
The OnBrowser Ontology Manager:
Managing Ontologies on the Grid

Mario Cannataro, Antonio Massara, and Pierangelo Veltri

University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
{cannataro, veltri}@unicz.it

Abstract. Although many tools and methodologies exist for ontology editing
and management, complete, integrated ontology management systems working
on the Grid are needed. Moreover, such ontology management systems should
allow the use of knowledge coded into ontologies to different applications in a
standard way. In this paper we consider the role of ontology management sys-
tems that using metadata spread on the Grid can help Grid programming. The
paper presents the design and a first implementation of OnBrowser , an ontol-
ogy manager that provides access to “knowledge objects” coding ontology por-
tions and referring to Grid metadata, through both user interfaces and applica-
tion programming interfaces.

1 Introduction

Ontology – «The study of being since being», told Aristotle – was born as a philoso-
phic discipline, far from world of technology. Nevertheless, in the last years the e xplo-
sion of net communications favored an unthinkable phenomenon: ontological aspects
of information gained a strategic value. These aspects are independent from informa-
tion coding, so they can be insulated, recovered, organized and integrated on the
basis of information contents . Today, the standardization of these contents is crucial
for many scientific applications and is necessary to simplify their communications
processes .

“An ontology is an explicit specification of a conceptualization” [1]. In other words,
an ontology is a shared understanding of some domain of interest, which is often
realized as a set of classes (concepts), relations, functions, axioms and instances. Con-
cepts in the ontology are usually organised in taxonomies. An ontology in computer
related terms is a hierarchical structured set that describe a domain and that can be
used as a schema for knowledge bases. Through ontologies the concepts of a particu-
lar domain can be shared between different application domains enriching with sema n-
tic the knowledge to model. Ontologies try to capture the semantics of domain exper-
tise by deploying knowledge representation primitives, enabling a machine to under-
stand the relationships between concepts in a domain. Additional knowledge can be
captured by logical axioms or rules which derive new facts from the existing ones. An

inference engine can draw conclusions based on the rules or axioms to create new
knowledge and eventually to solve problems.

At the beginning ontologies were developed in Artificial Intelligence to facilitate
sharing and reuse of knowledge; now many research communities are interested in
them: knowledge engineering, processing of natural speaking, cooperative informative
systems, knowledge management, and more recently Grid Computing.

Although many tools and methodologies exist for ontology editing and manage-
ment, complete, integrated ontology management systems are needed. In these last
years many application domains are building their own domain ontologies, that more
and more will be used in metadata management, in resource scheduling and manage-
ment, in dynamic application composition. The existence of different ontologies poses
two big challenges: (i) how to allow the use of such knowledge to different applic a-
tions in a standard way, and (ii) how to use knowledge coded in different application
domains. The former problem could be faced, at a programming level, allowing to ac-
cess and transfer “knowledge objects”, that code in a standard way a portion of an
ontology, whereas the latter could be faced using meta-ontologies that cover and
connect basic domain ontologies. The access to such “knowledge objects” could be
provided both through a GUI or, more importantly, through program-accessible func-
tions, such as APIs or Web Services.

In this paper we will talk about ontologies, their life cycle, and discuss requirements
of ontology management on the Grid. When considering a Grid environment, the
knowledge coded into ontologies must be linked to metadata spread over Grid nodes.
Moreover, changes in Grid state, i.e. changes in resources availability, Grid node state,
etc., must be reflected into ontologies. This poses new challenges for ontology life
cycle management on the Grid, e.g. adding new resources to the Grid could require
either refreshment or a complete u pdating of an ontology, like adding a new concept.

The presented work aims to face main ontology life cycle phases in a Grid enviro n-
ment. OnBrowser is an Ontology Manager whose main goal is to allow the access
through programming interfaces to knowledge objects describing Grid resources . The
rest of the paper is organized as follows. Section 2 gives a brief background on ontol-
ogy and ontology life cycle. Section 3 discusses requirements of ontology manage-
ment on the Grid. Section 4 presents OnBrowser overall design and a first prototype
implementation. Section 5 discusses some related works. Finally, Section 6 concludes
the paper and illus trates future work.

