
“IAgo Vs Othello”:
An artificial intelligence agent playing Reversi

Jacopo Festa, Stanislao Davino

festajacopo@gmail.com, woods88@hotmail.it

Abstract. This paper presents the application of fundamental Artificial Intelli-
gence algorithms for the realization of programs capable of effectively playing the
game of Reversi. This application has been developed as a final project for the
course of Artificial Intelligence, held in the academic year 2012/2013 at the Engi-
neering Faculty of the University of Salerno, Italy. Several agents have been de-
veloped and tested, either in agent vs. agent and agent vs. human games. The ap-
plication is freely available for download at the link specified in [8].

Keywords. Reversi, Minimax, Alpha-Beta Pruning, Heuristic Functions, Java,
Game

1 Introduction

Our goal is to create an application that uses artificial players for the game of
Reversi. This application is named “IAgo Vs Othello” (a wordplay that refers to
the famous Shakespeare’s tragedy of “Othello”), and is written in Java language.

It allows a human player to challenge any of the implemented artificial intelli-
gences or to spectate a challenge between artificial players, or instead allows two
humans to challenge each other. Our work focused on “classic” search algorithms
like Minimax and Alpha-Beta Pruning and envisages different strategies in order
to compute the next move in a reasonable time for a human opponent.

Different strategies have been implemented, which can be combined with any
algorithm. Then we focused on testing and evaluating the performances of our
agents, with different algorithms, on varying search depth, the used optimizations,
and the strategies.

In Section 2 the theory on which the used algorithms are based upon is intro-
duced, and the heuristic functions used are described too; Section 3 is about the
application and the experiments done, and eventually, in Section 4 we will discuss
the obtained results and draw some examples of future developments.

2

2 The Agent

An agent is an entity capable to evaluate the state of the game board and to select
a move from the set of the available ones. An agent uses a specific algorithm to
explore the available moves and their consequences, and a strategy to evaluate
them.

2.1 The algorithm

The algorithms implemented in this work are variations around a basic algo-
rithm, called Minimax. This algorithm comes from Von Neumann’s Game Theory
[1, chapter 5] [2]; it works mostly like a human would think: starting from his cur-
rently available moves, it selects one of them and evaluates its consequences, i.e.
how the game state will evolve as a result to that particular move.

In this game state “projection” the algorithm knows that, as the players alter-
nate between each other (unless a special situation occurs), it is the opponent play-
er’s turn, so it selects an opponent’s move and evaluates its consequences;; after
this, it is the player’s turn again, and a new move is selected.

The algorithm goes on until it reaches a game over state. It keeps track of the
moves sequence that brought to that state and explores other possibilities, by go-
ing one step backward and selecting other moves. This is done systematically until
all the game over states have been evaluated, and the best of these is elected as ob-
jective (i.e. a state that means victory for the agent, or if no victory is reachable, a
state that means draw).

As the agent knows the sequence that leads to the objective state, it now simply
selects the first move that brings the game towards it.

There are two main issues with this approach. Firstly, the chosen sequence is
composed by both the player’s and the opponent’s moves;; the agent can make a
guess about which move the opponent will choose, but this is only a mere predic-
tion. If the opponent chooses a different move, the game will evolve differently.

This is not a concern at all, because this agent is an optimum player (a player
who always tries to maximize its final points) and works with the assumption that
the opponent is an optimum player too, struggling to minimize the agent’s score,
so the agent will select as the opponent’s moves those that lead towards a minimi-
zation of its final points. If the opponent doesn’t choose optimum moves, then the
player will get a higher score than expected because, if there was a different set of
moves that could further minimize the agent’s score, the opponent would have
chosen it, so other non-optimum moves can only lead to a smaller score for the
opponent, and a greater score for the agent.

The second issue is a more problematic one. Suppose, for the sake of simplici-
ty, that at each step there are 10 available moves, that lead to 10 different game
states. For each of these states, there are other 10 moves as well; considering all

3

the possible 2-moves sequences, we have a total of 100 different states. All the
possible 3-moves sequences lead to a total of 1,000 different states, and so on. The
number of states to be evaluated grows exponentially the deeper the algorithm
goes. For Reversi, with a total of max 60 turns, the number of states to be evaluat-
ed has been estimated to be approximately 1058 [3].

