
Generating Metamodels from Grammars by
Chaining Translational and By-Example

Techniques?

Alexander Bergmayr and Manuel Wimmer

Business Informatics Group, Vienna University of Technology, Austria
lastname@big.tuwien.ac.at

Abstract. Bridging grammarware and modelware is still challenging,
though often required as a prerequisite for several model-driven engineer-
ing scenarios. For instance, in model-driven reverse engineering, program
code has to be lifted to the model level before model-driven techniques
are applicable. Manually building metamodels based on given grammars
introduces a significant overhead and may lead to inconsistencies between
the resulting metamodels and the grammars, especially when dealing
with large languages.
In previous work, we have investigated a purely translational approach
that is able to semi-automatically generate metamodels from grammars
by utilizing user input. In this work, we aim to provide a higher degree
of automation by combining the translational approach with by-example
techniques to reduce the manual effort. In particular, knowledge is de-
rived from concrete programs to further refine the produced metamodels.
We demonstrate a transformation chain that combines translational and
by-example techniques to produce Ecore-based metamodels from EBNF-
based grammars.

1 Introduction

In the last decade, much effort has been invested to bridge the gap between
GrammarWare (GW) [22] and ModelWare (MW) [24], thereby gaining advan-
tages from both areas by transferring artifacts and techniques between these
technical spaces [18]. Approaches for transforming grammars into metamod-
els [1,23,31], programs into models [10], and APIs into models [9] have been
presented. Furthermore, the development of concrete textual syntaxes for (mod-
eling) languages has been proposed [12,14,19,27]. Thus, the current research
landscape offers several concepts, techniques, and tools to switch back and forth
between the two technical spaces. However, efficiently establishing bridges be-
tween them at the meta-level remains still a major challenge, in particular when
artifacts from the GW technical space have to be shifted to the MW technical
space.

? This work is co-funded by the European Commission under the ICT Policy Support
Programme, grant no. 317859.

Challenge. We explored such scenarios in the ARTIST project1 [5], which
aims at modernizing legacy code by a migration towards cloud environments.
Model-Driven Reverse Engineering (MDRE) offers useful features for such sce-
narios, even though these features are employable only if some prerequisites are
fulfilled in the MW technical space, which includes the existence of (i) a meta-
model that corresponds to the given grammar of the program code, (ii) a parser,
i.e., a text-to-model transformation, to build models for programs, and (iii) a
printer, i.e., a model-to-text transformation, to produce programs from models
if forward engineering or round-trip engineering needs to be supported. These
artifacts facilitate efficiently switching between both technical spaces. Clearly,
certain essential properties have to be fulfilled in this respect. First, the pro-
duced metamodel has to be consistent with the grammar, i.e., a valid sentence
in the grammar needs to be expressible as a valid model of the metamodel and
vice versa. Second, the text-to-model and model-to-text transformations have to
be information-preserving. The development of such bridges between GW and
MW, even if guided by tool support, still involves several manual tasks that re-
quire extensive effort from a user perspective, especially when the rich features of
current metamodeling languages of the MW technical space should be exploited.

Contribution. To reduce the manual effort and the heavy involvement of users
in the development of bridges between GW and MW, we present in this paper a
transformation chain that semi-automatically generates Ecore-based metamod-
els from given EBNF grammars [16]. The transformation chain glues together
several transformations that serve as translators to generate an initial version
of a metamodel. To further refine such an initial metamodel version, we ap-
ply a by-example approach where the examples are programs expressed in the
grammar for which a metamodel is generated. This second step of the transfor-
mation chain is novel in this context and essential to reduce the manual effort of
the metamodel generation process and at the same time to achieve high quality
metamodels as a result of this process. For example, EBNF provides only limited
capabilities to express typed cross-references between production rules. In fact,
such information is not covered by EBNF grammars, though indeed required for
the generation of an appropriate metamodel. This kind of extra information is in
our metamodel generation process inferred by applying a by-example approach,
which is inspired from existing work on bottom-up (meta)modeling [2,25], on
grammar, schema, metamodel, and ontology recovery [7,11,17], and on solv-
ing Model-Driven Engineering (MDE) problems by exploiting by-example tech-
niques, cf. [3,13,21,28,30,32] for concrete approaches and [20] for a survey.