2 Background on Ontology and Ontology Life Cycle

With the increasing of communications and the growth of costs for knowledge acqui-
s ition, the integrated access to heterogeneous information and the sharing and reus-
ing of knowledge have assumed an ever increasing importance. In this prospect, the
value added of a knowledge base is not more only connected to the particular applic a-
tion for that the knowledge base is made, but rises in function of its reuse and poss i-
bility to be integrated with other knowledge source [2].

Whatever domain or application we consider, some reasons to use ontologies are:
• to share common knowledge between peoples or software agents;
• to allow reuse of knowledge about a domain ;
• to make explicit the specific of a knowledge domain;
• to analyze a knowledge domain;
• to categorize items (e.g. sale products or web sites) and their characteristic s.

However, main sectors where the application of ontological technique is rising are
Semantic Web, Knowledge Management and more recently Semantic Grid.

2.1 Ontology modelling and engineering

Ontology modelling and management is not an easy task, so engineers can use some
tools to automate some of these operations. For example they can automate graphics
visualization of ontology to see interlacement of class’s relations, avoiding writing
code. In the last years, a lot of tools for ontologies have been developed; they can be
represented by these groups:
• Ontology development tools. These include tools, environments and suites that

can be used for buildin g new ontologies from scratch or reusing exis ting ones.
• Ontology merge and integration tools. These tools have appeared to solve the

problem of merging or integrating different ontologies on the same domain, e.g.
when two companies are merged together, or when it is necessary to obtain a bet-
ter quality ontology from existing ontologies in the same domain.

• Ontology evaluation tools . They appear as support tools which ensure that both
ontologies and their related technologies have a given level of quality.

• Ontology-based annotation tools. These tools have been designed to allow users
inserting and maintaining (semi) automatically ontology-based mark-ups in Web
pages.

• Ontology storage and querying tools. These tools have been created to allow
managing and querying ontologies easily.

• Ontology learning tools. These tools are used to (semi) automatically derive on-
tologies from natural language texts.

Ontological engineering is concerned with the design, modification, application,
and evaluation of ontologies [3, 4]. There are different approaches for ontological
engineering and in particular for the design phase, among them: Inspiration, Induc-
tion, Deduction, Synthesis, and Collaboration. Hybrids of approaches are also poss i-
ble. The characteristics of these approaches are summarized in the following.
• Inspirational approach: in this case a developer designs an ontology starting

from reason about why an ontology is needed, then he/she proceeds to design an
ontology that satisfies the specifications.

• Inductive approach: in this case the ontology is developed by observing, exa min-
ing, and analyzing specific case(s) in the domain of interest.

• Deductive approach: conversely, a deductive approach to ontology design is
concerned with adopting some general principles and adaptively applying them to
construct an ontology geared toward a specific case.

• Synthetic approach: in this case a developer identifies a base set of ontologies,
no one of which subsumes any other.

• Collaborative approach. In this case the development is a joint effort reflecting
experiences and viewpoints of persons who intentionally cooperate to produce it.
Such approach could be useful in Grid environment.

There is another type of approach for ontological engineering; it’s called “from the
scratch”. The following are some examples of this approach: TOVE Methodology;
Enterprise Methodology; Sensus Methodology; Bernaras, Laresgoiti, Corera Method-
ology; Methontology; CyC Methodology; Uschold and King Methodology; Grun-
inger and Fox Methodology; Kactus Methodology; Onto-To-Knowledge Methodol-
ogy [8, 9, 10].

Each methodology has a particular approach to develop an ontology, but all have a
common aspect: all scratch methodologies obey the following ontology life cycle
phases: (i) specification, (ii) conceptualization, (iii) formalization, (iv) implementa-
tion, (vi) maintenance. As an example, the specific phases of the commonly used En-
terprise methodology that we employ in our system are:
1. Ontology Capture (i.e. identify key concepts and relations, produce unambiguous

text definitions, identify terms to refer to such concepts and relations).
2. Ontology Coding (i.e. commit to a meta-ontology, choose a representation la n-

guage, write the code).
3. Evaluation.
4. Documentation.
5. Guidelines for each phase.

