
Towards Self-Adaptation and Evolution
in Business Process

L. Sabatucci1, C. Lodato1, S. Lopes1, and M. Cossentino1

ICAR-CNR, Consiglio Nazionale delle Ricerche, Palermo, Italy
{sabatucci,c.lodato,s.lopes,cossentino}@pa.icar.cnr.it

Abstract. Business process run-time evolution and adaptivity are two urgent ob-
jectives in the research agenda of dynamic workflow execution.
Traditional languages as BPMN or BPEL take an imperative style for defining
the exact sequences of activities to execute. The imperative approach identifies a
narrow space of solution that is generally optimized by the experience. However
it does not provide enough freedom of action to bypass obstacles when something
exceptional happens.
In the wake of declarative specification languages we propose a framework, based
on the standard BPMN, in which both business goals and the operative context
are monitored for changes during the execution time.
To enable a flexible adaptivity of the process to a changing environment we adopt
the solution of relax some constraints of the rigid BPMN specification thus to
give autonomous software agents the opportunity of exploring a wider space of
solution, even when this space evolves unexpectedly or contains uncertainty.
The result is a multi-agent system that exploits its features (mainly autonomy and
proactivity) in order to monitor the execution state of the process and to discover
a distributed solution to unpredictable situations or to specifications’ evolution.

1 Introduction

The business domain is a highly variable application context [1]. Business rules change
frequently due to a couple of factors. The first aspect is connected to the knowledge
of the domain that typically improves after the workflow deployment and execution.
Analysts and stakeholders learn from scenarios execution [2]. This generally leads to
corrections or extensions to increase the correctness or the coverage of exceptional cases
that have not been considered yet. The second aspect is connected to the evolution of
the society (with its laws and regulations) and/or of the company business strategies [1].
These changes imply a revision of the workflow model, and often it is necessary to
include new goals or constraints.

Evolution and adaptivity are often strictly correlated. This is particularly true in the
domain of dynamic workflows [3]. BPMN [4] provides basic mechanism to specify how
the system will react to expected exceptions. Adaptation is more concerned to define
how to react to unexpected exceptions, which are events that cannot be handled by
following the workflow model. So far, BPMN also does not support a dynamic context.
Every external change must be implemented into the workflow as a set of modifications.
Thus, the workflow must be re-designed every time it is necessary implementing new

 {sabatucci,c.lodato,s.lopes,cossentino} @pa.icar.cnr.it


requirements. In addition, redesign often means to check the inter-dependencies and to
verify the validity of the result.

With respect to adaptivity and evolution, the main limit of BPMN specifications is
the use of an imperative style for defining the process [1]. A business process is gener-
ally described as the exact sequence of tasks to execute as a reaction to specified events.
Moreover, exceptions are defined as special events that may occur during the main flow
of execution. This modeling style limits the solution space to a unique solution or to
a limited set of solutions and it reduces the capability of the system to recover from
exceptions that were not considered in the business analysis phase. This choice is not
adequate for designing self-adaptive systems because it does not aid systems to modify
their behavior according to changes of the execution environment [5]. Indeed, a self-
adaptive system should be able to autonomously search a solution in a wide solution
space, in case the mainstream solution is not feasible [1, 2].

Whereas the imperative specification style limits the solution space, on the other
hand, a declarative specification style would help in opening the solution space to many
alternatives. In particular many authors indicate the goal-oriented approach may be used
to define the expected results of a system, without forcing it to follow a pre-established
plan in order to address these results. We adopted an ontology based goal oriented spec-
ification language as the grounding asset for our solution [6]. This is used for defining
the business process in terms of goals to address rather than tasks to execute. The goal
oriented description of the process breaks some rigid constraints that are typical of the
imperative style of BPMN. With respect to the state of the art [7, 8] we also decided to
completely decouple the description of what should be addressed by the plans used to
accomplish these results. In this way there is not a pre-established set of tasks to execute
for each specified goal. The responsibility of deciding which task to select is delayed at
run-time, so goals may be dynamically injected into the system.