Structure. In Section 2, we briefly describe the background of our work and
introduce a motivating example that shows one particular challenge when mov-
ing from GW to MW, namely how to infer types of cross-references that are
not represented in EBNF-based grammars. In Section 3, we present our trans-
formation chain and demonstrate its application on the motivating example by
relying on EBNF in the GW technical space, and Xtext2 and Ecore in the MW

1 http://www.artist-project.eu
2 http://www.eclipse.org/Xtext

technical space. In this context, the application of Xtext as a mediator in the
transformation chain is novel. Xtext appears to be useful because it provides fea-
tures of both technical spaces. We conclude with an outlook towards an extensive
evaluation of our approach in Section 4.

2 Prerequisites and Motivating Example

With today’s language development tools and established model transformation
techniques, metamodels and corresponding parsers/printers can be automati-
cally generated from grammars defined with meta languages residing in the MW
technical space. Exploiting this automatic generation for producing metamod-
els also from EBNF-based grammars, i.e., grammar definitions residing in the
GW technical space, relies on two assumptions: (i) the heterogeneities of the
meta-languages used in GW and MW can be resolved on a syntactical level,
and (ii) the information needed to produce high quality metamodels is provided
by artifacts of the GW technical space. We assume in our transformation chain
EBNF as the meta-language in the GW context, and Xtext and Ecore as the
meta-languages in the MW context.

Xtext is a language for defining textual syntaxes of languages and allows
the generation of Ecore-based metamodels and corresponding parsers/printers.
Hence, Xtext and Ecore are well integrated with each other. As a result, the
challenge is to bridge EBNF with one of the two candidates. Xtext seems to
be the preferable choice as an intermediate format, thereby avoiding to lose
the concrete syntax elements typically expressed in an EBNF grammar because
Ecore is capable of representing elements from an abstract syntax perspective,
only. Thus, Xtext may serve as a mediator between EBNF and Ecore as it is a
hybrid approach, comprising technological features and meta-language concepts
from both technical spaces.

2.1 Motivating Example: The MiniJava Grammar

Let us take MiniJava3 as a concrete example language that is expressed in EBNF
and for which we want to generate a metamodel. Furthermore, for the purpose
of this paper, let us focus on one concrete production rule from the MiniJava
grammar, as shown in Listing 1.1.

Listing 1.1: Production rule ClassDeclaration in EBNF

ClassDeclaration = " class " , Identifier , [" extends " , Identifier] ;
Identifier = {’a ’ | ’b ’ | . . . }

Straightforwardly translating the ClassDeclaration production rule expressed
in EBNF to a parsing rule expressed in Xtext would result in the Xtext-based
grammar given in Listing 1.2.

3 MiniJava is a small language related to Java that is mainly used for teaching pur-
poses. More information on the language may be found at: http://cs.fit.edu/

~ryan/cse4251/mini_java_grammar.html

Listing 1.2: Parser rule ClassDeclaration in Xtext

ClassDeclaration : " class " name=IDENTIFIER (" extends " superClass=
↪→IDENTIFIER) ? ;

terminal IDENTIFIER : (’a ’ | ’b ’ | . . .) ∗ ;

Besides some small syntactical differences, we are able to express the Class-
Declaration rule in both meta-languages in a similar way. However, Xtext pro-
vides several additional features compared to EBNF. These features facilitate
the generation of meaningful Ecore-based metamodels from Xtext-based gram-
mars. In particular, Xtext allows us to distinguish between different kinds of
rule calls. In the context of our example, the first rule call is used to express the
name of a declared MiniJava class while the second rule call actually represents a
cross-reference to the class, which serves as super class. If we do not distinguish
between these two different intentions of the rule calls, we would end up with
just having String-typed attributes in the corresponding Ecore-based metaclasses
generated from the Xtext grammar instead of having typed references as well.
Figure 1(a) depicts the metaclass corresponding to the ClassDeclaration rule in
Listing 1.2. However, what we actually would like to achieve is the metaclass as
illustrated in Figure 1(b) because it provides a typed reference for expressing
inheritance relationships between MiniJava classes.

(a) (b)

Fig. 1: Derived and desired Ecore-based metamodels for the production rule
ClassDeclaration

When taking a closer look at our ClassDeclaration rule in Listing 1.2, a better
solution is to make use of Xtext’s support for cross-references and exploit built-in
terminals provided in terms of a library. Listing 1.3 depicts the required Xtext
grammar to obtain the desired metaclass in Figure 1(b).