To date, there is not a unique integrated tool that supports all phases of ontology
life cycle in a Grid environment, although some projects (see Section 5), such as We-
bODE, KAON, AKT, Protege, attempt to fulfil them. So people often need to use a lot
of tools with proliferations of various formats and an increased development complex-
ity. A complete ontology manager, instead, should be able to handle all the different
phases of ontology life cycle , facing the complexity and distribution of Grids.

3 Requirements for Ontology Management on the Grid

An important aspect of Ontology Management Systems is how ontologies (e.g. se-
mantic description of resources) are related to described resources and their metadata
(e.g. installed software tools, data sources, etc.) . For example: should ontology be
updated whenever the state of Grid resources changes? I.e., should ontology reflect
Grid status? In the following we first recall overall requirements of ontology manage-
ment, and then we discuss requirements in Grid environment. Main requirements for an
Ontology Management System are:
• complete management of the entire life cycle phases, such as ontology definition,

creation, consistency checking, updating, importing/exporting;
• ontology querying, it may be provided through a data-oriented query language

SQL-like, e.g. RDQL, or through a navigational language, e.g. path expressions;

• ontology reasoning, i.e. the process of knowledge extraction on the knowledge
base realized by ontology;

• ontology browsing through interactive GUIs;
Such functions can be provided through APIs, for example to be used by external

programs, eventually through Web services technology and usually, through graphi-
cal user interfaces. From an architectural point of view, an ontology manager should
comprise:

Ontology editor : allowing to define, edit, create, and store ontologies using differ-
ent languages (e.g. OWL, DAML+OIL, RDF, RDFS) and data formats (N3, N Triplets).
Storing should be provided on permanent stores, such as RDBMS;

Ontology browser: allowing to navigate inside concepts of ontology and to follow
their relations, using different point of access, through the different implemented tax-
onomies;

Ontology query engine: allowing to retrieve data describing nodes on ontology, in
a format usable by humans or programs. It should provide mechanisms to narrow or
enlarge the scope of query on the basis of user needs and query results.

Ontology storage manager: in a distributed environment, ontologies can be part i-
tioned among nodes of the system, or ontologies can refer to metadata s tored on dis-
tributed nodes (e.g. an ontology of software components could refer to metadata
about installed software tools that are spread among the nodes). So, ontology storage
manager should be able both to face ontology partitioning and replication, and dis-
tributed ontology updating (e.g. when a new software tool is added to the system this
could require an update of the ontology). Such update functions could be offered
through distributed daemons or through Web Services, whereas local applications
could access them through message passing, or Web Services invocation, or by
means of APIs.

To introduce ontology management requirements on the Grid, we consider a Grid in-
formation system scenario where ontologies are used to describe resources and refer
to their metadata to allow resource access. In particular, in a Grid programming envi-
ronment, resources could be data sources and software components. A reference
architecture for such Grid information system is depicted in Fig. 1. In particular we
have the following layers:

Resource Repository, containing concrete Grid resources, such as data sources
and software components.

Resource Description . Such layer contains both metadata of resources, describing
details of each concrete resource on each Grid node, and ontologies that describe
semantic properties of resources and semantic relations.

Resource Access. This layer should allow general primitives to access heterogene-
ous resources (i.e. the same functions to access a text document or a relational data-
base). Considering data sources, the emerging GridDB concept goes along this dire c-
tion [25]. For the scope of our work, the access can be d irectly implemented by appli-
cations by using metadata.

Information Services . This layer offers a set of functions to query and browse re-
sources, a framework to describe resources and to publish such information in both

metadata and ontologies, and finally functions to infer new knowledge by reasoning or
mining.

