Answer Set Programming and Declarative
Problem Solving in Game Als

Davide Fusca, Stefano Germano, Jessica Zangari,
Francesco Calimeri, and Simona Perri

Dipartimento di Matematica e Informatica, Universita della Calabria, Italy
{ddfusca,stefanogermano0, jessica.zangari.90}@gmail.com,
{calimeri,perri}@mat.unical.it

Abstract. Designing and implementing Al in games is an interesting,
yet complex task. This paper briefly presents some applications that
make use of Answer Set Programming for such a task, and show some
advantages of declarative programming frameworks against imperative
(algorithmic) approaches while dealing with knowledge representation
and reasoning: solid theoretical bases, no need for algorithm design or
coding, explicit (and thus easily modifiable/upgradeable) knowledge rep-
resentation, declarative specifications which are already executable, very
fast prototyping, quick error detection, modularity.

Keywords: Declarative Programming, Answer Set Programming, Arti-
ficial Intelligence, Computational Logic, Knowledge Representation and
Reasoning

1 Introduction

This work presents some Artificial Intelligence applications designed and imple-
mented during the Course of Artificial Intelligence in the context of the Com-
puter Science Bachelor Degree at University of Calabria, Italyﬂ The aim of each
project was to study and reproduce the behavior of a skilled player of some “clas-
sic” games. In particular, the explicit knowledge and the reasoning modules have
been implemented by means of Answer Set Programming (ASP) techniques, and
the projects can be seen as a nice showcase of features, power and advantages
coming from the use of ASP itself. In the following, after a brief introduction to
ASP, we will illustrate the above mentioned projects, especially focusing on the
approaches adopted for the implementation of the Als.

2 ASP and Declarative Problem Solving

Answer Set Programming (ASP) [BIII] became widely used in AI and is rec-
ognized as a powerful tool for knowledge representation and reasoning (KRR),

!nttp://www.mat.unical.it/ComputerScience

http://www.mat.unical.it/ComputerScience

especially for its high expressiveness and the ability to deal also with incomplete
knowledge [3]. The fully declarative nature of ASP allows one to encode a large
variety of problems by means of simple and elegant logic programs. The seman-
tics of ASP associates a program with none, one, or many answer sets, each one
corresponding one-to-one to the solutions of the problem at hand.

For instance, let us consider the well-known NP-complete 3-Colorability prob-
lem: given a graph, decide whether there exists an assignment of one out of three
colors to each node, such that adjacent nodes never have have the same color.
Each instance can be represented by a set of facts F' over predicates node(X)
and arc(X,Y). The following program, in combination with F| computes all
3-Colorings (as answer sets) of the graph represented by F.

r1: color(X, red) | color(X, green) | color(X, blue) < node(X).
ro: <+ color(Xy,C), color(Xs, C), are(X1, X3).

Rule 71 expresses that each node must be colored either red, green, or blue; due
to the minimality of the answer sets semantics, a node cannot be assigned more
than one color. The integrity constraint ro enforces that no pair of adjacent
nodes (connected by an arc) is assigned the same color.

The paradigm adopted above is one of the most commonly used among ASP
programmers, and is referred to as the “Guess&Check” methodology [§]. An
extension to this methodology is the so called “Guess/Check/Optimize” [4].

In summary, an ASP program that matches GCO features 3 modules:

— Guessing Part defines the search space (by means of Disjunctive Rules)

— Checking Part (optional) checks solution admissibility (by means of In-
tegrity Constraints)

— Optimizing Part (optional) specifies a preference criterion (by means of

Weak Constraints)

In the latest years many efforts have been spent in order to obtain solid and
efficient systems supporting ASP, and a number of modern systems are now
available (see [B] for a pretty comprehensive list and a more detailed bibliogra-
phy about ASP). In the present works we used DLV [12], a deductive database
system supporting Disjunctive Datalog properly enriched with weak constraints
(to express optimization problems), aggregates (to better deal with real data
and applications), queries and other language extensions.