Exploring so many states cannot be done at all with currently available com-
puters: computing time required to evaluate a single move would be more than the
age of the universe itself! Our objective is to have agents capable to compute a
move in a reasonable time for a human opponent, i.e. a few seconds.

In order to do this, beside Minimax, we have implemented another well known
algorithm, called Alpha-Beta Pruning [1, chapter 5]; it works like Minimax, ex-
cept for the fact that it stops the evaluation of a possible move when it knows that
this move is always worse than another one already evaluated. Alpha-Beta Prun-
ing is a good optimization of Minimax because achieves the same results using
less time and memory, as less moves and less states are evaluated.

Even using Alpha-Beta Pruning, though, computing time is still too much
heavy. So, the search is cut when a certain maximum depth is reached. With this
variation, terminal states (i.e. states evaluated at the max depth) generally aren’t
game over states, and the agent does not know if they are good or bad ones. To
evaluate these states we must give the agents some knowledge that can be used to
determine what is the right thing to do in a particular game situation. Different
knowledge (called “heuristics”) lead to different strategies and different playing
styles.

2.2 Heuristics

2.2.1 Heuristic on Score (HS)

The simplest heuristic function for the game of Reversi calculates the score of
the player (i.e. the number of disks of his color currently on the game’s table). In-
tuitively, may seem like a good strategy, because in the end, victory goes to the
player with the highest number of disks of his color. Actually, the score during the
game may greatly vary from one turn to the other in such a way that having more
disks in a certain game state does not necessarily represents a real advantage. This
heuristic does not have good performance, but is useful to compare the behavior of
other and more complex heuristic relative to a “beginner” player behavior.

2.2.2 Heuristic on Mobility (HM)

With this heuristic, we do not consider the actual score of the player, instead
we calculate some parameters:

4

x Mobility of the player: the number of available moves;
x Potential mobility of the player: the number of empty slots next to at least one

disk belonging to the opponent;
x Potential mobility of the opponent: the number of empty slots next to at least

one player’s disk;;

It’s important to note that if a player cannot play legal moves (in other words

his mobility is equal to zero), he is obliged to pass the turn, that is a serious disad-
vantage for him and a big advantage for the opponent, who probably will win the
game. This way to estimate the utility is much better than HS, but is anyway far
from the optimum because, in late game, mobility tends to decrease for both the
players.

2.2.3 Heuristic on Mobility and Corners (HMC)

One fundamental strategy in Reversi is to focus on capturing the corners. These
represent very important positions. A disk is stable if it can’t be turned to the op-
ponent’s color;; any disk placed in a corner is, by definition, stable and makes sta-
ble every adjacent disk along the edges. For this reason, in addition to mobility, a
good heuristic function has to consider the corners and the positions near them.
Taking the corners is more important than keeping an high mobility, and so we
appoint an heavy weight to the corners in the evaluation. We also assign a nega-
tive score to those positions that give to the opponent access to the corners as well,
because those are undesirable positions.

2.2.4 Heuristic on Mobility, Corners and Edges (HMCE)

Corner positions are fundamental, but positions along the edges are important
too; this heuristic function tries to take into account this fact by considering the
number of disks the player has on each edge, and subtracting the number of oppo-
nent’s disks to this value. With this heuristic, the agent tries to play more on the
edges (in addition to the corners) and tries to stop the opponent from taking them.

2.2.5 Heuristic on Mobility, Corners, Edges and Stability (HMCES)

HMCE confers a positive score to a state of the game in which the player has
more disks along the edges than the opponent (including corners), and a negative
score otherwise. However, the strategic meaning of the disks along the edges is
more important if those disks are also stable, i.e. they can’t be captured by the op-
ponent. An edge disk is stable when:

5

x It is placed in one of the four corners;
x It is placed in a row or in a column of disks of the same color that ends at least

in one of the four corners.