In addition, we designed a workflow engine as a multi-agent system in which each
autonomous software agent is aware of its own capabilities and it is able to decide
when and how to contribute to goal achievement. All together, the agents, self-organize
in groups that proactively discover a distributed solution as the orchestration of many
capabilities. In any case, we do not want to loose the flexibility and the expressiveness of
BPMN as well as its important feature of being targeted to humans. Indeed we consider
important, in a realistic application context, maintaining the BPMN as an interface for
business analysts to model their processes. For this purpose we defined an algorithm
to automatically extract business goals, starting just from the BPMN definition of the
process.

The aim of this paper is to provide an overview of the whole framework. It is or-
ganized as follows: Section 2 describes the architecture of the framework and provides
a scenario from our case study. Section 3 briefly presents the language for specifying
a process and how it is extracted from a standard BPMN process. Section 4 describes
the multi-agent system main characteristics: self-awareness, self-organization and the
ability to discover distributed solutions. Some final notes are provided in Section 5.



2 Overview of the adaptive workflow system

Self-adaptive software is a response to the demand for management complexity re-
duction, management automation, robustness, and achieving all of the desired quality
requirements within a reasonable cost and time range during operation [2, 9]. Many
challenges arise when designing a self-adaptive system: monitoring itself and its con-
text, detecting significant changes, deciding how to react, and acting to execute such
decisions [1]. We propose a framework for self-adaptive workflow execution.

Evolution

Self-Adaptation

Goal Orientation

Self-Organization

Self-Awareness

Context-Awareness

Autonomy

Proactivity

emergent 
properties

system
level

agent
level

Fig. 1. Hierarchy of properties of the proposed framework (revised from [10])

In traditional workflow design, BPMN (or BPEL) diagrams specify systems require-
ments. Moreover, executable business processes also include details on the behavior of
the system. Indeed specifications often include instructions on how to invoke the asso-
ciated web-services or local applications.

The framework we present in this paper grounds on one leading idea: decoupling
what should be addressed from how this result can be achieved; this allows to make
the system and the goal set evolve independently. Thus, being dynamic, system require-
ments may be considered as part of the execution context.

We adopted a declarative style for specifying system requirements because it grants
high freedom in exploring the solution space. More precisely, we focused on goals
because they provide the proper level of abstraction for our purposes. With respect to
many goal-oriented approaches in literature we preferred to completely decouple goals
and tasks. In our specifications, what should be addressed has no explicit links to how
this result can be achieved.

We define GoalSPEC [6] (Section 3) a language to specify system goals. A goal in
our language only specifies what is the expected result, but it lacks of any information
about which operation is good to reach the result. It is up to the system to elaborate
this missing link at run-time, when the execution context is better known. Discovering
a solution depends on three dynamic factors that influence one the others: i) which
system goals are injected into the system at a given time (the expected result to address),
ii) which capacities has the system to solve the problem, (variability in how to address
goals) and iii) which resources are available for the system (dynamic execution context).



The software system we present in this paper is an autonomic multi-agent system
able to adjust its behavior according to changes of goals, capabilities and resources,
during its execution. Figure 1 summarizes the main properties of the system. Evolution
and self-adaption grounds on two underlying levels: i) the system level that uses goals to
describe the expected behavior and self-organization for addressing them; ii) the agent
level that exploits autonomy, proactivity, self-awareness and context-awareness as the
pillars for the whole system.

A possible execution scenario is the following. When the goal set is ready, it is in-
jected into the running multi-agent system for the workflow enactment. This action trig-
gers system agents to self-organize themselves in order to modify the whole behavior.
Each agent is aware of its own capabilities and of the execution context (Section 4.1).
Thus when the agent reads the goal set, it can evaluate whether its capabilities are ade-
quate to address the specified goals or not.

Generally an agent is not able to execute the whole workflow alone. Anyway agents
may collaborate to discover a distributed plan. In our approach agents are all peers in the
system, thus each of them may locally explore possible sub-solutions to the workflow
execution. A distributed algorithm discovers, in parallel, many alternative solutions,
whereas only the most promising is finally selected. When this happens all the involved
agents commit to address the expected result (Section 4.2).