It is worth noting that many other logic formalisms out there can explicitly
represent an agent’s knowledge, and allow one to accomplish the AI jobs herein
discussed; one of the most widely known is Prolog, that has already been em-
ployed before in AT games [1I6I7JI0]. However, we wanted to specifically follow a
fully declarative approach. Prolog, for instance, requires to know the resolution
algorithm while writing a program, while in ASP the order of rules within a
program, as well as the order of subgoals in a rule, is irrelevant. This paper does
not aim at specifically discussing differences between ASP and other formalisms;
for further details about such topics we refer the reader to the extensive existing
literature.

3 Applications

3.1 General Architecture

The applications herein presented share the same basic architecture (see Fig-
ure , which can be seen as consisting of three layers: the core, the ai and the
gui. The core layers connects the ai layer with the gui layer: it manages the game
via the gui while providing the ai with proper information and getting in turn
the (hopefully “right”) actions to be performed. The ad-hoc gui layer allows a
user to play the game against the machine in an intuitive way.

[Y Java
GUI
Tt IS
CORE
= =
% Al A)
DLV (+HeX) ﬂ ASP

Fig. 1: General Architecture

Indeed, the architecture hides a more general framework for ease the devel-
opment of applications in which Al is crucial. This is not only the case of games,
but also the scenario of relevant practical problems in presence of incomplete or
contradictory knowledge. The ai module is uncoupled from the core and the gui,
that can be designed independently from the AI; in addition, the latter can be
gradually improved (or easily interchangeable).

In the present setting, the ai module is based on ASP and uses the DLV
system as the actual ASP solver.

The applications are implemented in Java, and in particular for the 2D vi-
sualization of the game we used the Java GUI widget toolkit Swing.

3.2 Connect Four

Game Description Connect Four is played by two opponents on a vertical
7 x 6 rectangular board. The players fill the board by dropping 1 disk in turn
from the top to the bottom of the board: if a disk is dropped in a column, it falls
down onto the lowest unoccupied position within it. The winner is the first player
who gets four of her disks in a line, connected either horizontally, vertically, or
diagonally. As common in board games, we will refer to the “White” player as
the one who begins the game, and to the “Black” player as the other one.

Implementing the Artificial Intelligence Connect four was mathematically
solved in 1988 by Victor Allis[2], showing if both players play perfectly, the White
one is always able to win if she begins from the middle column, while starting
from another column enables the second player to always force a drawn.

Three levels of Al have been implemented: the hardest one implements the
rules of perfect play emerged from Allis’ work, while the easiest relies on some
classical heuristic strategies, and the intermediate mixes some basic Allis’ rules
with some common strategies. Furthermore, the White and Black strategies sen-
sibly differ. Intuitively, the White player needs to keep the advantage deriving
from the simple fact that she starts the game, while the other has heavier burden:
she needs to turn the game on his advantage defending from the natural ongoing
of the game in favour of the opponent and trying to exploit the possible “errors”
made by the adversary. This has been straightforwardly accomplished by devel-
oping different ASP programs, each one based on the “Guess/Check/Optimize”
technique:

— WhiteAdvanced, BlackAdvanced: highest level for both players;

— WhiteIntermediate, BlackIntermediate: intermediate level;

— Easy: easiest level; in this case we can observe the consequences of undiffer-
entiated strategies.

A further ASP module, called CheckVictory, is used to check if one of the
player is the winner each time that player makes a move. In order to provide the
reader with an idea about the way ASP is employed here, we show next some
ASP rules shared by all the modules; full ASP encodings are available online
(see Section [4]).

Guess : selectedCell(R, C) | notSelectedCell(R, C) < playableCell(R, C').
Check 1: +— —#count{R,C : selectedCell(R,C)} = 1.
Check 2: + -—selectedCell(5, 3), playableCell(5, 3).

