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Abstract. The implementation of ontology translation systems is a complex task 
where many types of translation decisions have to be made. These decisions are 
usually hidden inside the systems source code. In order to allow building, 
maintaining and understanding more easily ontology translation systems, we 
propose ODEDialect, a set of languages to express translation decisions 
declaratively and at different layers: lexical, syntax, semantic, and pragmatic. 
This paper describes the three languages that comprise ODEDialect: ODELex, 
ODESyntax, and ODESem, which express transformations in the lexical, 
syntax, and semantic and pragmatic layers, respectively.  

1   Introduction 
Ontologies can be implemented in varied ontology languages (DAML+OIL, FLogic, 
KIF, LOOM, OCML, OIL, Ontolingua, OWL, RDF, RDF Schema, etc.) and ontology 
tools (KAON, OilEd, OntoEdit, the Ontolingua Server, OntoSaurus, Protégé-2000, 
WebODE, and WebOnto). For a detailed comparison of these languages and tools we 
refer to [10]. Languages and tools have their own expressiveness and reasoning 
capabilities, and are based on different knowledge representation (KR) paradigms and 
combinations of them (frames, first order logic, description logic, semantic networks, 
etc.). Besides, languages have different syntaxes, and tools have different APIs. 

There are important connections and implications between the knowledge modelling 
components used to build an ontology in such languages and tools, and the KR paradigms 
used to represent formally such components. With frames and first order logic, the 
knowledge components commonly used are [11]: classes, relations, functions, formal 
axioms, and instances; with description logics, they are [2]: concepts, roles, and 
individuals; with semantic networks, they are: nodes and arcs between nodes; etc. 

The ontology translation problem [11] appears when we decide to reuse an 
ontology (or part of an ontology) with a tool or language different from those where 
the ontology is available. If we force each ontology-based system developer, 
individually, to commit to the task of translating and incorporating to their systems the 
ontologies that they need, they will require both a lot of effort and a lot of time to 
achieve their objectives [19]. Therefore, ontology reuse will be highly boosted as long 
as we provide ontology translation services among those languages and/or tools. 



Since ontology tools and languages have different expressiveness and reasoning 
capabilities, translations between them are not straightforward nor easily 
reusable. They normally require to take many decisions at different levels, which 
range from low layers (i.e., how to transform a concept name identifier from one 
format to the another) to higher layers (i.e., how to transform a ternary relation among 
concepts to a format that only allows representing binary relations between concepts). 

However, current ontology translation systems do not usually take into account 
such a layered structure of translation decisions. Furthermore, in these systems 
translation decisions are usually hidden inside their programming code. Both 
aspects make it difficult to understand how ontology translation systems work. 

To contribute solving this problem, in this paper we propose ODEDialect, a set of 
languages that allow expressing declaratively translation decisions at different levels: 
lexical, syntax, semantics, and pragmatics (this layered structure is based on the theory 
of signs [18]). This paper describes the three languages that comprise ODEDialect: 
ODELex, which expresses transformations in the lexical layer; ODESyntax, which 
expresses transformations in the syntax layer; and ODESem, which expresses 
transformations in the semantic and pragmatic layers. 

This paper is structured as follows: section 2 describes the four layers where ontology 
translation problems may appear, with examples of how transformations have to be made 
at each layer. Section 3 describes the three languages that comprise ODEDialect, with 
their grammars and examples of their use. Section 4 presents the main conclusions of our 
work and future work. Section 5 presents related work on ontology translation. 

2   Ontology translation layers 
The layered classification of translation decisions presented in this paper is based on 
existing work on formal languages and on the theory of signs [18]. Such works 
consider the existence of several levels in the definition of a language: syntax (related 
to how the language symbols are structured), semantics (related to the meaning of 
those structured symbols), and pragmatics (related to the intended meaning of the 
symbols, that is, how symbols are interpreted or used). 

In the context of semantic interoperability, some authors have proposed 
classifications of the problems to be faced when managing different ontologies in, 
possibly, different formats. We enumerate only the ones that are due to differences 
between the source and target formats1. Euzenat [7] distinguishes the following non-
strict levels of language interoperability: encoding, lexical, syntactic, semantic, and 
semiotic. Chalupsky [5] distinguishes two layers: syntax and expressivity (aka 
semantics). Klein [14] distinguishes four levels: syntax, logical representation, 
semantics of primitives, and language expressivity, where the last three levels 
correspond to the semantic layer identified in the others. Figure 1 shows the 
relationship between these classifications. 

