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Abstract. Computer simulation and predictive models are widely used in engineering, much 
less considered in life sciences. We present an initiative aimed to establish a dialogue within 
the community of scientists, regulators, industry representatives, offering a platform which 
combines the predictive capability of computer models, with some explanation tools, which 
may be convincing and helpful for human users to derive a conclusion. The resulting system 
covers a large set of toxicological endpoints.  

1 Introduction 

Predictive toxicology is using models to predict biological endpoints, in particular 
toxicity, without making real experiments. The concept of “Structure-Activity Re-
lationship” (SAR) is that the biological activity of a chemical can be related to its 
molecular structure. When quantified, this relationship is known as “QSAR”. A 
QSAR model makes use of existing experimental toxicity data for a series of 
chemicals to build a model that relates experimentally observed toxicity with mo-
lecular descriptors in order to predict the toxicity of further chemicals. The term 
predictive toxicology [1] has been introduced by the AI community to indicate this 
approach to toxicology.  

A series of regulations require producing information about the safety of the 
chemical substances, such as the European legislation REACH. This regulation 
states that for each chemical circulating in Europe a complete dossier on physico-
chemical, environmental and toxicological properties has to be compiled. In order 
to prevent an over-usage of animal testing, REACH foresees the use of alternative 
methods, including predictive programs.  

Life sciences are heavily impacted by the development of methods for data col-
lection and analysis; they are moving from an analytical approach to a modelling 
approach. An important step in this direction is played by the changing mind from 
purely statistics usage of data to the data mining and machine learning view of the 
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recent years. Good models should (1) explain patterns in data; (2) correctly predict 
the results of new experiments or observations; and (3) be consistent with other 
ideas (models, beliefs). Of course the (3) requirement is the most critical one. 

Today some QSAR models have proved to offer a valuable alternative to the 
classical in vivo methods [2]. Nevertheless, most of the QSAR models are not 
trusted by their targeted users, for several reasons [3], including the misunderstand-
ing of the technology. We decided to cope with those issues through an open plat-
form dedicated to the stakeholders potentially interested in using QSAR models.  

This paper presents the developed platform. The user needs, captured during 
several workshops, interviews and exercises carried on through four recent Euro-
pean projects (DEMETRA, CAESAR, ORCHESTRA and ANTARES) have 
strongly guided the platform development. According to the user’s requirement to 
keep as confidential the chemical structures, our solution is implemented both as a 
web-based application and as down-loadable software.  

2 Using the VEGA-QSAR platform 

Several institutes contributed to the development of the platform, called VEGA-
QSAR, including regulators and public bodies in Europe and USA. VEGA freely 
offers tens of models for properties such as persistence, logP, bioconcentration 
factor (BCF), carcinogenicity, mutagenicity, skin sensitization.  

The initial nucleus of VEGA models derives from the CAESAR models1. 
Other models have been added to simulate the models developed by the partners; 
this is the case of models developed by EPA (US Environmental Protection 
Agency) and ISS (Istituto Superiore di Sanità) for instance. All the models have 
been published in scientific literature before incorporating into VEGA. Moreover 
all the models have been successfully benchmarked against the few commercially 
available systems.  

The steps of the workflow are clearly indicated in the GUI: insert the list of 
the molecules identifiers, choose where to send the prediction output, ask predic-
tion, and get results. The input can be given in different standard formats used in 
the chemical domain, including SMILES and SDF files [4]. To avoid the well-
known problems about the non-unique representations VEGA transforms all the 
chemical structure into a unified internal string format.  

Figure 1 show, as an example, the output screen of the BCF model [5] with the 
prediction and the most similar compounds with their experimental and predicted 
values. BCF is a dose value, however for regulation classes are assigned according 
to thresholds. Since the uncertainty of the prediction can be calculated, it is 
graphically shown for each molecule as a worst-case analysis, as in Figure 2. 

                                                           
1 http://journal.chemistrycentral.com/supplements/4/S1 
 



 

Furthermore, the model provides other pieces of information useful to the 
evaluator, such as a plot showing the experimental values of the training set 
(Figure 3), to check for possible unusual behaviour of the target compound.  

 
Figure 1 – Prediction of the bioconcentration factor (logBCF) for the compound and the most 
similar structures available in the dataset, with experimental and predicted values. 

 
Figure 2 – The BCF model suggests the classification in the classes defined in REACH. 