Optimize 1: :~ threat(A, R,C), —selectedCell(R, C),
playableCell(R, C), me(A).[1 : 5]

Optimize 2: :~ threat(A, R, C), —selectedCell(R, C),
playableCell(R, C), opponent(A).[1 : 4]

The Guess rule generates all possible split of the “playable” cells (R, C stand-
ing for row and column, respectively) into two sets, the selected for the next
move, and the rest. But the player can occupy only one cell at each turn: the
Check 1 rule enforces this. This is a basic player, with no particular “intelligent”
behaviour.

The Check 2 provides us with a first strategic glimpse: if cell (5,3) is still
“available”ﬂ the player has to occupy it: this is known to give the player an
advantage. The last two rules are part of the “optimize” task: the first is an

2 A cell is “playable” if it is not occupied yet and stands in the lowest row, or if the
cell below it in the same column is already occupied.

attack rule, while the second is a defence one. A “threat” for a player A is
a cell which, if taken by player A, connects four of her disks: threat(A,R,C)
means that the cell (R,C) is a threat for player A. If the player has a threat,
she should occupy the threat cell as soon as possible: this is “pushed” by the
Optimize 1 rule. Similarly, rule Optimize 2 “pushes” the player to occupy
a cell if it is a threat for the opponent. The two optimization statements have
different weights: in case the player can choose among an attack or a defence
move, the rational behaviour is to perform an attack. Actually, rule Optimize 1
has the greatest value among all the other “optimize” rules describing different
strategies: if victory is just a move away, just make that move!

Intuitively, the various Al program differs especially in their optimization.
The aim is to depict different scenarios by means of different strategies: this
made the game very well suited to be analysed from an Al perspective. It is of
clear interest to compare the different Al levels in a game between two artificial
players, assessing the “perfect” against the heuristic-based strategies; in addition,
we can assess the Als against human players, who can provide a wide range of
different strategies. A further positive aspect, is that by avoiding a brute-force
search approach in favour of a knowledge-based approach, not only changes are
easy to implement and assess, but different styles can also be easily described
and actually implemented.

3.3 Reversi

Game Description Reversi is a strategy board game with 64 game pawns,
each one featuring both a black and a white side. Differently from the typical
assumption, Black plays first and places a disc with the black side up. At each
move, there must exist at least one straight (horizontal, vertical, or diagonal)
occupied line between the new piece and another black piece, with one or more
contiguous white pawns between them. Once the piece is placed, black turns
over all white discs lying on such straight line between the new piece and any
anchoring black pawns. Similarly does the White. If a player does not have a
legal move available at any time, she must pass, and her opponent plays again;
if neither player has a legal move, the game ends. The winner is the player with
the higher number of pawns of his own color on the board.

Implementing the Artificial Intelligence The intelligence is described by
means of logic rules according to the GCO (Guess/Check/Optimize) technique.
At each turn, some facts representing the board state are coupled with the logic
program, which has been conceived so that answer sets represent the moves:
strong constraints “drop” any answer set representing non-valid moves, while
weak constraints “select” the best one.

We started from a basic game manua]ﬂ In order to create different levels of
Als we selected some strategies with different features, each one represented by

3 available at http://www.fngo.it/corsobase.asp on the FNGO (Italian Federation
of the Othello Game) website

http://www.fngo.it/corsobase.asp

a set of rules that can be added incrementally: each level uses all the strategies
from of the previous, plus some more sophisticated. The different Als can be
summarized as follows:

— None: the simplest one; trivially chooses a valid move;

— Basic: tries to maximize the number of pawns eaten with each move;

— Medium: adds the strategy of “corners and stable pawns”;

— Hard: adds the strategy of “border pawns and walls”.

Five different ASP modules helps at representing such Als. One module mod-
els the Guess/Check, one models the current state of the board (plus some other
useful pieces of information), and we have one additional module for each strat-
egy. The artificial player can change its behaviour by simply running the first
two modules along with the one related to the desired strategy. We present next
some ASP rules featured by the mentioned modules; full ASP encodings are
available online (see Section .