The layers described in this section are mainly based on Euzenat’s classification. 
This classification is the only one in the context of semantic interoperability that deals 
                                                           
1 Semantic interoperability problems do not only appear because ontologies are available in 

different formats, but also because of their content, their ontological commitments, etc. We 
only focus on problems related exclusively to differences among ontology languages or tools. 



with pragmatics (the term “semiotics” is used in this case to refer to a subset of 
pragmatics). However, we consider that the lexical and encoding layers do not need to 
be splitted when dealing with ontologies, so that they form a unique lexical layer. 

Fig 1. Relationships between classifications of semantic interoperability problems. 

2.1 Lexical problems 
The lexical layer deals with the “ability to segment the representation in characters and 
words (or symbols)” [7]. Different languages and tools normally use different 
character sets and grammars to generate their terminal symbols. Therefore, in this 
layer we deal with transformations of ontology component identifiers, of pieces of text 
used for natural language documentation purposes, and of values. 

Lexical transformations mainly consist in replacing non-allowed characters by 
others (e.g., class identifiers in Protégé-2000 can contain blank spaces – for instance, 
Travel Agency –, and this is not possible in Ontolingua – it would be transformed to 
Travel-Agency –), or replacing identifiers that are reserved keywords in a format to 
other ones that are not reserved keywords (e.g., if an OWL ontology contains the class 
:THING, it cannot be transformed to Protégé-2000).  

Other sources of problems in lexical transformations are related to the scope of 
ontology component identifiers and the restrictions related to overlapping identifiers. 
These problems appear when, in the source format, a component is defined inside the 
scope of another, and hence its identifier is local to the latter, and in the target format 
the correspondent component has a global scope. Therefore there could be clashes of 
identifiers in case that in the source format two components have the same identifier.  

2.2 Syntax problems 
This layer deals with the “ability to structure the representation in structured 
sentences, formulas or assertions” [7]. Ontology components in each language or tool 
are defined with different grammars. Hence, this translation layer deals with the 
problems related to how symbols are structured in the source and target formats, 
taking into account their derivation rules for ontology components. 

The following types of transformations are included in this layer: transformations 
of ontology component definitions according to the grammars of the source and target 
formats (e.g., the grammar to define a concept in Ontolingua is different than that of 
OCML) and transformations of datatypes (e.g., the datatype “date” in WebODE must 
be transformed to the datatype “&xsd;date” in OWL). 
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With regard to the syntax differences between formats, we can distinguish basically 
three groups of languages and tools: Lisp-based formats (usual in many classical 
languages and tools, such as Ontolingua, LOOM, or OCML), XML-based formats 
(usual in ontology markup languages), and ad-hoc text formats (like in FLogic). 
Besides, several languages and tools provide ontology management APIs in different 
programming languages, such as Java, C++, Lisp, etc., which could be considered as 
another form of syntax for representing ontologies. 

With regard to datatypes, we can distinguish basically two groups of languages and 
tools: those with their own datatypes (integer, float, number, string, etc.), and those 
that allow using XML Schema datatypes (usually ontology markup languages). 

2.3 Semantic problems 
The semantic layer deals with the “ability to construct the propositional meaning of 
the representation” [7]. Different ontology languages and tools can be based on the 
same KR paradigm, on different KR paradigms (frames, semantic networks, first order 
logic, conceptual graphs, etc.) or on combinations of them.  

In this layer we deal not only with simple transformations (e.g., FLogic concepts 
are transformed into Ontolingua and OWL classes), but also with complex 
transformations of expressions that are usually related to the fact that the source and 
target formats are based on different KR paradigms (e.g., WebODE disjoint 
decompositions are transformed into subclass-of relationships and PAL constraints in 
Protégé-2000, FLogic instance attributes attached to a concept are transformed into 
datatype properties in OWL and unnamed property restrictions for the class). 