Listing 1.3: Desired parser rule ClassDeclartion in Xtext

ClassDeclaration : " class " name=ID (" extends " superClass=[
↪→ClassDeclaration]) ? ;

This example shows that with a straightforward translation of EBNF-based
grammars to Xtext-based grammars, we may not obtain the metamodel which we
would expect from the perspective of the MW technical space. Thus, additional
effort is required to produce meaningful metamodels in the expected quality. In
the following, we present a concrete transformation chain that is able to generate
metamodels comprising typed cross-references. The type information is inferred
from example programs expressed in terms of the original grammar.

3 GW2MW Transformation Chain By-Example

Figure 2 provides a conceptual overview of our transformation chain and high-
lights the prerequisite steps for the automatic metamodel generation: EBNF
grammars need to be expressed in terms of Xtext (Section 3.1), the hetero-
geneities between EBNF and Xtext need be resolved (Section 3.2), and addi-
tional information is needed from example programs to exploit the rich features
of meta-languages used in the MW technical space (Section 3.3).

To allow for applying MDE techniques in our transformation chain, the first
step 1 is to transform a given EBNF-based grammar into a model-based rep-
resentation. For this step, we need a preparation step 0 that relies on the
formalisation of the EBNF language in Xtext, i.e., an Xtext-based grammar is
developed for EBNF. By this, we reach temporarily the M4 layer in the meta-
modeling stack by describing a meta-language with a different meta-language.
Having the Xtext-based grammar for EBNF allows to derive an Ecore-based
metamodel for EBNF and a parser for injecting grammars expressed in EBNF
into the MW technical space.

M
3

M
2

M
1

Grammarware Modelware

M
4

EBNF.ebnf

aLang.ebnf

aProg.java

XText.xtext

EBNF.xtext EBNF.ecore

Ecore.ecore

XText.ecore XText.xtext Ecore.ecore

aLang.xmi aLang.xmi aLang.xtext aLang.ecore

aProg.xmi

t2m

t2mm2m m2t

M2MM2M

m2t

t2m 1
3 4

5

0

2

6

m
2m

Fig. 2: GW2MW Transformation Chain at a Glance

Now we are able to apply MDE techniques to actually shift a given lan-
guage definition represented as a model towards Xtext 2 by applying a model
transformation we developed in ATL between the metamodels of EBNF and
Xtext. By relying on the printer capabilities provided by Xtext, the generation
of an Xtext-based grammar for a given language definition is achieved 3 . This
also eliminates the M4 meta-level. The generation of an Ecore-based metamodel
for the language definition expressed as an Xtext-based grammar 4 is out-of-
the-box provided by Xtext. Furthermore, the Xtext-based representation of the
language definition allows to exploit further the capabilities of Xtext, namely to
parse programs that conform to the given language 5 . The result of our trans-
formation chain, i.e., the Ecore-based metamodel and the models representing
the programs, is fully operable, though the quality of the generated metamod-
els requires improvement 6 to render them useful for future MDE tasks that
rely on these metamodels. A by-example approach is the technique of choice to
achieve such improvements in this paper. In particular, information is derived
in this step from programs that is missing in the grammar.

3.1 Expressing EBNF Grammars in Xtext

To reach the MW technical space for the given artifacts in the GW technical
space, our current approach is to express EBNF in Xtext4 to enable the parsing of
language definitions expressed in EBNF as well as to parse programs conforming
to this language definitions.

To automatically generate the Xtext grammar in Listing 1.3 from the EBNF
grammar given in Listing 1.1, the actual intention behind the Identifier needs to
be expressed and the type of the reference is required to be known if the intention
refers to a cross-reference, as discussed in the motivating example. Therefore,
we introduced dedicated annotations into our Xtext-based EBNF grammar to
ensure an effective transformation of the intention behind rule calls. Listing 1.4
shows the annotated version of the ClassDeclaration production rule. The user
has to mark the rule calls that refer to the provision of the identifier values for
a language concept (cf. @id annotation) as well as for rule calls that actually
represent references to other elements (cf. @idref annotation).

