDL 2.2.

Once a plan satisfying the goal condition has been obtained, it is converted in a
BPMN process through a Translator component. A BPMN chemical process is a simple
sequence of activities that reflects the chain of reactions required for transforming the
starting molecules to the goal compound. Once obtained, we store the chemical process
in the Library of Chemical Processes and we return it to the chemist. Our approach
assumes that a chemist contributes to the system by specifying the chemical case and the
reactions step-by-step. If no plan is found, this suggests there is some missing element
in the set of starting molecules/reactions used for the chemical process generation. In
such a case, an empty process (one with no activities) is returned to the chemist, and an
error log (associated to the chemical case) is recorded into the library. At this point the
chemist may refine the chemical case or the set of reactions to obtain better solutions.

5 Experiments

In order to investigate the feasibility of our planning-based approach, we performed
some testing to learn the time needed for designing a chemical process with different
configurations of the starting molecules. The experiments were performed on a machine
with 2.30 GHz CPU and 12 GB RAM. We ran our tests using our PROLOG Planner
and two state-of-the-art planners, specifically, Fast-Downward [9] and Roamer [13].
Fast-Downward [9] is a progression planner that uses hierarchical decompositions of
planning tasks for computing its heuristic function, called the causal graph heuristic,
which approximates goal distances by solving a hierarchy of “local” planning problems.
The Roamer planner [13] builds on the Fast-Downward planner, and uses a best-first
search in first iteration to find a plan and a weighted A* search to iteratively decreas-
ing weights of plans. The experimental setup was run on variants of our case study.
We represented 9 SC/PDDL actions (corresponding to 9 different chemical reactions),
annotated with 2 relational predicates (for identifying existing bonds between atoms)
and 36 abbreviations/derived predicates (for representing the different chemical classes
possibly involved in the reactions). Then, we defined 10 different planning problems
of varying complexity by manipulating the composition of the starting molecules in
the chemical case. Specifically, in Table 1, each case refers to a starting stage that in-
cludes the following molecules: water H2O, hydrochloric acid HCl, sodium hydride
NaH, ethyl fluoride CH3−CH2−F and an Ester molecule, that changes from case to
case. The experiments done on such starting stages are identifiable in the first 5 rows in
Table 1. In order to increase the complexity of the planning problems, we added to the
chemical cases duplicate water and HCl molecules (cf. the last 5 rows in Table 1). In all
experiments, the goal is to reach a state in which there are atoms identifying an alcohol

Chemical Cases Ester Prolog Planner Fast-Downward Roamer
Case 1 Methyl Acetate 0.06 47.82 47.78
Case 2 Ethyl Acetate 0.12 69.44 69.28
Case 3 Isopropyl acetate 0.75 171.46 171.37
Case 4 Methyl Butyrate 0.13 39.01 38.89
Case 5 Butyl Butyrate 3.45 45.79 45.47

Case 1 + H2O + HCl Methyl Acetate 0.06 76.03 75.81
Case 2 + H2O + HCl Ethyl Acetate 0.13 111.23 111.01
Case 3 + H2O + HCl Isopropyl acetate 0.75 285.56 280.83
Case 4 + H2O + HCl Methyl Butyrate 0.13 58.29 58.09
Case 5 + H2O + HCl Butyl Butyrate 3.46 67.48 67.43

Table 1. Time performances (in seconds) of the PROLOG planner, Fast-Downward and Roamer.

molecule and ethyl chloride. A planner invoked with whatever of the presented cases
generates a chemical process composed by a chain of 4 chemical reactions.

As can be understood from the data collected in Table 1, the performance of the
PROLOG planner is significantly better than the other planners. This is in part due
to the domain-dependent declarative heuristics that are used in the PROLOG planner.
In general, constructing domain-dependent heuristics offers opportunities to tailor the
mechanisms to the particular domain for far a greater efficiency. A second reason lays
in the way the PROLOG planner searches for a path satisfying the goal condition; it
reasons on-the-fly on the available knowledge while generating the plan through its
declarative heuristics, avoiding to build any intermediate structure to be exploited dur-
ing the planning task. On the contrary, the state-of-the-art planners we have tested rely
on a translator that converts the planner input from PDDL into a multi-valued state rep-
resentation and on a grounding algorithm used for instantiating operators and axioms
(e.g., derived predicates) of the planning domain into a grounded transition system.
Finally, a search engine exploits the transition system just built for finding a satisfying
plan. The main bottleneck is in the grounding algorithm, specifically when a large num-
ber of derived predicates need to be instantiated in the transition system, resulting in an
exponential blow up of the space required for describing the planning problem. This is
even more apparent when a larger starting stage is experimented (i.e. when duplicate
water and HCl exist), where the performance of the PROLOG planner is almost intact
while the state-of-the-art planners experience additional performance deficiency. This
can be explained by direct relation of size of the starting stage with the time needed
for the state-of-the-art planners to build the transition system and employ the domain
independent heuristics for finding the solution.