Most of the work on ontology translation done so far has been devoted to solving 
the problems that arise in this layer. For example, there are several formal, semi-
formal, and informal methods for comparing ontology languages and ontology tools’ 
knowledge models ([1], [4], [8], [6], [15], etc.), which aim at helping to decide 
whether two formats have the same expressiveness or not. These approaches allow 
deciding whether knowledge can be preserved in the transformation and whether the 
reasoning mechanisms of the source and target formats will infer the same knowledge. 

Basically, these studies analyse the expressiveness (and, in some cases, the 
reasoning mechanisms) of the source and target formats, so that we can know which 
types of components can be translated directly from a format to another, which ones 
can be expressed using other types of components from the target format, which ones 
cannot be expressed in the target format, and which ones can be expressed, although 
losing part of the knowledge represented in the source format.  

In summary, the problems found in this layer are mainly related to the different KR 
formalisms in which the source and target formats are based. This does not mean that 
translating between two formats based on the same KR formalism is straightforward. 
There may be differences in the types of ontology components that can be represented 
in each of them. This is specially important with DL languages, since many different 
combinations of primitives can be used in each language, and hence many possibilities 
exist in the transformations between them, as shown in [8]. However, the most 
interesting results appear when the KR formalisms are different. 



2.4 Pragmatic problems 
This layer deals with the “ability to construct the pragmatic meaning of the 
representation (its meaning in context)”. In this layer we deal with transformations to 
be made in the resulting ontology so that human users and ontology-based 
applications will notice as less differences as possible with respect to the ontology in 
the original format, either in one-direction transformations or in cyclic 
transformations.  

Transformations in this layer require, among other, the following: adding special 
labels to ontology components so as to preserve their original identifier in the source 
format (e.g., adding an own slot to all the Protégé-2000 classes obtained when 
transforming an ontology from another tool or language); transforming sets of 
expressions into more legible syntactic constructs in the target format (e.g., 
transforming a set of Protégé-2000 PAL constraints into a single class description); 
somehow “hiding” completely or partially some ontology components that were not 
defined in the source ontology, but which have been created as part of the 
transformations (such as the anonymous classes that are usually created when 
transforming between a DL-based format to a frame-based format); etc. 

2.5 Relationships between ontology translation layers 
Figure 2 shows an example of a transformation from the ontology platform WebODE 
to the language OWL DL. In this example, we transform two ad hoc relations with the 
same name (usesTransportMean) and with different domains and ranges (a flight uses 
an airTransportMean and a cityBus uses a bus). In OWL DL the scope of an object 
property is global to the ontology, and so we cannot define two different object 
properties with the same name. The example shows that translation decisions have to 
be made at all layers, and that the decisions taken at one layer can affect the decisions 
to be made at the others, hence showing the complexity of this task. 

Option 1 is driven by semantics: to preserve semantics in the transformation, two 
different object properties, with different identifiers, are defined. Option 2 is driven by 
pragmatics: only one object property is defined from both ad hoc relations, since we 
assume that they refer to the same meaning, but some knowledge is lost in the 
transformation (the one related to the object property domain and range). Finally, 
option 3 is also driven by pragmatics, with more care on the semantics: again, only 
one object property is defined, its domain and range is more restricted than in option 
2, although we still lose the exact correspondence between each domain and range. 

3   Description of ODEDialect 
Taking into account the preceding transformation layers and the main characteristics 
of each of them, and the fact that implementing ontology translation decisions is 
difficult, we propose a set of languages to express such transformations declaratively. 
This set of languages will express transformations in the lexical layer (ODELex), in 
the syntax layer (ODESyntax), and in the semantic and pragmatic layers (ODESem). 
ODESem deals with problems in both the semantic and pragmatic layers because they 
require similar types of transformations, and thus they can be implemented similarly. 

 



 
Fig 2. Example of translation decisions to be taken at several layers. 

In the following sections we present the main features of each language, with 
examples extracted from the ontology translation system from WebODE to OWL DL. 



3.1   ODELex: declarative specification of transformations at the lexical layer 
Problems in the lexical layer are normally easy to handle, because it is usually enough 
to take into account the rules and conventions for creating identifiers and texts in the 
source and target formats. ODELex allows specifying all the transformations to be 
made at this layer. This language is similar to lex [16, 17], JLex [3], and other widely-
used lexical analysers for building compilers. While these languages are aimed at 
building compilers, ODELex is optimised for building ontology translation systems, 
by restricting some of their primitives and by providing specific ones related to the 
construction of ontology translation systems, as described below.  

