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Abstract. This paper presents the application of fundamental Artificial Intelli-
gence algorithms for the realization of programs capable of effectively playing the 
game of Reversi. This application has been developed as a final project for the 
course of Artificial Intelligence, held in the academic year 2012/2013 at the Engi-
neering Faculty of the University of Salerno, Italy. Several agents have been de-
veloped and tested, either in agent vs. agent and agent vs. human games. The ap-
plication is freely available for download at the link specified in [8]. 
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1 Introduction  

Our goal is to create an application that uses artificial players for the game of 
Reversi.  This  application   is  named  “IAgo  Vs  Othello”  (a  wordplay   that   refers   to  
the  famous  Shakespeare’s  tragedy  of  “Othello”),  and is written in Java language.  

It allows a human player to challenge any of the implemented artificial intelli-
gences or to spectate a challenge between artificial players, or instead allows two 
humans to challenge each other. Our work focused  on  “classic”  search  algorithms  
like Minimax and Alpha-Beta Pruning and envisages different strategies in order 
to compute the next move in a reasonable time for a human opponent.  

Different strategies have been implemented, which can be combined with any 
algorithm. Then we focused on testing and evaluating the performances of our 
agents, with different algorithms, on varying search depth, the used optimizations, 
and the strategies. 

In Section 2 the theory on which the used algorithms are based upon is intro-
duced, and the heuristic functions used are described too; Section 3 is about the 
application and the experiments done, and eventually, in Section 4 we will discuss 
the obtained results and draw some examples of future developments. 
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2 The Agent 

An agent is an entity capable to evaluate the state of the game board and to select 
a move from the set of the available ones. An agent uses a specific algorithm to 
explore the available moves and their consequences, and a strategy to evaluate 
them. 

2.1 The algorithm 

The algorithms implemented in this work are variations around a basic algo-
rithm,  called  Minimax.  This  algorithm  comes  from  Von  Neumann’s  Game  Theory  
[1, chapter 5] [2]; it works mostly like a human would think: starting from his cur-
rently available moves, it selects one of them and evaluates its consequences, i.e. 
how the game state will evolve as a result to that particular move.  

In   this  game  state  “projection”   the  algorithm  knows   that,  as   the  players  alter-
nate between each other (unless a special situation occurs), it is the opponent play-
er’s   turn,   so   it   selects  an  opponent’s  move  and  evaluates   its  consequences;;  after  
this,  it  is  the  player’s  turn  again,  and  a  new  move  is  selected. 

The algorithm goes on until it reaches a game over state. It keeps track of the 
moves sequence that brought to that state and explores other possibilities, by go-
ing one step backward and selecting other moves. This is done systematically until 
all the game over states have been evaluated, and the best of these is elected as ob-
jective (i.e. a state that means victory for the agent, or if no victory is reachable, a 
state that means draw). 

As the agent knows the sequence that leads to the objective state, it now simply 
selects the first move that brings the game towards it. 

There are two main issues with this approach. Firstly, the chosen sequence is 
composed  by  both   the  player’s  and   the  opponent’s  moves;;   the  agent  can  make  a  
guess about which move the opponent will choose, but this is only a mere predic-
tion. If the opponent chooses a different move, the game will evolve differently. 

This is not a concern at all, because this agent is an optimum player (a player 
who always tries to maximize its final points) and works with the assumption that 
the opponent is an optimum player too, struggling to minimize the agent’s  score,  
so  the  agent  will  select  as  the  opponent’s  moves  those  that  lead  towards  a  minimi-
zation of its final points. If  the  opponent  doesn’t  choose  optimum  moves,  then  the  
player will get a higher score than expected because, if there was a different set of 
moves that could further minimize the agent’s   score,   the   opponent   would   have  
chosen it, so other non-optimum moves can only lead to a smaller score for the 
opponent, and a greater score for the agent.  