Browsing Description,
Publishing

Information
services

Knowledge base:
data/components

description

Component
repository

Metadata

SW

Ontologies

Querying Reasoning

Grid/ Web
Services

Web site
Data bases

Sensors

Data Sources

files DB

SW components Wrapping

Remote data
sources

Remote SW
components

Fig. 1 . Conceptual layers in a Grid information system

Main requirements for ontology management on the Grid are:
Reflecting resources state changes in ontologies. In such a scenario, both ontol-

ogy and metadata management has to be considered in a distributed environment,
where Grid nodes can or cannot be connected, and resources can or cannot be avail-
able. For example, if we use ontology to enhance Grid programming (i.e. composition of
tools), probably the ontology should show all resources whatever they are available or
not, since an application should be designed without worry if a resource is currently
available. On the other hand, when using the same ontology to dynamically schedule
Grid jobs through a request/resource matchmaking (e.g. start a classification job by
using C4.5 software), it should clearly refer to only available C4.5 software. In general,
the status of concrete resources should be reflected, in some cases, by ontology. In
general, ontology should be integrated with Grid metadata and information systems.

Management in a distributed setting . Implementing an ontology as a centralized re-
source could produce a bottleneck in a Grid environment. So supporting the storing,
retrieving and updating of ontologies in a decentralized way is a main requirement in
Grids. Even if ontology is centrally stored, functions to replicate it and scale-up access
time should be employed.

Cooperative design and editing . In a Grid environment different communities should
be able to cooperate during ontology definition and editing, and functions to import
and integrate autonomously designed ontologies should be provided.

The OnBrowser Project is a first attempt aiming to satisfy main requirements of o n-
tology engineering and ontology use in Grid environment.

4 OnBrowser: an Extensible Ontology Manager

Today, the research community establishes OWL as the reference language for ontol-
ogy and many tools are available for ontology management on the Semantic Web. On
the other hand, to manage ontologies on the Semantic Grid [24], it is necessary to
develop Grid-aware tools that will manage ontologies and integrate them with applic a-
tion-level and Grid -level metadata management systems and information systems . The
OnBrowser project aims to develop an Ontology Manager suitable for the Grid envi-
ronment that integrates different ontology management functionalities currently often
spread among different tools.

To create an ontology, usually the developer needs to have specific competences
so it is understandable that used tools may have a medium/high level of complexity;
on the contrary ontology browsing or querying usually is made from inexpert users so
it must be as much easy and intuitive as possible. A main goal of OnBrowser is to
allow to generic users to concentrate on interested information avoiding they need to
know working formalism or learn particular command to use ontologies.

To reach these goals , OnBrowser provides a simple and user friendly graphic inter-
face to show an ontology. It provides the possibility to browse ontology levels as
users like, leaving them decisions on deep of visualized relations. Browsing is made
through an interactive GUI that drives users by simp ly mouse clicking across visual
representation of ontology model.

4.1 Architecture

The current OnBrowser release is implemented in Java language and permits to browse
DAML+OIL or OWL/RDF ontologies. Current version is implemented as a standalone
application, but we plan to release it as a set of distributed services on the Grid .

The OnBrowser design employs a layered architecture which main goals are modu-
larity and the possibility to add more functions in an easy way. The architecture com-
prises four main layers: Storage , Manipulation, API, and GUI Layer respectively.
Each layer exchanges information with adjacent layers in order to obtain objects of an
ontology that a user load usually from the file system or from a relational database. In
this release ontology data are handled by a GUI that allows graphic browsing; in fu-
ture releases we are going to create a set of APIs to permit third parts tools to handle
ontology data.

In the following (see Fig. 2), starting from the bottom, we show details of each On-
Browser layer to better illustrate functionalities of the sys tem.

The Storage Layer manages data structures where ontology model data are stored.
In the current release ontologies provided by the user are loaded from the file system.
Ontology data are then stored in an optional relational database (using MySQL
RDBMS) in N-Triple format description. The database is created when the tool creates
ontology model and can be accessed during browsing operations or during ontology
updating. In next releases it will be used as persistent knowledge base on which to
develop querying APIs.

The Manipulation Layer is the core of the system. It allows manipulating elements
of ontology included in storage level. In Manipulat ion layer we identify two sublevels:
a Jena API level and a set of methods used to make graphics interface. Jena project [6]
is a toolkit of Open Source Java APIs conceived to write Semantic Web applications.
The Jena APIs execute the low level ontology operations, in particular: parsing of
storage level data, building of the ontology model, manipulation of this model and its
possible storing in MySQL DBMS. The high level capacity of Jena APIs as querying
and personalized reasoning will be used to develop high level ontology management
services as shown in the API layer of Fig. 2.