 
Figure 3 – The predicted logBCF value (red dot) inside the experimental values of the dataset. 
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The overall reliability of the prediction is measured by combining statistical 
values, elements of case based reasoning, and possibly presence of active sub-
structures; the possible reasons of concern are underlined. All those considerations 
are weighted and summed up in an index (in 0 – 1) that is called Applicability 
Domain Index (ADI). Moreover the user can apply different models to the same 
endpoint, and VEGA suggests the best integration, as illustrated in Section 5. 

3. AI inside VEGA 

VEGA is mainly the result of the data driven and knowledge discovery ap-
proaches. The models implemented arise from different methods. At least three 
families are represented: (1) rule based expert systems, usually codified as the 
presence of chemical substructures called structural alerts (SA), defined by ex-
perts, as in Toxtree >7]; (2) data miners that extracts relevant fragments from the 
analysis of their correlation with the endpoint, as in SARpy [6]; (3) regression 
models that use molecular descriptors and non linear methods - ANN, SVM - as 
the mentioned BCF model; (4) ensemble methods as random forests as in Devel-
opmental toxicity; (5) hybrid models that mix the above methods as in CAESAR-
mutagenicity.  

The toxicity domain poses significant challenges to the AI methods. The first is 
the lack of available knowledge about reasons and mechanisms of toxicity for 
many of the endpoints that make it impossible to apply deductive approaches. The 
purely symbolic approach can be used for “mechanistic interpretation”, which is a 
vague indication about the toxicological pathway associated to that chemical on 
the basis of the presence of a specific chemical subgroup. Moreover, even in case 
some SAs are known, their presence is only a sufficient condition for toxicity; so 
the absence of SA in a molecule does not guarantee its safety.  

This is the reason why we have developed new methods as in SARpy >6@, with 
the aim of discovering both new SA and ”neutral substructures” (NS) of the mole-
cule that may reinforce the classification as safe for molecules not containing SA 
but instead containing some NS.  

QSAR systems make more use of probabilistic AI than symbolic AI, with the 
consequent problems of difficulty in understanding the results. There is generally 
a trade-off between prediction quality and interpretation quality of a model. Inter-
pretable models are desired to make expert decisions; however those models suf-
fer because the generalizations necessary to get them may be flawed by lack of 
enough data. To avoid the risk of excess generalization, often QSARs are simple 
linear regression in the small population of a chemical class. Those models have 
no predictive value outside this small population.  

In VEGA models are generally not intended to provide transparency in se, but 
high accuracy on new data that the model has not used in training; since transpar-



 

ency is needed, this is obtained adding extra visualization and explanation features 
to the models, as presented in the previous subsection. 

What is needed is a way to predict new chemicals and to deal with real sub-
stances that generally are mixtures of quite complex molecules, as in dyes and 
fuel, and that can be better modelled as large SAs and NSs. 

4 Chemical space analysis tool 

The identification of chemical features and their role in the prediction offer impor-
tant modulating information about models. The idea is to find, for each model, a 
set of chemical features (i.e. molecular fragments or functional groups) that can 
identify a chemical class, and that show a statistically relevant correlation with the 
reliability of the prediction. If a set of chemical features are found only in com-
pounds that yield accurate predictions, or vice versa non-accurate, this finding can 
provide also a more chemical-oriented explanation of the model's behaviour. 

Two sets of fragments have been considered and implemented in VEGA and 
freely available2: Functional Groups (FC) that account for 154 chemical groups, 
and Atom-Cantered Fragments (ACF), for 115 fragments, each one corresponding 
to a type of atom with different connectivity. These fragments have been studied 
by experts in the fields of molecular descriptors [8], and have precise chemical 
meaning.  

The software to analyse the chemical space checks for the presence of the 
above mentioned FG and ACF, then reports, for each of these chemical features, 
the total number of matches, the number of matches in each class, and its percent-
age. For each model, it t is possible to check the percentages of correct predictions 
for those fragments. 

For example, for BCF all the compounds used in the model have been labelled 
as: correct prediction (the possible error is [-1, 1] log units), under-estimated (the 
predicted value is lower of at least 1 log units with respect to the experimental 
value), over-estimated (the predicted value is higher of more than 1 log units). We 
discovered that BCF does not always provide reliable predictions when more than 
one halogen atom is in the molecule. Moreover multiple halogens, and in particu-
lar multiple Fluorine atoms, lead to under estimated predictions.  

Considering the CAESAR mutagenicity model, we discovered that the pres-
ence of hydroxylamines in a molecule leads to unreliable predictions; in particular 
in case of multiple hydroxylamines. Furthermore, this chemical feature is mostly 
related to false negatives, so it could be used as an alert. Instead halogenated com-
pounds mostly give false positive predictions, and this can generate a warning. 