We chose to evaluate only the stability at the edges positions, as these positions
are easier to compute; central disks’ stability, after all, depends from the stability
at the edges (due to the recursive nature of the stability definition), and it is less
important.

2.2.6 Heuristic on Mobility, Corners, Edges and Stability, Time-variant
(HMCEST)

During a Reversi match, several strategies can be used depending on which
phase the game is in. A Reversi match requires 60 turns (unless someone succeeds
to win earlier). For this reason we decide to evaluate the scores on mobility and
stability depending on the current game turn, assigning more or less importance to
both strategies depending on the current phase the game is in. This heuristic works
by computing separately the mobility-related score and the stability-related one;
then the final score is given by multiplying these scores by some weights and sum
them with the corner score (which is not weighted). Let wm and ws be the mobility
and stability weights, respectively, and T the current turn number; weights are de-
termined as follows:

x wm = 1.5 and ws = 0.5 if T ≤ 20;
x wm = 1.5 and ws = 0.5 if 20 ≤ T ≤ 40;
x wm = 1.5 and ws = 0.5 if T ≥ 40.

3 Playing with “IAgo Vs Othello”

The application has been written in Java 1.6; we chose this programming lan-
guage in order to have a cross-platform, self-contained application that can be in-
stantly downloaded and launched, and because of the libraries that come with Ja-
va, which allow to make easily complex applications and good user interfaces.

“IAgo Vs Othello” is available for free download at [8], and it is released under
a GPL3 license.

All the agents have been written from scratch, based on pseudocode available
in [1, chapter 5]; there are, however, some variations with respect to the original
version, because the algorithm has to manage the situation in which there isn’t any
available move; according to Reversi rules the player has to pass the turn, so the
node currently evaluated must create a new child node without any variations on
the game state, where now is the opponent’s turn. If also the opponent has no
available moves, then this child node represents a game over state.

The implemented algorithms are:

6

x Minimax;
x Alpha-Beta Pruning;
x H-Minimax (Minimax with support for heuristic functions);
x H-Alpha-Beta Pruning;
x Randomizer (simply selects the move randomly);
x Greedy (selects the move that flips the maximum number of opponent’s disk).

Minimax and Alpha-Beta Pruning, without heuristics, cannot be used on a 8x8
table, so they haven’t been tested in our experiments; they can choose a move in a
reasonable time on a 4x4 table though. Minimax and Alpha-Beta-Pruning (and
their heuristic versions too) have a time complexity that goes like O(bd) and
O(bd/2), respectively, according to the theoretical ones, where b is the branching
factor (mean number of moves available in any game state), and d is the maxi-
mum depth. Computing times have been also experimentally verified.

The application allows a user to play against an artificial agent, or against an-
other human; it also allows to spectate a match between two artificial agents and
see the outcome of it.

There are two different interfaces available to start a new game; the complex
one allows to generate one or two personalized agents by selecting an algorithm
and some options, like the heuristic function and the max depth; the basic one pre-
sents the user with five different predefined agents, which correspond to different
levels of difficulty.

To evaluate the agent performance, we let the agents we have developed play
against each other and collect information from the matches, like the number of
victories, defeats, draws, mean root branching factor for each turn, mean time re-
quired to compute the next move for each turn, etc., for each agent. We use also
agents that use the same strategy but they evaluate the moves at different depths:
these maximum depths are: 1 (only the currently available moves are evaluated),
3, 5 and 7. All the agents in the shown experiment use the same algorithm (H-
Alpha-Beta Pruning) in order to keep computing time in a reasonable limit. The
goal of this experiment was to measure how depth affects both computing time
and game performance, and to evaluate the quality of the tested strategies. Results
are shown in Table 3.1.