Fig. 2. OnBrowser detailed architecture

Manipulation Layer

GUI Layer

Storage Layer

JGraph API

Swing API

Interface Methods

API Layer
B rowsing API Maintenance

API

Interface Methods

RDQL Jena API Ontology Jena API

RDF Jena API

Querying API

Query Translator
Engine

MySQL DBMS

Ontology File
DAML+OIL,

OWL Relational
Data Base

File System

JDBC

 Jena API

Grid
Met adada

Application
Metadada

In the API layer we are implementing a set of APIs that permit to third parts soft-
ware tools to reach the knowledge base and made operations on it. The API implemen-
tation is realized for access ing, querying and updating the ontology: the API will pro-
vide a set of object-oriented abstractions of ontology elements such as Concept, Rela-
tion, Properties, and Instance objects. In particular we designed and partially imple-
mented three classes of APIs: Browsing (already implemented), Querying and Mainte-
nance.
• Browsing APIs permit to users or tools to take information about specific ontol-

ogy class. We have used this method to interpret the questions from GUI level
and to ask, through a manipulation language, the knowledge base. In this way we
could be able to browse the entire ontology model.

• Querying APIs should permit to users or software tools to ask the ontology
model, using a quite natural language or directly by using RDQL. This will be
possible trough a query translator engine used as interface between query APIs
and Manip ulation layer.

• Maintenance APIs, instead, should permit to do operations in the maintenance
phase of ontology life cycle. For example to add or remove a class from the o ntol-
ogy model. Maintenance APIs are used also to reflect the state of concrete re-
sources on ontology, as explained in Section 3.

Each set of API can be designed and implemented as Web Services using message
passing or as a Java library to be included in a third part project.

The GUI layer is the graphics interface of the system that permits users to access
ontologies. In this layer we can identify three sublevels: (1) Java Swing API level that
manages frames and their elements; (2) JGraph API level, a third part interface that
contains methods to elaborate users’ and manipulation layer questions. In the GUI
layer users actions (e.g. mouse click) are caught , explained and processed to call
methods of API layer; so we can obtain answers containing searched information. In
particular JGraph [7] is an open-source project totally compatible with Java Swing API
to represent however complex graph structures. To represent nodes and arcs it uses
concepts as simple as powerful. All arcs and nodes have a particular property called
port. When we want connect two nodes, simply we associate to the nodes two new
ports that will be departs and arrivals ports of the arc that connects the two nodes; in
this way we automatically manage orientations arcs. In OnBrowser project we utilized
basic characteristics of JGraph APIs , which allowed us to represents ontology graph,
where actions such as objects drag&drop, nodes and arcs events capture, persona l-
ized algorithm to visualize ontology graph, have been implemented. In next release we
could utilize advanced features of JGraph API to manage insert and remove ontology
nodes directly in visual mode.

4.2 A First OnBrowser Prototype

In this section we show some snapshots of the OnBrowser prototype when browsing
DAMON, an ontology developed for the Data Mining domain describing data mining
software tools, data sources and knowledge discovery processes [11].

OnBrowser can read DAML+OIL or OWL [5] ontology files. After specifying on-
tology file, the tool executes a set of synchronized processes to make ontology pars-
ing of input file. The result of this phase is the building of the first level taxonomy
ontology tree and its visualization in the user interface.

Fig. 3. “Classification_Method” concept and its relations with other ontology concepts

The ontology graph of a particular ontology class is represented as a set of ori-
ented and labelled arcs that show ontology properties and various colour rectangles
that show ontology concepts (e.g. ontology class). An example of this kind of repre-
sentation and symbols chosen to represent ontology concepts are shown in Fig. 3. In
particular the label of each arc represents the name of property that connects the two
adjacent concepts.