The analysis of the molecule in the chemical space of each used model gives 
extra information to the stakeholder. 

                                                           
2 http://kode-solutions.net/en/software_ist_chemfeat.php 
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5 Integrated models 

During the ANTARES project we collected large data sets for some toxicity 
endpoints and benchmarked the available models. Since more models are imple-
mented in VEGA for the same endpoints, we have devised different integration 
strategies according to the characteristics of models.  
1 - Trust the best model. If one strong model clearly outperforms the others, the 
integration suggests:  

- use the best model; check for possible mechanistic interpretation; 
- if no prediction from the best model, then trust the others according to their 
applicability domain index value. 
This strategy applies to ready biodegradability, where VEGA-SARpy outper-

forms the others, as in the ROC space in Figure 4. However BIOWIN will provide 
good results for chemicals out of the applicability domain of SARpy.  

 
Figure 4 - ROC for molecules in test set for some ready biodegradability models 

2 – Take the best model and refine with chemical and SAs information. If the best 
model has a low accuracy, use it and check it for the chemical class and possibly 
for SAs.  

This applies to carcinogenicity, where CAESAR model outperforms the others, 
as in the ROC of Figure 5, but is not very strong. The integrated strategy is. 

- Take the prediction of CAESAR and check with Toxtree for possible SAs; if 
the results agree, accept, otherwise refine considering chemical classes  

 
Figure 5 – ROC points for some carcinogenicity models. 



 

3 – Build a decision tree. When two regression models have good performance 
and use different methods, it is wise to use them together.  

This applies to BCF, to integrate the two VEGA models CAESAR and Mey-
lan. The steps are: 
- Compare the two values predicted by CESAR and Meylan.  
- If their difference is less than 1 log unit, then exit with the highest value;  

else consider the 2 ADI indexes;  
- if none of them is greater than 07, then discharge the prediction and exit,  
else chose the predicted value with highest ADI index. 
This integrated model [9@, considering only the molecules in the new ADI, has 

R2 =0.92, sensitivity of 85%, RMSE of 0.44 log units, with a considerable im-
provement from both the starting models 
4 – Make a mechanistic integration. For good models it is possible to find a 
mechanistic integration, now considering the available SA-based models, in future 
automatically constructing them, on demand, using SARpy.  

We see how this applies to mutagenicity. We run SARpy and CAESAR mod-
els. In case there is a consensus and the ADI is > 0.8, prediction is strongly sup-
ported. Otherwise, the SAs given by SARpy are to be considered. In this integra-
tion we obtain both high reliability and mechanistic interpretation. 
5 – Make statistic integration. In this case various models are ensembled through a 
gating network.  

We see it again for mutagenicity that having a large dataset of more than 6000 
molecules is a good candidate to statistical integration. We used a self-organizing 
tool of KnowledgeMiner Software3, based on GMDH neural networks. For en-
semble development the dataset was randomly half subdivided into training and 
testing datasets. For each compound the input vector contains the experimental 
class label, the prediction of the SARpy model and its applicability domain index, 
the predictions of the CAESAR model and its applicability domain index. The 
overall accuracy of the ensemble model is 88.6%, with sensitivity of 89.7%, and 
specificity of 87.5% that increases the classification accuracy of up to 10% rela-
tive to the individual models.  

6 Final remarks and conclusions 

In the development of the VEGA platform we analysed the needs of the users, 
and the barriers to the use of computers. We made AI approaches working in the 
language of the user, in order to improve understanding and acceptance of the 
technology [10].  

                                                           
3 http://www.knowledgeminer.com 
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Stakeholders are continuously involved, and their feed-back used to improve 
the platform. Recently, an exercise [11] with tens of experts demonstrated that 
human experts identified reasons of possible concern evaluating the results of 
some QSAR models. Comparing VEGA with other platforms, the users appreci-
ated the details and supporting information provided by VEGA. 

Another important aspect is that models are inserted into VEGA-QSAR after 
an independent scientific evaluation, which guarantees not only their validity but 
also their ability to emulate the in-vivo tests results. Please keep in mind that the 
reproducibility of in-vivo tests is never 100%; for difficult endpoints as carcino-
genicity a value less than 70% is reported, for mutagenicity 85% is reported. Pre-
dictors that have a similar accuracy have application potency. 

VEGA at http://www.vega-qsar.eu contains the web application and the 
downloadable software. So far more than one thousand users downloaded it. 
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