Concluding, one of the peculiarities of this framework is to maintain the BPMN
as the main interface to model workflow in order to reduce any additional burden for
business analysts. We developed BPMN2Goal, a component that is responsible to take
a BPMN 2.0 XML file in input and to generate as output a set of GoalSPEC goals.
Section 3.1 briefly introduces the algorithm for this transformation.

3 From business process to goals

GoalSPEC is a language suitably created for supporting evolution and self-adaptation.
The language has been presented in details in [6]. Here we summarize its salient char-
acteristics on purpose.

Basically the GoalSPEC productions allow to specify system goals, under the hy-
pothesis the domain is described as a set of states. In our vision, by addressing a goal,
the actor operates a state transition from a initial state to an final state. In GoalSPEC
every goal describes three elements: (i) a triggering condition that describes the initial
state of the domain, (ii) a desired final state of the domain and (iii) a list of actors that
are involved in the transition.
Process goals and Activity goals. GoalSPEC considers two categories of goals:

– a process goal is a goal that derives from a Process or a Subprocess in a work-
flow and describes the triggering condition and the final state of a group of related
activities.

– an activity goal is related to a specific outcome in the workflow instance; it derives
from a Task in a workflow, and it can not be further decomposed into sub goals.
Addressing an activity goal produces an advancement for the achievement of the
whole workflow.



The domain as a set of states. Our assumption is that of considering the domain as a
finite set of states. This assumption holds for a range of application domains in which
relevant features are (at least) qualitatively measurable.

In order to describe any state of the domain, GoalSPEC adopts an ontological de-
scription that exploits logic predicates to specify properties and relationships between
elements of the domain. Logic predicates are explained below by few examples taken
from the domain of an e-commerce website:

– atoms are ontology objects; for instance productA is a concrete item for sale in the
website;

– variables are ontology categories; for instance Product is an abstract object that
may range among many concrete objects (for instance productA, productB, etc),

– predicates are used to describe properties; for instance product for sale(productB)
specifies productB is a product in the catalogue,

– structures can specify more complex relationships between elements or categories;
for instance contains(my shopcart,Product) means that object my shopcart con-
tains any kind of Product.

In goalSPEC both triggering condition and final state are described my means of
states.

– A triggering condition is the initial state of the goal transition. A goal is generally
inactive until the state defined in the triggering condition becomes true. Only after
that, actors may address it.

– A final state is the final state of the goal transition. It is the desired state that must
be true in order to claim the goal is satisfied.

Categories of actors. The actors section answers the question ’who is responsible to
address the given goal’. According to BPMN standard, GoalSPEC includes two cat-
egories of workflow actor: the human and the system. When the actor is the system
then the goal may be automatically addressed without human supervision. Conversely
when humans are listed among actors then they are responsible of addressing the goal,
whereas the system will be up to support and monitor human activities.

Listing 1 reports an example of production of GoalSPEC extracted from the domain
of digital document management.

Listing 1. Example of goal in GoalSPEC

1 WHEN a v a i l a b l e (Doc ) AND WHEN u n c l a s s i f i e d (Doc )
2 THE SYSTEM SHALL ADDRESS c l a s s i f i e d (Doc )

In this example the only actor is the system; the goal is active when the a new
document is available (trigger condition); on the other hand, the desired result is the
document is classified (final state).

A concluding remark about GoalSPEC concerns the absence of goal of type main-
tain. This category of goal prescribes the desired state must be addressed and then main-
tained during time. The current application context in which we applied GoalSPEC did
not require goal of this kind. Future versions of the language will be extended for sup-
porting this category of goals.



3.1 Extracting Goals from Activities

In our intentions BPMN is maintained as the main interface for modeling business
processes and we developed an algorithm that is able to extract a preliminary set of
goals directly from the BPMN diagram.

Elaborate Approve

Attachment
[available] Doc

[refined]

approved(Doc)

Correct
incomplete(Doc)

Fig. 2. A slice of the digital document management focusing on the supervision of documents.