In the centre of ontology graph there is the last clicked concepts, depicted with
blue colour. All around there are various relations: is-a relations are represented in red
(those indicating super-class relations) or in green (those indicating subclass rela-
tions), whereas non taxonomic relations are represented in orange. In particular if a
non is -a property refers to a set of concepts (e.g. ontology restriction declared on a set
of classes) this is represented with yellow colour and label Multiple_Property_x.

Trough simple mouse clicks, user can browse ontology concepts as he/she likes.
Starting from a taxonomic concept we can reach and browse all ontology levels. When
a user clicks on a taxonomic node the corresponding ontology graph is shown in the
right frame of the tool (see Fig. 4). In particular Fig. 4a shows the ontology graph of the
“Method” concept , and, after clicking the “Visualiza tion_Method” ontology object, its

related graph is shown in Fig. 4b. In this pane we choose to focus on the
“Line_Drawing” object of the class “Visualization_Method”: this method has a “is-a”
relation with “Vis ualization_Method” object and is related with “Xgobi” object
through “Used_by” property.

Fig. 4. Different snapshots of OnBrowser during browsing of DAMON ontology

OnBrowser

OnBrowser

OnBrowser

a) b)

c) d)

To obtain information about “Xgobi” object user clicks it and obtain ontology
graph stating that Xgobi is a Visualization_Software and uses a set of methods identi-
fied with “Multiple_property_0” object (see Fig. 4c). “Multiple_property_0” is a
particular object that has not direct correspondence in ontology model. It represents a
set of objects that are connected from the same relations with single other concepts. If
user clicks it, the corresponding representation will be showed in a new frame (see Fig.
4d). In this secondary frame user can chose to click on a particular concept to repre-
sent it in the main frame or to do nothing and simply close secondary frame. The pre-
vious visited ontology graph is always recoverable through the “Prec” button in main
frame.

4.3 Ontology-Based Grid Programming

PROTEUS is a Grid-based Problem Solving Environment [19] for composing and
running bioinformatics applications on the Grid. We use ontologies for modelling
bioinformatics processes and Grid resources, and workflow techniques for designing
and scheduling bioinformatics applications. In such environment we use ontology to
enhance application composition. In particular, t he design and execution of an applica-
tion on PROTEUS comprises the following steps:
1. Ontology-based component selection. Search, location and selection of the re-

sources used in applications are conducted on the domain ontology of PROTEUS
through the browsing and querying functions of OnBrowser . Such ontology ex-
tends DAMON to describe bioinformatics concepts.

2. Workflow design. Selected components are combined producing a workflow
schema that can be translated into a standard language, such as Business Process
Modelling Language (www.bpmi.org). To produce and validate the workflow
schema, metadata about tools and data sources, returned by OnBrowser , are ex-
ploited. In particular PROTEUS uses a metadata/ontology schema as depicted in
Fig. 1.

3. Application execution on the Grid. The workflow is scheduled by a workflow en-
gine on the Grid. In the current version, workflow schema is static, whereas we plan
to implement an ontology-based scheduler that uses both domain ontology (to find
available components), and resource ontology (to find available resources where to
execute them.

4. Results visualization and storing . After application execution and result collection,
the user can enrich and extend the domain ontology of PROTEUS.

5 Related Work

There are many research and industrial efforts in the ontology field. Whereas the d e-
velopment of standard languages and technologies for ontology representation and
manipulation has reached a large agreement, (e.g. with OWL language), currently there
are many independent tools that face different phases of ontology life cycle. As an

example, the Ontology Editor Survey (www.xml.com) reports over 50 ontology editors.
In the following we briefly describe complete ontology platforms and specific t ools .

WebODE (http://delicias.dia.fi.upm.es/webODE/) is an advanced ontological engi-
neering platform that covers and gives support to most of the activities involved in the
ontology development process [20].

KAON (http://kaon.semanticweb.org/) is an open-source ontology management in-
frastructure. It includes a comprehensive tool suite allowing easy ontology creation
and management and provides a framework for building ontology-based applications.
An important focus of KAON is scalable and efficient reasoning with ontologies [21,
22].