An ODELex specification is composed of three parts, which contain: user code, 
declarations, and lexical rules. Java-style comments can be added at the beginning of 
the document, or inside the other parts. We will now describe each of these parts: 

 
User code. The first part of an ODELex document contains the user code, where users 
may include any Java functions used in the rest of the specification plus any Java 
import statements needed for these functions. These functions usually implement 
complex transformations to be made to ontology component identifiers or pieces of 
text, or they are used as a kind of macro definitions for a sequence of transformations 
that have to be performed using standard functions from the Java API. In the 
following example, we have defined a Java function (convertToURI) that transforms a 
string value into a corresponding string value that is a valid URI:  
import java.net.*; 
private String convertToURI (String id){ 
 URI id_URI = new URI(URLEncoder.encode(id,"ISO-8859-1")) 
 return id_URI.toString(); 
} 
 
These definitions are copied verbatim into the Java source file generated for dealing 
with lexical transformations. In this part there is also the possibility of referencing 
transformation functions from a lexer created with typical lexical analysis tools. 
 
Declarations. This part of an ODELex specification contains the declaration of the 
ontology components (from the source and target formats) dealt with by the lexical 
transformation tool. It also contains the declaration of the ontology components of the 
target format whose identifiers cannot overlap (which means that they cannot share the 
same identifiers because they share the same scope). 
In the example below, the declaration part defines some of the WebODE ontology 
components (concepts, instance attributes, and ad hoc relations) and attribute values. 
With respect to OWL, it defines four ontology components (classes, object properties, 
datatype properties, and instances) and datatype values. It also states that the sets of 
identifiers of the four ontology components must be disjoint (they cannot overlap).  
Three WebODE components are not first class citizens of the ontology, since they are 
defined inside the scope of others; instance and class attributes are defined inside the 
scope of a concept, and ad hoc relations are defined inside the scope of two concepts.  
Finally, the %transient keyword states that once the transformation of a component 
has been performed, it is not interesting to store the result of such transformation. In 
the example, this happens with attribute values in both formats. 



WebODE.Concept  
WebODE.InstanceAttribute %scope (WebODE.Concept) 
WebODE.Relation %scope (WebODE.Concept,WebODE.Concept) 
WebODE.Value %transient 
 
OWL.Class 
OWL.ObjectProperty 
OWL.DatatypeProperty 
OWL.Instance 
OWL.DatatypeValue %transient 
no-overlap (OWL.Class, OWL.ObjectProperty,OWL.DatatypeProperty, 
            OWL.Instance) 
 
Lexical transformation rules. This part of an ODELex specification contains the 
actual transformations to be performed to each ontology component of the source 
format in order to obtain its correspondence in the target format. For each component 
in the lexical rule header, the following information must be specified: 
- INIT: the initial transformation to be performed. For instance, in the example 

below we propose to transform the identifier of a WebODE ad hoc relation to an 
OWL ObjectProperty by converting the identifier to a URI, with the function 
convertToURI specified above. 

- TABLE: if the component is not transient, it specifies how to store the result of the 
transformation. In the example below we propose to store the ad hoc relation 
identifier, and its two associated concept identifiers in the table WebODE.Relation, 
and the corresponding identifier obtained from the transformation in the table 
OWL.ObjectProperty, maintaining the corresponding links to each other. 

- REPEATED: if the component is not transient and cannot be repeated under 
certain circumstances, it specifies an alternative transformation to be performed. 
For instance, if after the transformation the OWL object property identifier already 
existed as an OWL object property identifier and if the WebODE ad hoc relation 
with the same ad hoc relation identifier and domain concept already existed as 
well, then we propose to maintain the identifier to be provided for the transformed 
object property (and we obtain it with the predefined function GET). The same 
applies if the same ad hoc relation identifier and range concept already existed. In 
another situation, a new identifier is created by adding the character “1” to the 
current transformed identifier. 

- OVERLAP: if the component is not transient and there cannot be overlaps in the 
target format, it specifies the transformation to be performed to the identifier 
already generated. This is repeated until there is no overlap. In the example, we 
add a number to the OWL object property identifier until there is no collision with 
other class, datatype property or instance identifiers (not object properties). 