The second issue is a more problematic one. Suppose, for the sake of simplici-
ty, that at each step there are 10 available moves, that lead to 10 different game 
states. For each of these states, there are other 10 moves as well; considering all 
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the possible 2-moves sequences, we have a total of 100 different states. All the 
possible 3-moves sequences lead to a total of 1,000 different states, and so on. The 
number of states to be evaluated grows exponentially the deeper the algorithm 
goes. For Reversi, with a total of max 60 turns, the number of states to be evaluat-
ed has been estimated to be approximately 1058 [3]. 

Exploring so many states cannot be done at all with currently available com-
puters: computing time required to evaluate a single move would be more than the 
age of the universe itself! Our objective is to have agents capable to compute a 
move in a reasonable time for a human opponent, i.e. a few seconds. 

In order to do this, beside Minimax, we have implemented another well known 
algorithm, called Alpha-Beta Pruning [1, chapter 5]; it works like Minimax, ex-
cept for the fact that it stops the evaluation of a possible move when it knows that 
this move is always worse than another one already evaluated. Alpha-Beta Prun-
ing is a good optimization of Minimax because achieves the same results using 
less time and memory, as less moves and less states are evaluated. 

Even using Alpha-Beta Pruning, though, computing time is still too much 
heavy. So, the search is cut when a certain maximum depth is reached. With this 
variation, terminal states (i.e.  states  evaluated  at   the  max  depth)  generally  aren’t  
game over states, and the agent does not know if they are good or bad ones. To 
evaluate these states we must give the agents some knowledge that can be used to 
determine what is the right thing to do in a particular game situation. Different 
knowledge   (called   “heuristics”)   lead   to  different   strategies   and  different   playing  
styles. 

2.2 Heuristics 

2.2.1 Heuristic on Score (HS) 

The simplest heuristic function for the game of Reversi calculates the score of 
the  player  (i.e.  the  number  of  disks  of  his  color  currently  on  the  game’s  table).  In-
tuitively, may seem like a good strategy, because in the end, victory goes to the 
player with the highest number of disks of his color. Actually, the score during the 
game may greatly vary from one turn to the other in such a way that having more 
disks in a certain game state does not necessarily represents a real advantage. This 
heuristic does not have good performance, but is useful to compare the behavior of 
other  and  more  complex  heuristic  relative  to  a  “beginner”  player  behavior. 

2.2.2 Heuristic on Mobility (HM) 

With this heuristic, we do not consider the actual score of the player, instead 
we calculate some parameters: 
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x Mobility of the player: the number of available moves; 
x Potential mobility of the player: the number of empty slots next to at least one 

disk belonging to the opponent; 
x Potential mobility of the opponent: the number of empty slots next to at least 

one  player’s  disk;; 
 
It’s important to note that if a player cannot play legal moves (in other words 

his mobility is equal to zero), he is obliged to pass the turn, that is a serious disad-
vantage for him and a big advantage for the opponent, who probably will win the 
game. This way to estimate the utility is much better than HS, but is anyway far 
from the optimum because, in late game, mobility tends to decrease for both the 
players. 

2.2.3 Heuristic on Mobility and Corners (HMC) 

One fundamental strategy in Reversi is to focus on capturing the corners. These 
represent very important positions. A disk is stable if  it  can’t  be  turned  to  the  op-
ponent’s  color;;  any  disk  placed  in  a  corner  is,  by  definition,  stable  and  makes  sta-
ble every adjacent disk along the edges. For this reason, in addition to mobility, a 
good heuristic function has to consider the corners and the positions near them. 
Taking the corners is more important than keeping an high mobility, and so we 
appoint an heavy weight to the corners in the evaluation. We also assign a nega-
tive score to those positions that give to the opponent access to the corners as well, 
because those are undesirable positions. 

2.2.4 Heuristic on Mobility, Corners and Edges (HMCE) 

Corner positions are fundamental, but positions along the edges are important 
too; this heuristic function tries to take into account this fact by considering the 
number of disks the player has on each edge, and subtracting the number of oppo-
nent’s  disks  to  this  value.  With  this  heuristic,   the  agent  tries  to  play  more  on  the 
edges (in addition to the corners) and tries to stop the opponent from taking them. 