Listing 1.4: Annotated production rule ClassDeclartion in EBNF

ClassDeclaration = " class " , @id Identifier , [" extends " , @idre f (
↪→superClass) Identifier] ;

Identifier = {’a ’ | ’b ’ | . . . } ;

Although with this approach the dedicated rules in the model transformation
to generate the expected result can be triggered, the type of the superClass
reference remains generic. While the annotations may be manually introduced
even in large grammars with reasonable effort, the decision for an adequate
type appears to be challenging in general when just reasoning on the grammars
without taking a look on a larger example base. Here our design rationale is that
information that may be inferred by the user in a local context, e.g., by looking
at one particular production rule, is provided by the user, while information
that requires reasoning on a global scope is derived automatically by the help of
analyzing examples.

3.2 Transforming EBNF Grammars to Xtext

On a general level, concepts of EBNF straightforwardly map to concepts of
Xtext. As Xtext provides a richer set of concepts compared to EBNF, the model
transformation between them needs to resolve certain heterogeneities. From a
technical perspective, the model transformation addresses features of Xtext that
are required to obtain an operable parser/printer. For example, identifiers are
often only informally specified by EBNF grammars. Xtext provides built-in ter-
minals that already fulfill the typical requirements. Perhaps, even more impor-
tant, the model transformation needs to deal with conceptual aspects as well.
Besides the difficulties that may arise with LL-based parsing, effectively dealing
with our annotations in the EBNF grammar falls in this category. Listing 1.5

4 An Xtext-based EBNF implementation can be found under http://xtexterience.

wordpress.com/2011/05/13/an-ebnf-grammar-in-xtext

shows the required adaptations in the EBNF grammar for providing annotations
in language definitions.

Listing 1.5: Annotation support for EBNF

Expression_Rule_Reference returns Expression :
({ Expression_Rule_Reference } (((idRef ?= " @idref ") ("("

↪→refName=NAME ")") ?) | (idName?=" @id ")) ? rule=[
↪→ProductionRule | NAME]) ;

Rule calls annotated with @id are transformed to “name” attributes while
@idref leads to a more complex output in the sense that a common production
rule is temporarily introduced as a default candidate for the reference end-point.

Listing 1.6 shows the automatically generated Xtext grammar for the Class-
Declaration parsing rule. Compared to Listing 1.3, the type of superClass is not
yet ClassDeclaration as this information cannot be inferred solely from the given
grammar. Instead, CommonReferenceRule serves as intermediate placeholder by
generalizing all other existing production rules in the grammar. Ideally, example
programs allow us to subsequently infer the most specific types as depicted in
the refined version of the grammar in Listing 1.3.

Listing 1.6: Automatically generated parser rule ClassDeclartion in Xtext

ClassDeclaration : " class " name=ID (" extends " superClass=[
↪→CommonReferenceRule]) ? ;

CommonReferenceRule : ClassDeclaration | . . . | . . . ;

3.3 By-Example Refinement of Xtext-based Grammars and
Ecore-based Metamodels

Inspired by existing work on bottom-up (meta)modeling [2,25] and on grammar,
schema, metamodel, and ontology recovery [7,11,17], we provide an additional
refinement step for the initially produced metamodels. In fact, although a gram-
mar of the language is available, we still miss some important information to
produce the desired metamodel that is not given by the EBNF-based grammars.
One aspect we focus on in this paper is the typing of the cross-references that
we explored particulary challenging from a users perspective when dealing with
large grammars allowing complex links between different kind of elements.

By having the initially produced Xtext grammar as shown in Listing 1.6, we
already have the possibility to parse the programs into models. In these models,
the concrete links between model elements are available that can be analyzed to
produce the information to further refine the generated cross-references of the
Xtext grammar and in the corresponding Ecore metamodel.

In the by-example based refinement step, we apply a select/infer/adapt pro-
cess that—as the name already suggests—selects the language definition parts
that may need further refinements, infers additional information from the exam-
ples, and adapts the language definition part by incorporating the newly inferred
information.

For our concrete task of inferring the exact types, i.e., the most specific types,
of cross-references, we show the used algorithm of the by-example reasoning

process in Listing 1.7 using OCL-like pseudo code notation. As input we need the
metamodel to be refined (the refined version of it is the output of the algorithm)
and the example base represented by a set of models that are produced from a
set of programs by the parser generated from our initial metamodel.