 
%WebODE. Relation IDENTIFIER  
        WebODE.Concept IDENTIFIER WebODE.Concept IDENTIFIER 
  /* The 2nd and 3rd identifiers are the domain and range */ 
  INIT: {$1=convertToURI(%1)} 
  TABLE:{([WebODE.Relation,%1,%2,%3],[OWL.ObjectProperty,$1])} 
  REPEATED:  
    {[WebODE.Relation,%1,%2,_] ==> 
   {$1=GET([WebODE.Relation,%1,%2,_])}, 



     [WebODE.Relation,%1,_,%3] ==> 
   {$1=GET([WebODE.Relation,%1,_,%3])}, 
     default ==> {$1=addNumber($1)}} 
  OVERLAP: {$1=addNumber($1)} 

3.2   ODESyntax: declarative specification of transformations at the syntax layer 
Our approach assumes that the source and the target formats of the transformations 
have their own Java APIs defined. Thus the transformations expressed in this layer are 
simple, as in the lexical layer. With regard to the source format, in this layer we 
describe the correspondence between each component and its accessors (either for the 
component itself, for all the components of a specific type, or for pieces of 
information of each component). With regard to the target, in this layer we describe 
the correspondence between each component and its constructors, adding and 
updating methods, as well as the accessors that might be needed. In this layer we also 
specify correspondences between attribute datatypes of the source and target formats. 

As with the lexical layer, in the syntactic layer we propose the use of the language 
ODESyntax, which allows specifying all the correspondences outlined above. This 
language is also based on another one available for building compilers, such as yacc 
[13, 17], JCup [12], etc. A specification in ODESyntax is divided in five parts: user 
code, declarations, accessors, constructor and updates, and datatype transformations. 
 
User code. As with ODELex, the first part of an ODESyntax specification contains the 
user code, where all the auxiliary Java functions to be used in the rest of the 
specification are included. This code is copied verbatim into the Java source file 
generated for dealing with syntax transformations. In this part we can also refer to 
transformation functions created by typical syntax analysis tools. 
 
Declarations. This part of ODESyntax declares the list of ontology components dealt 
with in the specification. This list does not need to contain the same components than 
the ODELex specification, since it has a different purpose (syntactic transformations 
instead of lexical ones). Besides, it does not have to consider whether a component is 
transient or not, nor whether there can be overlap or not with other components, since 
these problems are already solved by the lexical layer specification.  
This component list is usually based on the knowledge models of the source and target 
formats, and usually corresponds as well to their APIs, because there is usually a 
strong correspondence between the format API and its knowledge model (either of the 
source or of the target format). 
The declaration part also includes a list of namespaces, used to abbreviate long Java 
packages in the rest of the specification. To refer to these namespaces, the 
corresponding namespace identifier must be placed between square brackets (e.g., 
[ode] to refer to es.upm.fi.dia.ontology.webode.service.). 
For example, the example below defines two namespaces (ode and jenaOnt), which 
correspond to the packages where the knowledge models of the source and target 
formats are defined. It also defines some of the ontology components used for the 
syntactic transformations, together with their scope, in case that they depend on other 
components, and with their corresponding Java class or interface.  
 



%NAMESPACE ode es.upm.fi.dia.ontology.webode.service.; 
%NAMESPACE jenaOnt com.hp.hpl.jena.ontology.; 
/* WebODE components */ 
WebODE.Concept   %scope (WebODE.Ontology) :[ode]Concept 
WebODE.InstanceAttribute %scope (WebODE.Concept,WebODE.Ontology) 
   :[ode]InstanceAttributeDescriptor 
WebODE.Relation %scope (WebODE.Concept,WebODE.Concept)  
  :[ode]TermRelation 
/* OWL components */ 
OWL.Ontology   :[jenaOnt]Ontology 
OWL.Class   :[jenaOnt]OntClass 
OWL.ObjectProperty  :[jenaOnt]ObjectProperty 
OWL.DatatypeProperty :[jenaOnt]DatatypeProperty 
OWL.Instance   :[jenaOnt]Individual 
 
Accessor methods. For each ontology component declared previously, this part of 
ODESyntax may specify which methods are used for the following purposes: 
- To access all (ALL) the ontology components of a specific type (e.g., a method that 

retrieves all the concepts of an ontology). 
- To access a specific ontology component (INDIVIDUAL) of a specific type (e.g., a 

method that retrieves a concept of an ontology, given its identifier). 
- To access different pieces of information (INFORMATION) of the ontology 

component (e.g., methods or properties to access a concept identifier, a concept 
description, the superclasses of a concept, etc.). 