OntoEdit (http://www.ontoprise.de/) is an ontology engineering environment that
relies on W3C standards. In OntoEdit ontology development comprises three main
phases: Requirements Specification phase produces an ontology requirements specifi-
cation document describing what an ontology should support; Refinement phase
produces a mature and application-oriented ontology; Evaluation phase is as a proof
for the usefulness of developed ontologies [23].

SNOBASE (Semantic Network Ontology Base), the IBM Ontology Management
System, is a framework for creating, modifying, querying, and storing ontologies
(http://www.alphaworks.ibm.com/tech/snobase). SNOBASE provides good support
for many phases of the ontology lifecycle. Moreover, it provides a mechanism for
querying ontologies and an easy-to-use programming interface for interacting with
vocabularies of standard ontology specification languages.

AKT (www.aktors.org) is an ambitious project of Advanced Knowledge Technolo-
gies consortium, an interdisciplinary research collaboration of UK EPSRC [17]. The
goal of this project is to identify new technologies to create, manage and extract value
from knowledge bases, and integrate these technologies to obtain a complete ap-
proach to the knowledge life cycle. AKT identifies six main challenges: knowledge
acquisition, modelling, reuse, retrieval, publishing, and maintenance.

TAMBIS (Transparent Access to Multiple Bioinformatics Information Sources) is a
system that allows a user to access information coming from heterogeneous bioinfor-
matics data sources using an ontological description of key bioinformatics tasks and
concepts and of information sources. The TAMBIS Ontology Server allows the con-
cept-based browsing of managed bioinformatics ontologies [18]

Moreover, some tools that face specific phases on ontology life cycle are:
Ontology editing tools allowing to define and edit ontologies. OilEd [12] is a s imple

graphical tool that supports the construction of OIL/DAML+OIL/OWL-based ontolo-
gies. Basic OilEd functionalities allow the definition and description of classes, proper-
ties, individuals and axioms through graphical means. OilEd uses FaCT reasoner which
allows the user to produce classification hierarchies and check classes for inconsis-
tency. Protégé [13] is an ontology editor that provides an extensible architecture for
the creation of customized knowledge-based applications. This tool allows the user to
construct domain ontology, customize data entry forms and enter data. It has a graphi-
cal user interface which enables ontology developers to concentrate on conceptual
modelling without knowing about syntax of ontology output language.

Ontology manipulation tools allowing navigating, querying and manipulating on-
tologies. Jena is an open source Java framework for building Semantic Web applic a-
tions. It provides a programmatic environment for RDF, RDF Schema and OWL, in-
cluding a rule-based inference engine [6].

Ontology-based annotation tools, for annotating web resources according to an
ontology. For example, the UML Based Ontology Toolset (UBOT) [14] supports trans-
lation from UML class diagrams to DAML ontologies.

Ontology learning tools, for learning ontologies from natural language documents.
CORPORUM is a document and information management system [15]. The
CORPORUM technology focuses on meaningful content rather than odd data or stan-
dardized document parameters. The Text-To-Onto system provides an integrated envi-
ronment for the task of learning ontologies from text [16].

6 Conclusions and Future Work

The paper presented the design and partial implementation of an Ontology Man-
ager, whose main goal is to allow the access to knowledge objects through program-
ming interfaces. OnBrowser project aims to face main ontology life cycle phases on
the Grid. The OnBrowser design provides three different classes of APIs for ontology
browsing (i.e. reaching a knowledge object), ontology querying (i.e. collecting a set of
knowledge objects), and ontology maintenance (e.g. ontology updating and import-
ing/exporting ontology portions). It s layered architecture leverages Jena open source
ontology manipulation functions.

Future work will regard the full implementation of OnBrowser functions and its in-
tegration in the metadata management system of PROTEUS, a Grid-based Problem
Solving Environment for bioinformatics applications [19].

Acknowledgements

This work has been partially supported by Project “FIRB GRID.IT” funded by MIUR.
Authors thank Carmela Comito for her collaboration on the OnBrowser design.

References

1. T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199-220, 1993. (http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html).

2. Enrico Franconi, Using Ontologies, IEEE Intelligent Systems - Special Issue on E-Science,
Volume 19, Number 1, January/February 2004. p. 76.