To explore how close are the state-of-the-art planners to their limits, we extended
our set of planning instances with an additional reaction: combustion of methanol
CH3−OH. In this reaction, all atoms of two methanol molecules and three O2 molecules
change bonds. Therefore, the action representing this reaction needs many arguments
(18, to be precise). The initial stage molecules include additional three O2 molecules
and the domain description was extended with two additional abbreviations/derived
predicates defining methanol and oxygen molecules. We observed that neither Fast-
Downward nor Roamer were able to solve any of the instances of this extended set
of planning instances, as they ran out of memory in their compilation stage. This was
somewhat expected because these planners rely on grounding that leads to combinato-
rial explosion when actions have many arguments.

6 Related Work

The AI community has been involved with research on process management for several
decades. While BPM has concentrated on business and manufacturing processes, the
AI community has been motivated primarily by domains that involve active control of
computational entities and physical devices (e.g., robots, antennas, etc.). An interesting

report that describes how techniques from AI could be leveraged to provide several of
the advanced process management capabilities envisioned by the BPM community is
shown in [17]. Surprisingly, to the best of our knowledge, AI techniques have never
been applied for the purpose of modeling chemical reactions and automatically design-
ing chemical processes, except for our previous work [16] and for the Pathways domain,
that was introduced in the International Planning Competition (IPC) in 2005.

However, Computer-assisted organic synthesis (CAOS) is not a new field. CAOS
aims to use computers to help chemists in the process of designing multi-step synthesis
of organic compounds. It has been an active area of research for a long time and there
has been an ongoing progress in developing new methodologies or expanding existing
methodologies in the area of CAOS. The first synthesis system was organic chemi-
cal simulation of synthesis (OCSS) introduced in [4] which is based on retrosynthetic
analysis. Retrosynthetic analysis has close connections with the well-known notion of
regression in SC [20]. Soon after, LHASA [5] was developed which was extension
of OCSS by incorporating a more complex strategy system which included multi-step
plans based on useful reactions. Prior to 80s, CAOS systems were based on retrosynthe-
sis approach but in 80s other approaches emerged. SYNGEN [10] was published with
the main goal of automatically generating the shortest synthetic route for a given target
structure. Formal-Logical Approach is discussed in [21] that focuses on reaction design
problems. [23] discusses SYMBEQ computer program created for the search of novel
types of organic reactions and is based on the formal-logical approach. More recently,
Route Designer is discussed in [11]. In Route Designer, rules describing retrosynthetic
transformations are automatically generated from reaction databases, which ensure that
the rules can be easily updated to reflect the latest reactions in the literature.

The distinctive feature of our approach consists of representing generic chemical
reactions, as opposed to specific instances of chemical reactions, like happens in the
Pathways domain and in many CAOS systems. In other words, one generic reaction in
our approach subsumes many instances of specific reactions. Additionally, we represent
internal mechanism of reactions, i.e., we reason at the level of changing bonds between
atoms. This aspect adds discovery potential to our approach, allowing the possibility to
search for new chemical compounds and new drugs.

7 Conclusion

In this paper, we presented a planning-based approach and a framework for automati-
cally designing chemical processes. We adapted the SC and PDDL to the task of model-
ing molecules and capturing semantics of generic chemical reactions, and we employed
a PROLOG planner and two state-of-the-art planners to solve some process design prob-
lems. A full implementation of the approach is currently on going.

Our approach brings forth notable advantages such as being able to represent
generic reactions and to reason about the most elementary interactions between
molecules. Another advantage relies in the declarative representation of the chemical
domain in SC/PDDL, which makes it easily expandable and flexible. Our experiments,
despite being preliminary, demonstrate that some state-of-the-art planners may be em-
ployed (with some limitation) to solve process design problems. At the same time,
they provide a successful case study of applying AI methods to solve problems in the
life sciences. From the BPM perspective, we take inspiration from existing research
works dealing with the synthesis of business process models [1,8,14] and we devise
an approach that is able to automatically generate new chemical processes on the ba-
sis of some existing contextual data (i.e., information about molecules and reactions),
without any underlying process model pre-defined in advance. We underline that the
proposed approach is not limited to chemical processes design; it can be customized
and used to solve other computational problems as well. To this end, we think that it
can be particularly useful for those knowledge-intensive scenarios where the definition

of a process model strictly depends on the actual contextual information, by making
unrealistic its definition in advance. As for future work, we intend to scale up the ex-
periments by significantly enlarging the library of generic chemical reactions, and try
more combinatorial problem instances. We are also planning to formalize further chem-
ical conditions (e.g., temperature, energy, etc.) that are usually required for executing
reactions. Finally, we are studying how to augment our reasoning approach to design
chemical processes that allow reactions to be executed in parallel.
Acknowledgements. The work of Andrea Marrella has been partly supported by the
SAPIENZA grants SUPER and “Premio Ricercatori Under-40”.