Listing 1.7: By-example type refinement of cross-references

var mm : Metamodel ; -- input / output
var mb : Set{ Model } ; -- input
-- selection phase
Set{ Reference } refsToAdapt = mm . getCrossReferences () ;
refsToAdapt −> foreach (ref |

-- inference phase
Set{ Link} links = mb −> collect (m | m . getLinksOfType (ref)) −>

↪→flatten () ;
Set{ Class} classes = links −> collect (l | l . getTargetType ()) −>

↪→asSet () ;
-- adaptation phase
i f classes . size () = 1 then ref . setTargetType (classes . first ()) ;
else i f . . . endif endif

)

Due to space limitations, we only show one concrete case of the type refine-
ment process. First, we collect in the selection phase all cross-references available
in the metamodel (because all of them are only typed to CommonReferenceRule
in the initial version of the metamodel). For the inference phase, we iterate over
this set of references and for each reference we query the instantiated links from
all models to collect the types of the target objects referenced by the links. By
converting this collection to a set, we get the information that we need for the
adaptation phase. Here we only discuss one possible case, namely if all refer-
enced objects are of the same type, i.e., the set has only one entry, that results
in a simple adaptation by just setting the type of the reference under study
to the inferred type. In cases where objects are referenced that are of different
types, more sophisticated adaptations are necessary, e.g., the introduction of
new classes that act as super classes for the inferred types, because in Ecore
only one type is allowed for each reference. Coming back to our motivating ex-
ample, when executing this algorithm on a set of example models, we are able
to transform the Xtext grammar shown in Listing 1.6 into the Xtext grammar
of Listing 1.3. From the latter, the meta-class as shown in Figure 1(b) can be
automatically derived that represents the expected metamodel definition for the
MiniJava grammar excerpt.

4 Outlook

With the implementation of our transformation chain and the experimentation
with the MiniJava grammar, we achieved initial evidence that metamodels can
be automatically generated from grammars and refined by applying by-example
based techniques. By having the latter step, we are able to infer additional knowl-
edge about the language that is not directly presented in the grammar defini-
tions but in other tools residing in the GW technical space such as compilers.
Furthermore, the assumption of having enough examples to provide meaningful

refinements of metamodels seems valid, because the trigger for producing the
metamodels is the existence of GW artifacts that should be transferred to MW.

On the basis of our results, we plan an extensive evaluation of our approach
with grammars from well-established languages such as Java or C# as next
steps. In particular, different variants of a Java metamodel [8,15] are already
available. The idea is to use them as a reference for evaluating our results from
the transformation chain. Large open-source code bases provide excellent input
for inferring potential refinements of the generated metamodels. We may then
exploit existing work for type-safe restructuring on the meta-level [6] to turn
such refinements into concrete model transformations that automate this task.
By applying such model transformations, the hope is to significantly improve
the quality of the generated metamodels. Architectural metrics, such as, mean
features per classifiers, mean inheritance hierarchy depth, and understandability
[4,26] may serve as reference for proofing actual improvements. The quality of
the generated metamodels seems to be crucial for their use in real MDE scenar-
ios where queries and transformations are formulated against the metamodels.
In this paper, we discussed an important aspect, namely computing the exact
types of cross-references, but several other aspects that may be enhanced by
applying by-example based reasoning remain as future challenges. Furthermore,
one refinement for our inferencing algorithm would be necessary for dealing with
non-global unique identifiers, such as having a field declaration and a method
declaration with the same name. A promising approach in this context is to
incorporate Java binding rules as presented in [29].

References

1. Alanen, M., Porres, I.: A Relation Between Context-Free Grammars and Meta
Object Facility Metamodels. Tech. rep., Turku Centre for Computer Science (2003)

2. Bagheri, H., Sullivan, K.: Bottom-up model-driven development. In: ICSE. pp.
1221–1224 (2013)

3. Balogh, Z., Varró, D.: Model transformation by example using inductive logic pro-
gramming. SoSym 8(3), 347–364 (2009)

4. Bansiya, J., Davis, C.G.: A Hierarchical Model for Object-Oriented Design Quality
Assessment. TSE 28(1), 4–17 (2002)

5. Bergmayr, A., Bruneliere, H., Cánovas Izquierdo, J.L., Gorroñogoitia, J.,
Kousiouris, G., Kyriazis, D., Langer, P., Menychtas, A., Orue-Echevarria Arri-
eta, L., Pezuela, C., Wimmer, M.: Migrating Legacy Software to the Cloud with
ARTIST. In: CSMR. pp. 465–468 (2013)