The leading idea for the transformation algorithm is that a BPMN diagram already
contains some hints of business goals. Indeed the whole workflow can be considered
as a state transition from a start event to an end event. All the FlowNodes (Activities,
Events and Gateways) in a BPMN exist to address a given intermediate state. We are in-
terested to analyze how the state evolves during the process enactment. Figure 2 shows
a slice of BPMN that we use as running example.

Let us consider a BPMN diagram as a directed graph G(N,E) where FlowNodes
are the nodes and SequenceFlows are the directed edges. Given a node n, we denote
Pre(n) the set of all node p : (p, n) ∈ E and Succ(n) the set of all node p : (n, p) ∈ E.

For each node a, denoting an Activity in the BPMN, we extract the goal

Goal(a) = (Actor(a), T rigCond(a), F inState(a)). (1)

Whereas the Actor(a) is easily extracted directly by the BPMN data, for building
the trigger condition and the final state we use a two-steps strategy, commented in the
rest of the section.

Step 1. Firstly, we consider the node a as it were disconnected from all its Pre(a)
and Succ(a). Therefore the Activity is characterized only by its internal features: in-
put/output data, incoming/outgoing messages, catching/throwing boundary events. In
this circumstance the state transition due to the target activity would be: input data

incoming messages
catching boundary events

− >

 output data
outgoing messages

throwing boundary events

 (2)

We call the two components of the state transition in (2): Ready Condition (on the
left) and Done Condition (on the right).

Def. 3: The Ready Condition for a FlowNode a, denoted by ReadyCond(a), is the
internal condition whose satisfaction is necessary in order for a to be ready for the
activation.

Def. 4: The Done Condition for a FlowNode a, denoted by DoneCond(a), is the
condition internally produced by a as the consequence of its activation.



For instance, the activity Approve in Figure 2 has refined(doc) as ready condition,
whereas we have no information about the done condition (there is no outputs), thus,
we conventionally set it as done(approve).

Step 2. Let us consider a couple of generic nodes n1,n2 where e = (n1, n2) ∈
E. In order the edge e is a valid BPMN connection, then the state generated by n1

must be coherent with the state processed by n2. As a consequence, when connecting
a target element a to all its Pre(a) and Succ(a), the latter consideration is applied
twice, generating: 1) the backward coherence: from Pre(a) to a, and 2) the forward
coherence: from a to Succ(a).

Def. 5: The Backward Coherence of a FlowNode a, denoted by BackCoher(a) is
the condition that must be true in order to properly connect Pre(a) with a.

Def. 6: The Forward Coherence for a FlowNode a, denoted by ForwCoher(a), is
the condition that must be true in order to properly connect a with Succ(a).

As a conclusion, we omit to prove that:

TrigCond(A) = ReadyCond(A) ∧BackCoher(A)
FinState(A) = DoneCond(A) ∧ ForwCoher(A)

(3)

Equations in (3) may be used in (1) to calculate Goal(a) for the FlowNode a. For
instance Listing 2 reports the complete goal of the activity Approve in Figure 2.

Listing 2. Goal for the Approve activity

1 WHEN r e f i n e d (Doc ) AND ( (WHEN a v a i l a b l e ( Attachment ) AND WHEN done ( e labora te ) )
OR WHEN done ( c o r r e c t ) )

2 THE manager ROLE SHALL ADDRESS
3 done ( approve ) AND ( approved (Doc ) OR incomplete (Doc ) )

4 Distributed and Context-Adaptive planning

The workflow enactment is possible because every single agent of the system owns
special capabilities for addressing the activities specified in the business plan. Anyway
agents have not a priori knowledge about which capabilities is good for a given BPMN
activity, nor which is the right order for executing the capabilities.

Therefore it is up to the system i) to generate, at run-time, the missing link between
the goal set to address and the agent activities to execute, and ii) to plan the right or-
der for executing these actions. The advantage to elaborate this plan at run-time on the
occurrence is to optimize the plan according to contextual knowledge. Indeed, the ex-
ecution plan may depend on the current execution context and on the availability of
capabilities and services to be invoked.