References

1. Barba, I., Del Valle, C., Weber, B., Jiménez, A.: Automatic generation of optimezed business
process models from constraint-based specifications. IJCIS (2013)

2. BPMI.org and OMG: Business Process Modeling Notation - Final Specification Ver.2.0.
http://www.omg.org/spec/BPMN/2.0/PDF/ (2011)

3. Cook, A., Johnson, A.P., Law, J., Mirzazadeh, M., Ravitz, O., Simon, A.: Computer-aided
synthesis design: 40 years on. Wiley 2(1), 79–107 (2012)

4. Corey, E.J., Wipke, W.T.: Computer-assisted design of complex organic syntheses. American
Association for the Advancement of Science 166(3902), 178–192 (1969)

5. Corey, E.J., Wipke, W.T., Cramer, R.D., Howe, W.J.: Computer-assisted synthetic analysis.
facile man-machine communication of chemical structure by interactive computer graphics.
J. of the American Chem. Society 94(2), 421–430 (1972)

6. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive Processes: An Overview of
Contemporary Approaches. In: KiBP (2012)

7. Edelkamp, S., Hoffmann, J.: PDDL2.2: The Language for the Classical Part of the 4th Inter-
national Planning Competition. Tech. rep., Albert-Ludwigs-Universitt Freiburg (2004)

8. Ferreira, H.M., Ferreira, D.R.: An integrated life cycle for workflow management based on
learning and planning. International Journal of Cooperative Information Systems 15 (2006)

9. Helmert, M.: The fast downward planning system. J. AI. Res.(JAIR) 26, 191–246 (2006)
10. Hendrickson, J.B., Grier, D.L., Toczko, A.G.: A logic-based program for synthesis design. J.

of the American Chem. Society 107(18), 5228–5238 (1985)
11. Law, J., Zsoldos, Z., Simon, A., Reid, D., Liu, Y., Khew, S.Y., Johnson, A.P., Major, S.,

Wade, R.A., Ando, H.Y.: Route designer: A retrosynthetic analysis tool utilizing automated
retrosynthetic rule generation. J. of Chem. Inf. and Mod. 49(3), 593–602 (2009)

12. Leymann, F., Roller, D.: Production workflow: concepts and techniques. Prentice Hall (2000)
13. Lu, Q., Xu, Y., Huang, R., Chen, Y.: The roamer planner random-walk assisted best-first

search. Garcı́a-Olaya et al.(2011) pp. 73–76 (2011)
14. Marrella, A., Lespérance, Y.: Synthesizing a library of process templates through partial-

order planning algorithms. In: BPMDS’13 (2013)
15. Marrella, A., Mecella, M.: Continuous planning for solving business process adaptivity. In:

BPMDS’11 (2011)
16. Masoumi, A., Soutchanski, M.: Reasoning about chemical reactions using the situation cal-

culus. In: 2012 AAAI Fall Symposium Series (2012), http://www.aaai.org/ocs/
index.php/FSS/FSS12/paper/view/5635/5824

17. Myers, K., Berry, P.: Workflow Management Systems: An AI Perspective. AIC rep. (1998)
18. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA (2004)
19. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems - Chal-

lenges, Methods, Technologies. Springer (2012)
20. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-

namical Systems. MIT (2001)
21. Tratch, S.S., Zefirov, N.S.: Systematic search for new types of chemical interconversions:

Mathematical models and some applications. J. of Chem. Inf. and Comp. Sc. 38(3) (1998)
22. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer-

Verlag New York, Inc., Secaucus, NJ, USA (2007)
23. Zefirov, N.S., Baskin, I.I., Palyulin, V.A.: Symbeq program and its application in computer-

assisted reaction design. J. of Chem. Inf. and Comp. Sc. 34(4), 994–999 (1994)

http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.aaai.org/ocs/index.php/FSS/FSS12/paper/view/5635/5824
http://www.aaai.org/ocs/index.php/FSS/FSS12/paper/view/5635/5824

	Towards a Planning-Based Approach to the Automated Design of Chemical Processes
	Introduction
	Case Study
	Preliminaries
	The General Framework
	Experiments
	Related Work
	Conclusion