6. Bergmayr, A., Wimmer, M., Retschitzegger, W., Zdun, U.: Taking the Pick out of
the Bunch - Type-Safe Shrinking of Metamodels. In: SE. pp. 85–98 (2013)

7. Bex, G.J., Neven, F., Vansummeren, S.: Inferring XML Schema Definitions from
XML Data. In: VLDB. pp. 998–1009 (2007)

8. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: A Generic and Ex-
tensible Framework for Model Driven Reverse Engineering. In: ASE. pp. 173–174
(2010)

9. Cánovas Izquierdo, J.L., Jouault, F., Cabot, J., Garćıa Molina, J.: API2MoL: Au-
tomating the building of bridges between APIs and Model-Driven Engineering.
IST 54(3), 257–273 (2012)

10. Cánovas Izquierdo, J.L., Sánchez Cuadrado, J., Garcıa Molina, J.: Gra2MoL: A Do-
main Specific Transformation Language for Bridging Grammarware to Modelware
in Software Modernization. In: Workshop on Model-Driven Software Evolution
(2008)

11. Drumond, L., Girardi, R.: A Survey of Ontology Learning Procedures. In: WONTO
(2008)

12. Efftinge, S., Voelter, M.: oAW xText - A framework for textual DSLs. In: Eclipse
Summit Europe Conference (2006)

13. Garćıa-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model transforma-
tion by-example: An algorithm for generating many-to-many transformation rules
in several model transformation languages. In: ICMT. pp. 52–66 (2009)

14. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Model-Based Lan-
guage Engineering with EMFText. In: GTTSE. pp. 322–345 (2011)

15. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between
Modelling and Java. In: SLE, pp. 374–383 (2010)

16. ISO: ISO/IEC 14977:1996(E), Information technology - Syntactic metalanguage -
Extended BNF (1996)

17. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: MARS: A metamodel recovery
system using grammar inference. IST 50(9-10), 948–968 (2008)

18. Jézéquel, J.M., Combemale, B., Derrien, S., Guy, C., Rajopadhye, S.: Bridging the
Chasm between MDE and the World of Compilation. SoSym 11(4), 581–597 (2012)

19. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: GPCE (2006)

20. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
transformation by-example: A survey of the first wave. In: Conceptual Modelling
and Its Theoretical Foundations. pp. 197–215 (2012)

21. Kessentini, M., Sahraoui, H.A., Boukadoum, M., Omar, O.B.: Search-based model
transformation by example. SoSym 11(2), 209–226 (2012)

22. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14(3), 331–380 (2005)

23. Kunert, A.: Semi-automatic Generation of Metamodels and Models From Gram-
mars and Programs. Electr. Notes Theor. Comput. Sci. 211, 111–119 (2008)

24. Kurtev, I., Bézivin, J., Akşit, M.: Technological spaces: An initial appraisal. In:
CoopIS (2002)

25. de Lara, J., Guerra, E., Sánchez Cuadrado, J.: Abstracting Modelling Languages:
A Reutilization Approach. In: CAiSE. pp. 127–143 (2012)

26. Ma, H., Shao, W., Zhang, L., Ma, Z., Jiang, Y.: Applying OO Metrics to Assess
UML Meta-models. In: UML. pp. 12–26 (2004)

27. Muller, P.A., Hassenforder, M.: HUTN as a bridge between modelware and
grammarware-an experience report. In: WISME Workshop (2005)

28. Saada, H., Dolques, X., Huchard, M., Nebut, C., Sahraoui, H.A.: Generation of op-
erational transformation rules from examples of model transformations. In: MoD-
ELS. pp. 546–561 (2012)

29. Schäfer, M., Thies, A., Steimann, F., Tip, F.: A Comprehensive Approach to Nam-
ing and Accessibility in Refactoring Java Programs. TSE 38(6), 1233–1257 (2012)

30. Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In: MoDELS.
pp. 712–726 (2009)

31. Wimmer, M., Kramler, G.: Bridging Grammarware and Modelware. In: MODELS
Satellite Events. pp. 159–168 (2005)

32. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transforma-
tion generation by-example. In: HICSS (2007)