2.2.5 Heuristic on Mobility, Corners, Edges and Stability (HMCES) 

HMCE confers a positive score to a state of the game in which the player has 
more disks along the edges than the opponent (including corners), and a negative 
score otherwise. However, the strategic meaning of the disks along the edges is 
more  important  if  those  disks  are  also  stable,  i.e.  they  can’t  be  captured  by  the  op-
ponent. An edge disk is stable when: 
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x It is placed in one of the four corners; 
x It is placed in a row or in a column of disks of the same color that ends at least 

in one of the four corners. 

We chose to evaluate only the stability at the edges positions, as these positions 
are easier to compute; central  disks’  stability,  after  all,  depends  from  the  stability  
at the edges (due to the recursive nature of the stability definition), and it is less 
important. 

2.2.6 Heuristic on Mobility, Corners, Edges and Stability, Time-variant 
(HMCEST) 

During a Reversi match, several strategies can be used depending on which 
phase the game is in. A Reversi match requires 60 turns (unless someone succeeds 
to win earlier). For this reason we decide to evaluate the scores on mobility and 
stability depending on the current game turn, assigning more or less importance to 
both strategies depending on the current phase the game is in. This heuristic works 
by computing separately the mobility-related score and the stability-related one; 
then the final score is given by  multiplying these scores by some weights and sum 
them with the corner score (which is not weighted). Let wm and ws be the mobility 
and stability weights, respectively, and T the current turn number; weights are de-
termined as follows: 

x wm = 1.5 and ws = 0.5 if T ≤ 20; 
x wm = 1.5 and ws = 0.5 if 20 ≤ T ≤ 40; 
x wm = 1.5 and ws = 0.5 if T ≥  40. 

3  Playing  with  “IAgo  Vs  Othello” 

The application has been written in Java 1.6; we chose this programming lan-
guage in order to have a cross-platform, self-contained application that can be in-
stantly downloaded and launched, and because of the libraries that come with Ja-
va, which allow to make easily complex applications and good user interfaces. 

“IAgo  Vs  Othello”  is  available  for  free  download  at  [8], and it is released under 
a GPL3 license. 

All the agents have been written from scratch, based on pseudocode available 
in [1, chapter 5]; there are, however, some variations with respect to the original 
version, because the algorithm has to manage the situation in which there  isn’t  any  
available move; according to Reversi rules the player has to pass the turn, so the 
node currently evaluated must create a new child node without any variations on 
the   game   state,   where   now   is   the   opponent’s   turn.   If   also   the   opponent   has   no  
available moves, then this child node represents a game over state. 

The implemented algorithms are: 



6  

x Minimax; 
x Alpha-Beta Pruning; 
x H-Minimax (Minimax with support for heuristic functions); 
x H-Alpha-Beta Pruning; 
x Randomizer (simply selects the move randomly); 
x Greedy  (selects  the  move  that  flips  the  maximum  number  of  opponent’s  disk). 

Minimax and Alpha-Beta Pruning, without heuristics, cannot be used on a 8x8 
table,  so  they  haven’t  been  tested in our experiments; they can choose a move in a 
reasonable time on a 4x4 table though. Minimax and Alpha-Beta-Pruning (and 
their heuristic versions too) have a time complexity that goes like O(bd) and 
O(bd/2), respectively, according to the theoretical ones, where b is the branching 
factor (mean number of moves available in any game state), and d is the maxi-
mum depth. Computing times have been also experimentally verified. 

The application allows a user to play against an artificial agent, or against an-
other human; it also allows to spectate a match between two artificial agents and 
see the outcome of it. 

There are two different interfaces available to start a new game; the complex 
one allows to generate one or two personalized agents by selecting an algorithm 
and some options, like the heuristic function and the max depth; the basic one pre-
sents the user with five different predefined agents, which correspond to different 
levels of difficulty. 