We named this mechanism as goal injection. When goals are injected into the sys-
tem, they generate a perturbation of the internal equilibrium among the agents of the
system. Indeed the agents may re-organize their priorities in order to achieve the new
objectives together with the old ones. The receipt to obtain this behavior is the follow-
ing:



– the agents are able to interpret the injected goals and to reason on the trigger con-
dition and the desired final state;

– the agents are aware of their own capabilities and can check if they are able to
commit to a system goal or a portion of it;

– the agents monitor the current state of the context in order to identify when an
expected condition holds (trigger condition or final state) and to check if something
wrong happens.

We subdivide the description of the adopted solution in two topics: the agent level
section specifies the characteristics of the internal architecture of agents, whereas the
system level section specifies how agents interact and collaborate.

4.1 Agent Level: Self-awareness and Context-awareness

Many works in literature agree that self-adaptive software grounds on the capability
of the agent to take autonomous decisions [5, 9]. Whereas autonomy and proactivity
are native in the agent paradigm, we designed agents in order to include other two
fundamental features for supporting self-adaptation and evolution.

Self-awareness is the first of these features. This term has a range of meanings in
literature. In our framework we implemented self-awareness as the ability of an agent to
know its capabilities and its current state of execution. This knowledge is necessary for
creating the bridge between agent capabilities and system goals (what an agent is able
to do and what it is expected). The agent also may reason on the cost of its commitment
to a goal, by considering, for example, of its current queue of tasks and the availability
of resources.

In order to implement self-awareness, the knowledge about capabilities is obtained
by agent believes. The agent capability belief describes the existence of a plan the agent
can select to operate over the environment. This belief comes together with a set of
capability input state and capability output state believes. The former describes a state
or a resource that is required to execute the capability, whereas the latter describes a
state or a resource that will be generated if the capability is correctly executed.

Listing 3 reports an example of beliefs for self-awareness:

Listing 3. Example of belief-set for a capability

1 a g e n t c a p a b i l i t y ( c lass i fy document ) .
2 c a p a b i l i t y i n p u t s t a t e ( c lass i fy document , p roper ty ( ava i l ab le , [ doc ] ) ) .
3 c a p a b i l i t y o u t p u t s t a t e ( c lass i fy document , p roper ty ( c l a s s i f i e d , [ doc ] ) ) .

The second feature is context-awareness that is the knowledge of the global state of
the execution context. The context is the portion of the environment in which the agent
operates. It may include both software abstractions (web-services, software resources,
database, etc) and physical resources (hardware device/resources, physical environment
and also human participants).

Typically an agent is able to access only a portion of the context, and often it should
be able to deal with uncertainty. For instance properties and predicates that are defined
in the previous example (e.g. property(available, [doc]), property(classified, [doc]))



describe properties of elements of the context. The agent must reason on the current
state of the execution context in order to select and to execute a given capability. More-
over, when an agent is executing a given capability, it must be aware whether the ex-
pected result is actually addressed, otherwise it must take proper recovery actions.

We implemented a proactive monitor loop based on a set of perception agent ca-
pabilities. These are specifically designed for monitoring a portion of the environment.
To avoid to consume too much processor resource, perceptions are activated only when
the agent is actually interested to update its believes about a portion of the environment.
For example this is necessary when the agent is actively committed to address a goal
and it is necessary to know if the goal trigger condition holds.

Sometimes agents deal with human participants. The BPMN standard allows to set
a human role as the responsible of an activity. When the goal is up to the system, agents
get the responsibility to address the desired state transition. Conversely when the goal
is up to a human role, the role of the agent, in these situations, may be twofold:

– when the task is semi-manual, the agent may supports the human in the task, by
proposing user-interfaces and verifying the task progress

– when the task is totally manual, the agent can only monitor that the desired final
state is correctly addressed

4.2 System Level: Self-organization

The injection of new goals into the system generates a perturbation of the internal equi-
librium of the agent society. Agents must (re)organize in order to provide a solution to
the problem by considering their capabilities, their current execution context and the
state of environment.

