

Smart usage of Mobile Phones Sensors within an Event

Calculus Engine

Student experiences inside AI courses

Valerio Mazza, Michele Solimando

Dipartimento di Informatica – Scienza e Ingegneria

Università di Bologna

Viale Risorgimento, 2, 40136 Bologna, Italy

valerio.mazza@studio.unibo.it

michele.solimando@studio.unibo.it

Abstract. In the following paper we show how we define and integrate an

Event Calculus rule system, written by us with xtext Dsl on an android

application to work with the mobile phone sensors, in order to smartly use

them.

Keywords: Event Calculus, Xtext, DSL Language, Drools, Android.

1 Introduction and Motivation

Nowadays computer systems are so complex, in a way that even expert program-

mers, have difficulties to verify whether they operate correctly. Moreover it is also

very difficult to introduce new features without weaken its internal logic.

In literature there are a few proposal of logical formalisms which can be used to

mitigate these drawbacks. One of them, for instance, is the Event Calculus (EC). A

possible approach, in fact, consists in using a EC machinery that operates in the de-

ductive mode to monitor the application and verify that it is compliant with what it is

expected. Unfortunately, these frameworks are difficult to master either to build ad-

vanced applications.

mailto:michele.solimando@studio.unibo.it

The goal of this Paper, is to present a framework based on EC with a twofold pur-

pose. On one side we have developed in Xtext
1
 an Integrated Development Environ-

ment (IDE) to allow a domain expert to express a problem in terms of EC concepts.

We chose Xtext/Xtend because is a statically typed functional and object-orient lan-

guage. It automatically compiles to readable Java code. We will describe this process

properly in the next chapters. On the other side we have defined a procedure that au-

tomatically converts the given problem into an Android application
2
 which uses a

Drools
3
 implementation of Event Calculus.

Consequently thanks to such a integrated system, a user with any level of under-

standing, can leverage the complexity of defining an EC problem and automatically

build an Android application around it. In particular we show a case study in medical

rehabilitation that demonstrates the potential of this approach.

This paper is organized as follows: in the follow section we present the framework

with the tools and the components of interest that we used. The third section shows

the potential of the system developed, taking as example a medical study case. The

last section illustrates the objective we have reached, our system limits and future

developments.

2 Framework

We briefly describe the tools and components of our framework in order to under-

stand them.

2.1 Event Calculus

It is a logical formalism introduced by Kowalski and Sergot in 1986. There are

many different version with varying degrees of expressiveness and efficiency. In this

work we use the multivalued reactive variant (most efficient), Drools based, already

presented in [1]. This particular version allows you to use any real value, instead of

only Boolean value, to represent the magnitudes of the domain.

This formalism owes his fortune to the logical correctness and simplicity. In fact, it

is based on two concepts only: the Event that is the notification of an action occurred

in the considered domain in a specific time instant; and the Fluent that is single meas-

urable aspects of the domain that can change over time. The EC formalism is com-

pleted by other axioms to report the relation between Event and Fluent. For more

details see [1].

1 http://www.eclipse.org/Xtext
2 http://developer.android.com/index.html
3 http://www.jboss.org/drools

2.2 Drools and ECA-rules

Production rules are one the most common way to represent knowledge in many

areas of Artificial Intelligence (AI). Drool is a Production Rule System that use the

Modus Ponens (MP) as rule of inference. In this type of reasoning formally if one

proposition P implies a second proposition Q and P is true, it concludes that Q is also

true. Rules in PRSs are called instead productions and they primarily express some

behaviour that transforms the available information about the domain in new infor-

mation.

Drools consists of many components: a Production Memory that contains all the

productions; a Working Memory that contains information about the current state of

the system, the knowledge and the assertions; an Agenda that contains all the activa-

tions of all productions. The first action taken by PRS is the pattern matching, that is

to build a network of constraints. The algorithm used is RETE algorithm. This algo-

rithm filters the domain knowledge to identify the set of data that satisfies the precon-

ditions of some productions. The active productions are passed to the Agenda. Last

task of the PRS is the execution of the actions.

The RETE algorithm can handle the ECA-rules (Event Condition Action) [2]. The

ECA-rules consists of three parts: an Event that triggers the invocation of the rule and,

if the Condition is satisfied, provoke the Action, a set of updates to the system.

2.3 Domain Specific Language and Xtext

A General Purpose Languages (GPLs) are designed to address a wide variety of

application domains, while Domain Specific Languages (DSLs) do not aim to solve

every problem in every domain, but focus on a specific restricted one in order to solve

problems inside it in a better way than a GPL language would do.

Our approach exploits Xtext capabilities to define a DSL language for EC which

can be used by Xtext itself to guide the automatic conversion of any problem into a

working application built with a GPL, namely Drools. In addition, the Xtext frame-

work conveniently provides a mechanism to build an IDE for the given DSL language

with no additional efforts. Therefore the resulting tool allows to simplify the expres-

sion of EC concepts while taking care of the translation of them toward the chosen

DSL.

Our language is essentially intuitive because it is similar to the way in which the

humans represent knowledge and is readable because the syntax of the rules appears

like the spoken language understandable by all.

2.4 Android

Android is a Linux-based operating system designed for mobile devices such as

smartphones and tablet computers.