To evaluate the agent performance, we let the agents we have developed play 
against each other and collect information from the matches, like the number of 
victories, defeats, draws, mean root branching factor for each turn, mean time re-
quired to compute the next move for each turn, etc., for each agent. We use also 
agents that use the same strategy but they evaluate the moves at different depths: 
these maximum depths are: 1 (only the currently available moves are evaluated), 
3, 5 and 7. All the agents in the shown experiment use the same algorithm (H-
Alpha-Beta Pruning) in order to keep computing time in a reasonable limit. The 
goal of this experiment was to measure how depth affects both computing time 
and game performance, and to evaluate the quality of the tested strategies. Results 
are shown in Table 3.1. 

This experiment has shown that: 

x As max depth increases, we can see a better playing ability, which is demon-
strated by the raw victories/defeats ratio; 

x As max depth increases, we can see mean computing time for each move 
strongly increases, in according to their exponential time complexity; 

x At the maximum tested depth (= 7), we can see that HMC is the heuristic that 
behaves better. This can be explained by the fact that, as depth increase, a more 
complex heuristic may cause an agent to be distracted by more, simultaneous, 
and less important objectives, while a simpler one can focus towards more im-
portant ones; this may suggest that, as an objective, stability is somewhat less 
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important than mobility and the edges capturing; maybe an even better agent 
can be created by properly weighting these scores, like we tried to do with the 
HMCEST heuristic. 

 

Fig. 3.1. Game situation in a Reversi game. Legal moves for the current player (the white one in this ex-
ample) are highlighted with dark green disks. 

Agent Victories Defeats Mean computing 
time (microseconds) 

H-ABPruning-D1-HMC 44 295 116 

H-ABPruning-D3-HMC 115 223 3498 

H-ABPruning-D5-HMC 169 171 61762 

H-ABPruning-D7-HMC 329 11 1079018 

H-ABPruning-D1-HMCE 99 240 124 

H-ABPruning-D3-HMCE 176 163 3614 

H-ABPruning-D5-HMCE 250 90 66650 

H-ABPruning-D7-HMCE 300 40 1152387 

H-ABPruning-D1-HMCES 99 241 134 

H-ABPruning-D3-HMCES 190 150 3837 

H-ABPruning-D5-HMCES 260 80 69279 

H-ABPruning-D7-HMCES 300 40 1223536 

H-ABPruning-D1-HMCEST 65 264 127 

H-ABPruning-D3-HMCEST 139 191 3774 

H-ABPruning-D5-HMCEST 210 130 72598 

H-ABPruning-D7-HMCEST 260 80 1089245 

Table 3.1. Victories, defeats, and mean computing time for each tested agent. 
 
A series of games against human players have been done too, using agents cor-

responding to five different difficulty levels; so far, human players have per-
formed well against Beginner, Easy and Medium. Some have been able to defeat 
Hard, but no one could defeat Very Hard. We plan to arrange a Reversi contest 
with more human players to play against the artificial agents, in a strictly con-



8  

trolled environment, in which we can collect data such as victories/defeats ratios, 
computing time, etc. for both human players and the artificial agents. As there are 
many available implementations of agents playing Reversi, like Logistello [6] and 
Cassio [7], we also plan to try our agents against those programs. 

4 Conclusions and Future Development 

Despite the relative simplicity of the implemented algorithms, these reveal 
some kind of intelligent behavior; some behaviors we seen with HMC and more 
advanced heuristic include: 

x The agent forces the opponent to select bad moves, from which the agent itself 
can benefit; 

x The agent tries to drive the game flow towards situations in which it can take 
over  a  corner;;  but  sometimes  it  just  doesn’t  take  control  of  the  corner  immedi-
ately, but, knowing that the agent can take it in a second time because the posi-
tion   isn’t   threated  by   the  opponent,   the  agent  prefers   to   focus  on   taking  other  
strategic positions and then takes the corner later; 

x Some moves seem to be stupid at first sight (like moving in the center of the 
table instead of the edge), but, a few turns later, they reveal to be part of a 
complex scheme that the agent choose for its strategy. 

The  algorithms  implemented  and  presented  in  this  paper  are,  however,  “basic”  
ones; our application could be extended by implementing and testing new algo-
rithms based on search trees exploration (Beam Search, for example), or to ap-
proach the problem differently by implementing an agent capable of learning to 
play through accumulated game experience. 
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