For each method in the first and second groups, we indicate a number that identifies 
the method (there can be different methods with the same purpose), the method name 
and parameters, and the object that it returns. For the third group, we specify the piece 
of information’s identifier (which determines how we will access this information 
from the semantic and pragmatic layers), the property or method to be used to access 
to that information given a specific object of that type, and the datatype. 
The example below shows the declaration corresponding to an ontology component of 
the source format: a WebODE instance attribute. It shows that instance attributes are 
defined inside the scope of an ontology and of a concept. There are two methods that 
allow accessing all the instance attributes of a concept in an ontology: the first one is 
used to access the instance attributes that are defined explicitly in that concept, and the 
second one returns also those inherited through the concept taxonomy. Both of them 
return an array of objects of the class InstanceAttributeDescriptor.  
There is one method to get a specific instance attribute, given the ontology name, the 
concept name and the attribute name.  
Finally, the following information can be accessed from an instance attribute: the 
concept to which it belongs, the attribute name, description, type, maximum and 
minimum cardinality, maximum and minimum value, and explicit values. They are 
accessed using properties of the Java class InstanceAttributeDescriptor, except for the 
attribute type, which is accessed with an ad hoc function defined in the user code part. 
 
%WebODE.InstanceAttribute IDENTIFIER  
    WebODE.Concept IDENTIFIER WebODE.Ontology IDENTIFIER 
ALL: {1:getInstanceAttributes(%3,%2) 
    :[ode]InstanceAttributeDescriptor[]; 
      //gets only inst attributes defined locally to the concept 



      2: getInstanceAttributes(%3,%2,true)  
    :[ode]InstanceAttributeDescriptor[] 
      //gets also inherited inst attributes 
  } 
INDIVIDUAL: {1:getInstanceAttribute(%3,%2,%1) 
    :[ode]InstanceAttributeDescriptor} 
INFORMATION: 
 {concept :termName    :String; 
  name  :name     :String; 
  description :description    :String; 
  type  :getValueTypeName(valueType) :String; 
  maxCard :maxCardinality   :int; 
  minCard :minCardinality   :int; 
  maxValue :maxValue    :float; 
  minValue :minValue    :float; 
  values :values    :String[]} 
If a specific method or property that we want to specify in this part is not defined in 
the ontology access API of a format, we can define them either in the user code part of 
the ODESyntax specification or in a separate file that will extend the current API. 
 
Constructor and update methods. For each ontology component of the target format 
that has been declared in the declaration part, this part of an ODESyntax specification 
may declare the methods that will be used for the following purposes: 
- To create the ontology component in the target ontology (e.g., a constructor or a 

method that creates an OWL class). We use the keyword CREATE. 
- To remove the ontology component from the target ontology (e.g., a method that 

removes a class from an OWL ontology). We use REMOVE. 
- To add information about the component (e.g., the method or property used to add 

information about the class documentation, the superclasses, etc.). We use ADD. 
- To remove completely some information of the ontology component (e.g., the 

method or property to be used to remove all the class documentations, all the class 
superclasses, etc.). We use REMOVEALL. 

- To remove a value from a specific piece of information of the ontology component 
(e.g., the method or property to be used to remove a specific class documentation, 
a specific class superclass, etc.). We use REMOVEINDIVIDUAL. 

For each method in the first and second groups, we indicate a number that identifies 
the method, the method name and parameters. For the rest of groups, we specify the 
piece of information’s identifier (it determines how we will access this information 
from the semantic and pragmatic layers), and the property or method to be used to 
add, remove all, and remove one of the values of that piece of information, 
respectively. Not all the pieces of information must be specified in all cases, but only 
those used by the transformations in the semantic and pragmatic layers. 
The example below declares an OWL class. There is one method to create classes in 
the target ontology, createClass, which receives as an input the identifier of the class. 
It also contains other methods to add a natural language description to the class and to 
remove all the descriptions, and others to add a superclass, to remove all the class 
superclasses, and to remove a specific superclass. The %1 parameter refers to the 
OWL class identifier, and the $1 in the parameter means that the value for this 
parameter (the actual description and the class identifier) will be provided by the 



semantic or pragmatic layers in the first order. We will see how to define this 
information in the semantic and pragmatic transformation layers. 