Guess selectedCell(R, C') | notSelectedCell(R,C) < validCell(R,C).
Check +— = #count(R, C : selectedCell(R,C)) = 1.
Optimize :~ notSelectedCell(R,C), corner Pawn(R,C). [1 : 15]

Similarly to the previous case, the two rules (Guess) and (Check) select ex-
actly one cell, among all legal moves. The rule (Optimize) is a Weak Constraint
that expresses the fact that, if possible, the player should choose the corner cells
at the corners (these are known to be “strategic positions” in the game); this is
a nice example of how easy is to incorporate explicit knowledge of a domain, as
it might be provided by an expert.

The Reversi Action Addon We have designed and implemented also an add-
on (the Reversi Action Addon) for the Action Plugin of the DLVHEX solver [9],
thus making the system able to play an online version of Reversﬁ It employs
the same logic rules herein described, with some adaptations for the sake of
compatibility with the DLVHEX solver and the online game. The Add-on is com-
pletely autonomous, with no need of human intervention (apart from the boot).
By means of Javascript and Perl scripts it logins into the website, recognizes the
game status and makes its moves. It’s also able to wait the opponent’s move and
to understand when the game is over.

4 Conclusion

In this paper we presented some applications that make use of the capabilities
of ASP in the design and implementation of the AI, which is, in these cases, the
most complex (and interesting) part. We implemented some “classic” strategies,

4 Online game available at http://www.yourturnmyturn. com

http://www.yourturnmyturn.com

typically difficult to implement when dealing with the imperative programming,
in a rather simple and intuitive way. Moreover, we had the chance to test the Al
without the need for rebuilding the application each time we made an update,
thus observing “on the fly” the impact of changes: this constitutes one of the
most interesting features granted by the explicit knowledge representation. In
addition, we developed different versions of the Als, in order to show how easy
is to refine the quality or to generate different strategies or “styles”; and these
include also non-winning, human-like behaviors.

The games herein presented can be downloaded at https://www.mat.unical.
it/calimeri/files/AIgames/PAI2013/games.zip; the packages contain the
full ASP programs herein sketched.

(a) Connect 4 Screenshot (b)

e

eversi Screenshot

References

1. CGLIB- A Constraint-based Graphics Library for B-Prolog. http://probp.com/
cg_examples.htm

2. Allis, L.V.: A knowledge-based approach of connect-four. Vrije Universiteit, Sub-
faculteit Wiskunde en Informatica (1988)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

4. Buccafurri, F., Leone, N., Rullo, P.: Strong and Weak Constraints in Disjunc-
tive Datalog. In: Dix, J., Furbach, U., Nerode, A. (eds.) Proceedings of the 4th
International Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR’97). Lecture Notes in AI (LNAI), vol. 1265, pp. 2-17. Springer Verlag,
Dagstuhl, Germany (Jul 1997)

5. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming compe-
tition. Theory and Practice of Logic Programming 1(1), 1-19 (2012)

6. Clark, K.L.: Negation as failure. In: Logic and data bases, pp. 293-322. Springer
(1978)

7. Colmeraner, A., Kanoui, H., Pasero, R., Roussel, P.: Un systeme de communication
homme-machine en francais. Luminy (1973)

https://www.mat.unical.it/calimeri/files/AIgames/PAI2013/games.zip
https://www.mat.unical.it/calimeri/files/AIgames/PAI2013/games.zip
http://probp.com/cg_examples.htm
http://probp.com/cg_examples.htm

10.

11.

12.

Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative problem-solving using the
dlv system. In: Logic-based artificial intelligence, pp. 79-103. Springer (2000)
Fink, M., Germano, S., lanni, G., Redl, C., Schiiller, P.: Acthex: Implementing hex
programs with action atoms. In: 12th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), LNAI 8148. pp. 317-322 (2013)
Finnsson, H., Bjornsson, Y.: Simulation-based approach to general game playing.
In: AAAL vol. 8, pp. 259-264 (2008)

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365-385 (1991)

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic 7(3), 499-562 (Jul 2006)

	Answer Set Programming and Declarative Problem Solving in Game AIs