Together all the agents try to find a distributed plan to address the injected goals. The
algorithm is distributed and recursive. Each agent in the system checks locally its own
capabilities and verifies whether these are useful to solve a the problem (or a portion).
Two cases may occur: (i) the agent is able to address a whole process goal; or (ii) the
agent can contribute positively to a process goal goal by addressing an activity goal.

The case (i) is the base case for terminating the algorithm. The case (ii) implies
the agent calls for collaboration in discovering a distributed solution. In this case the
solution is given by a Team of agents, each of which produces a partial activity, but
together they address the whole goal. Given a process goal G with triggering condition
TC and final state FS, denoted by PG : TC → FS, then the agent is not able to
address PG, but it claims to be able to solve an activity goal SG : S1 → S2. Therefore
the agent proposes a Team in which itself is the Coordinator. Thus, it decomposes PG
into three goals: PGleft : TC → S1, SG : S1 → S2 and PGright : S2 → FS, where
PGleft and PGright are process goals. Therefore it publishes PGleft and PGright

and ask other agent if they are able to solve them (recursion). PGleft and PGright may
be further decomposed until case (i) occurs or until no agents reply to the call. When
both PGleft and PGright are covered by a solution, then the Team is complete and it
is compared to other ones emerged in parallel according an utility function. In our case
study, we use the cost of the involved resources and an estimation of time to accomplish
the result. Anyway many different parameters may be on the field.



5 Concusions

In this paper we presented the overview of a framework for adaptive workflow. The
work grounds on two decisions: 1) to use a declarative specification languages, com-
patible with BPMN, to represent business goal that may be delegated to the system; 2)
to implement an autonomous multi-agent system, in which agents are self-aware and
context-aware.

Self-Adaption is pushed by the possibility to inject goal into the system at run-time
and the ability of agents to create a bridge between their capabilities and the expected
results. In particular the process for discovering a solution is based on a distributed and
recursive self-organization algorithm.

A beta version of the described framework is currently under a test phase. This is
conducted at some SMEs with a set of scenarios that come from the local industrial con-
text within a research project funded by the Autonomous Region of Sicily (PO FESR
Sicilia 2007-2013).

References

1. Van der Aalst, W., Basten, T., Verbeek, H., Verkoulen, P., Voorhoeve, M.: Adaptive workflow.
Enterprise Information Systems. Kluwer Academic Publishers (1999)

2. Han, Y., Sheth, A., Bussler, C.: A taxonomy of adaptive workflow management. In: Work-
shop of the 1998 ACM Conference on Computer Supported Cooperative Work. (1998)

3. Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassiliou, Y.: Daida: An environment for evolving
information systems. ACM Transactions on Information Systems (TOIS) 10(1) (1992) 1–50

4. BPMN, O.: Business process model and notation (bpmn). www.omg.org/spec/BPMN/2.0/
(2009)

5. Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B., Ben-
como, N., Brun, Y., Cukic, B., et al.: Software engineering for self-adaptive systems: A
research roadmap. Software Engineering for Self-Adaptive Systems (2009) 1–26

6. Sabatucci, L., Ribino, P., Lodato, C., Lopes, S., Cossentino, M.: GoalSPEC: a Goal Specifi-
cation Language supporting Adaptivity and Evolution. In: EMAS 2013, LNAI 8245. (2013)
p.237–256

7. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-adaptive
systems. Proceedings of the 2008 international workshop on Software engineering for adap-
tive and self-managing systems (2008) 9–16

8. Liaskos, S., Khan, S.M., Litoiu, M., Daoud Jungblut, M., Rogozhkin, V., Mylopoulos, J.:
Behavioral adaptation of information systems through goal models. Information Systems
(2012)

9. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4(2) (2009) 14

10. Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic workflow
processes. International Journal of Cooperative Information Systems 9(1-2) (2000) 93–116


	Towards Self-Adaptation and Evolutionin Business Process
	Introduction
	Overview of the adaptive workflow system
	From business process to goals
	Extracting Goals from Activities

	Distributed and Context-Adaptive planning
	Agent Level: Self-awareness and Context-awareness
	System Level: Self-organization

	Concusions