This experiment has shown that:

x As max depth increases, we can see a better playing ability, which is demon-
strated by the raw victories/defeats ratio;

x As max depth increases, we can see mean computing time for each move
strongly increases, in according to their exponential time complexity;

x At the maximum tested depth (= 7), we can see that HMC is the heuristic that
behaves better. This can be explained by the fact that, as depth increase, a more
complex heuristic may cause an agent to be distracted by more, simultaneous,
and less important objectives, while a simpler one can focus towards more im-
portant ones; this may suggest that, as an objective, stability is somewhat less

7

important than mobility and the edges capturing; maybe an even better agent
can be created by properly weighting these scores, like we tried to do with the
HMCEST heuristic.

Fig. 3.1. Game situation in a Reversi game. Legal moves for the current player (the white one in this ex-
ample) are highlighted with dark green disks.

Agent Victories Defeats Mean computing
time (microseconds)

H-ABPruning-D1-HMC 44 295 116

H-ABPruning-D3-HMC 115 223 3498

H-ABPruning-D5-HMC 169 171 61762

H-ABPruning-D7-HMC 329 11 1079018

H-ABPruning-D1-HMCE 99 240 124

H-ABPruning-D3-HMCE 176 163 3614

H-ABPruning-D5-HMCE 250 90 66650

H-ABPruning-D7-HMCE 300 40 1152387

H-ABPruning-D1-HMCES 99 241 134

H-ABPruning-D3-HMCES 190 150 3837

H-ABPruning-D5-HMCES 260 80 69279

H-ABPruning-D7-HMCES 300 40 1223536

H-ABPruning-D1-HMCEST 65 264 127

H-ABPruning-D3-HMCEST 139 191 3774

H-ABPruning-D5-HMCEST 210 130 72598

H-ABPruning-D7-HMCEST 260 80 1089245

Table 3.1. Victories, defeats, and mean computing time for each tested agent.

A series of games against human players have been done too, using agents cor-

responding to five different difficulty levels; so far, human players have per-
formed well against Beginner, Easy and Medium. Some have been able to defeat
Hard, but no one could defeat Very Hard. We plan to arrange a Reversi contest
with more human players to play against the artificial agents, in a strictly con-

8

trolled environment, in which we can collect data such as victories/defeats ratios,
computing time, etc. for both human players and the artificial agents. As there are
many available implementations of agents playing Reversi, like Logistello [6] and
Cassio [7], we also plan to try our agents against those programs.

4 Conclusions and Future Development

Despite the relative simplicity of the implemented algorithms, these reveal
some kind of intelligent behavior; some behaviors we seen with HMC and more
advanced heuristic include:

x The agent forces the opponent to select bad moves, from which the agent itself
can benefit;

x The agent tries to drive the game flow towards situations in which it can take
over a corner;; but sometimes it just doesn’t take control of the corner immedi-
ately, but, knowing that the agent can take it in a second time because the posi-
tion isn’t threated by the opponent, the agent prefers to focus on taking other
strategic positions and then takes the corner later;

x Some moves seem to be stupid at first sight (like moving in the center of the
table instead of the edge), but, a few turns later, they reveal to be part of a
complex scheme that the agent choose for its strategy.

The algorithms implemented and presented in this paper are, however, “basic”
ones; our application could be extended by implementing and testing new algo-
rithms based on search trees exploration (Beam Search, for example), or to ap-
proach the problem differently by implementing an agent capable of learning to
play through accumulated game experience.

5 References

[1] Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach (3rd edition), Prentice
Hall, ISBN-13: 978-0136042594;

[2] John von Neumann, On the Theory of Games of Strategy, "Contributions to the Theory of Games",
n. IV, 13-42, 1959;

[3] Victor Allis, Searching for Solutions in Games and Artificial Intelligence, Ph.D. Thesis, University
of Limburg, Maastricht, 1994;

[4] Brian Rose, Othello: A Minute to Learn... A Lifetime to Master, 2005:
http://othellogateway.com/rose/book.pdf;

[5] Reversi Wikipedia page: http://en.wikipedia.org/wiki/Reversi;
[6] Logistello Homepage: https://skatgame.net/mburo/log.html;
[7] Cassio Homepage: http://cassio.free.fr/;
[8] IAgo VS Othello download link:
 http://nclab.diiie.unisa.it/iago_vs_othello/IAGO_VS_OTHELLO.jar