While creating a standard android application, building up a logic to use the phone

sensors (and not just them) can be tricky, and not easily maintainable. When you start

having several different patterns of behavior to observe, the complexity of the soft-

ware increase sensibly. With our Event based language it takes less to create a fully

working logic, and it separates the two part of the application, making it cleaner and

less complex.

3 Case Study

The designed system shows its potential in our case study. We used our DSL to as-

sist doctors in tasks that involved physical effort, such as rehabilitation in physiother-

apy. Our goal is to present how different type of users can take advantage of our de-

velopment environment to simplify their everyday jobs, both doctors and patients.

As we all know, in the last decades, life expectation is getting longer, causing bad

outcomes such as medical complications in the older age segment. Specifically, the

problems due to reduced joint mobility are particularly insidious because they serious-

ly affect the quality of elderly life style.

We have formulated an EC problem to provide suggestions and incitements to the

patient, that are based on the performance during the exercises assigned from a physi-

otherapist. The suggestions are notified through a simple Android application. The

innovation is, thanks to the powerful DSL implemented and the intrinsic logic of the

EC, that the physiotherapist will be able to sketch the important characteristic of the

particular exercise. He will also have the possibility to create a new one, or modify a

given one, without the action of an IT engineer.

Let us see how the tools we presented before can help us to reach our goal.

3.1 Workflow

In the figure 1 we show the entire workflow of the system. In the figure there are

two types of users: the physical therapist, expert user of the system, and the patient,

passive user.

In the first place the Physiotherapist has to express an EC problem throughout the

editor built in the Xtext generated IDE as shown in figure 2. In this case the user of

IDE

Use
{ MODEL }

Android

APP

Produce

Generate

PHYSIOTHERAPIST

PATIENT

Fig. 1. Workflow

our system is the physiotherapist, who will have in hand a series of Events which map

the smartphone sensor to the EC world.

Consequently the physiotherapist will know exactly when a given Event that repre-

sents, for istance the accelerometer behavior, is thrown, the Event will map a specific

pattern of movement, rather than standing or sitting. The system establishes a corre-

spondence between fluents and interface elements, giving the possibility to the physi-

otherapist to decide how the application shows its notification of the thrown events.

When the Physiotherapist is satisfied with the model (an example is presented in

next paragraph), he may request its conversion into an Android application. The con-

version is performed through additional buttons introduced in the IDE, as shown in

figure 3.

The application will monitor the behavior of the patient acting accordingly as indi-

cated by the logic defined by the physiotherapist.

In the end, the Physiotherapist, by connecting the patient smartphone to his PC,

will install the App directly into it.

Fig. 3. Custom IDE menus and buttons

Fig. 2. IDE Editor where the Physiotherapist inserts his Event Calculus rules.

3.2 Example

In the following listing we present a basic EC problem consisting of simply

movement exercises.

With these few rules, we want to show that it is possible to provide information to

the EC mechanism by passing parameters along with the event notification. Also note

that, for each fluent, is possible to explicit an expression that, when evaluated, pro-

vides the value to be attributed to the fluent.

The notifications are represented by strings that may have a numeric identifier. For

ease of exposition in this example we used the strings instead of numeric value.

4 Conclusion and future development

The goal of realize an easy to approach language was met. The Editor as well is

simple but efficient in the implementation of the rules created.

Our intention is to make something useful for the case of study we have. A limita-

tion of the application is surely the narrowed freedom to use the smartphone features.

on Run(meters) set
Text_message to “SUPER” if meters>100,

 Text_message to “GO-GO” if meters<=100,
 Run_complete to 1;

on Stand_up(repetitions) set
 Message_on_screen to “Exercise Completed” if
 ((Run_complete == 1) AND (repetitions>10)),

 Message_on_screen to “Restart Exercise” if
Run_complete == 0;

on SitDown(time) set

Message_on_screen in (now+1000) to “Are you OK?” if
time > 10000,

Button_on_screen1 to “YES, I’m OK” if
Message_on_screen == “Are you OK?”,

Button_on_screen2 to “NO, I'm sick” if
Message_on_screen == “Are you OK?”;

on Press_button_on_screen2 set Call_Doctor to “URGENT”;

Listing 1. Rehabilitation exercises synthesized into a EC problem.

In this regard, it could extend the mapping between events and sensors to make the

monitoring of patient activity more complete.

Furthermore after careful field testing, followed closely by medical professionals,

we could build databases that inform us on unwanted behaviors that lead to disagree-

able consequences, for a timely prevention.

From the theoretical point of view, the powerful logic EC engine can be expanded

with the use of the ECE-rules (Event Condition Expectation). The ECE-rules are evo-

lution of the well-known ECA-rules and they can express exceptions and anomalies

of the system.

Another aspect that would increase the potential of our application, is the possibil-

ity of having a fuzzy logic rather than exact, in order to express also approximate

reasoning (rather than exact), also very useful in our case study.

References

[1] S. Bragaglia, Monitoring Complex Processes to verify System

Conformance, 2013.

[2] Schmidt, K.-U. a. Stuhmer, R. a. Stojanovic and Ljil-jana, Blending

complex event processing with the RETE algorithm, 2008.

[3] L. Bettini, Implementing Domain Specific Languages with Xtext and Xtend,

Packt Publishing, 2013.

[4] S. Russel and N. P., Intelligenza Artificiale: un approccio moderno, Prentice

Hall, 2010.