3. Ontology Applications and Design, (Special Issue on) – Communications of ACM, Vol. 45,
No.2, February 2002, pp. 39.

4. S. Staab and R. Studer (Eds.), Handbook of Ontologies , Springer Verlag, 2004.
5. W3C - OWL Web Ontology Language Reference - http://www.w3.org/TR/owl-ref/
6. Jena Project - http://www.hpl.hp.com/semweb/jena
7. JGraph Project - http://www.jgraph.com
8. Farquhar, Fikes, Rice, The Ontolingua Server: A Tool for Collaborative Ontology Construc-

tion , Proceedings of KAW96. Banff, Canada, 1996.
9. M. Fernández-López, A. Gómez-Pérez, Methontology -- 3/1.1.4 System Administration

Guide, http://www.ontoweb.org/workshop /ontoweb2/slides/methontosig3.pdf
10. Michael Gruninger, Mark S. Fox, Methodology for the Design and Evaluation of Ontolo-

gies, http://www.ontoweb.org/workshop/ontoweb2/slides/methontosig3.pdf
11. M. Cannataro, C. Comito. A Data Mining Ontology for Grid Programming. 1st Int.

Woprkshop on Semantics in Peer-to Peer and Grid Computing (SemPGrid2003), pp. 113-
134, 2003.

12. S. Bechhofer, I. Horrocks, C. Goble, R. Stevens. OilEd: a Reason-able Ontology Editor
for the Semantic Web. Proceedings of KI2001, Joint German/Austrian conference on A r-
tificial Intelligence, September 19-21, Vienna. Springer-Verlag LNAI Vol. 2174, pp 396—
408, 2001.

13. Protégé system, http://protege.stanford.edu
14. UML Based Ontology Toolset, http://ubot.lockheedmartin.com/ubot/intro/index.html
15. B.A. Bremdal, F. Johansen. CORPORUM Technology and Applications, CognIT a.s, June

2000. http://www.ontoknowledge.org/downl/CorporumTechApp.pdf
16. The Text -To-Onto System. http://ontoserver.aifb.uni-karlsruhe.de/texttoonto/
17. Nigel Shadbolt (Ed.), Advanced Knowledge Technologies Selected Papers,

http://www.aktors.org/publications/selected-papers/
18. R. Stevens et al., TAMBIS: Transparent Access to Multiple Bioinformatics Information

Sources, Bioinformatics , Vol. 16 (2), 2000, pp.184-185.
19. Cannataro M., Comito C., Lo Schiavo F., Veltri P., Proteus, a Grid based Problem Solving

Environment for Bioinformatics: Architecture and Experiments, IEEE Computational Intel-
ligence Bulletin, Vol. 3, No. 1, pp. 7-18, February 2004.

20. Corcho O, Fernández-López M, Gómez -Pérez A, Vicente O., WebODE: an integrated
workbench for ontology representation, reasoning and exchange. Lecture Notes on Artificial
Intelligence Vol 2473. 13th Int. Conf. on Knowledge Engineering and Know ledge Manage-
ment (EKAW'02). Springer-Verlag. pp: 138-153. October 2002.

21. D. Oberle, R. Volz, B. Motik, S. Staab, An extensible ontology software environment, In
Handbook on Ontologies , chap. III, pp. 311-333. S. Staab and R. Studer, Eds., Springer,
2004

22. R. Volz, D. Oberle, S. Staab, B. Motik , KAON SERVER - A Semantic Web Management
System, WWW2003, Budapest, Hungary, 20-24 May 2003. ACM, 2003.

23. Y. Sure, J. Angele, and S. Staab, OntoEdit: Guiding Ontology Development by Methodol-
ogy and Inferencing, ODBASE 2002.

24. D. De Roure, N.R. Jennings, and N. Shadbolt, “The Semantic Grid: A Future e-Science
Infrastructure,” Grid Computing: Making the Global Infrastructure a Reality , F. Berman,
A.J.G. Hey, and G. Fox, eds., John Wiley & Sons, 2003, pp. 437–470.

25. S. Malaika, Standards for Databases on the Grid. ACM SIGMOD Record, Vol. 32, No. 3,
Sept. 2003.