 
%OWL.Class IDENTIFIER 
CREATE: {1:createClass(%1)} 
ADD:  {description :addComment(%1,$1); 
    subclassOf :addSuperClass(createClass($1))} 
REMOVEALL: {description :removeAllComments(%1); 
   subclassOf :removeAllSuperclasses(%1)} 
REMOVEINDIVIDUAL:{subclassOf :removeSuperClass(createClass($1))} 
 
As in other parts of ODESyntax, if a specific method or property used in this part is 
not defined in the ontology access API of a format, we can define them either in the 
user code part of the ODESyntax specification or in a separate file, extending the API. 
Datatype transformations. This part contains the transformations to be made to the 
attribute datatypes of the source format so as to transform them to the target format.  
The example below shows how to specify these transformations. The first column, 
specifies the attribute name in the source format. The second column specifies its 
correspondence in the target format (in this example, all of them are XML Schema 
datatypes). The transformations will be checked sequentially, according to the order 
specified in this table. Besides, the “default” keyword can be used at the last line to 
specify any other kind of datatype that could be found. 
 
"boolean":  "http://www.w3.org/2001/XMLSchema#boolean"; 
"string":   "http://www.w3.org/2001/XMLSchema#string"; 
"URL":      "http://www.w3.org/2001/XMLSchema#anyURI";  
default %1: %1; 

3.3   ODESem: declarative specification of transformations at the semantic and 
pragmatic layers 
The previous sections have described how to specify declaratively the transformations 
in the lexical and syntactic layers. The main objective of both transformation layers is 
to abstract the low-level details of the source and target formats (their syntax specific 
features, the restrictions and naming conventions of ontology component identifiers, 
etc.), so as to allow specifying the semantic and pragmatic transformations – which 
are the most important and complex – at a higher abstraction level.  

These translation decisions will be specified with the same declarative language: 
ODESem. An ODESem specification is divided into three parts: user defined code, 
declarations and semantic and pragmatic rules.  
 
User code. This part contains auxiliary Java code used in the rest of the specification. 
 
Semantic and pragmatic transformation rule declarations and processing order. 
This part of ODESem contains the declaration of the transformation rules to be 
defined later, together with the order in which they have to be processed. Unlike in 
ODELex and ODESyntax, the order of the definitions is relevant, since they define the 
order in which these transformation rules will be processed. 



The example below shows the rule declarations for the WebODE export service to 
OWL DL. The rules 1 to 6 are in charge of the semantic and pragmatic 
transformations of WebODE components: it adds ontology information (ontology 
container), classes, object properties, disjoint and exhaustive decompositions, and 
instances. Finally, three pragmatic transformations remove redundant domains in 
OWL datatype properties, and redundant domains and ranges in object properties. 
1: %AddOntologyContainer; 
2: %AddClasses; 
3: %AddObjectProperties; 
4: %AddDisjointDecompositions; 
5: %AddExhaustiveDecompositions; 
6: %AddInstances; 
7: %PostProcessing_RemoveDPRedundantDomains; 
8: %PostProcessing_RemoveOPRedundantDomains; 
9: %PostProcessing_RemoveOPRedundantRanges; 
 
Semantic and pragmatic transformation rules. This part of the specification contains 
at least the rules declared previously, plus any other auxiliary rules that can be called 
from these ones. A transformation rule is defined with two parts:  
- The LHS (Left Hand Side) of the rule contains the information needed to trigger 

the rule, which can be either the source ontology component to be transformed or a 
target component to be modified. In both cases, the LHS contains the ontology 
component type, as defined with ODESyntax, and an identifier that will be used to 
refer to the specific component in the RHS (Right Hand Side) of the rule. If no 
information is needed to trigger the rule, the keyword NULL must be used. 

- The RHS of the rule contains the sequence of actions to be performed in order to 
obtain the corresponding ontology component(s) in the target format.  

Three groups of actions can be performed: actions that create new ontology 
components, and add or remove components or information; actions that specify the 
control flow of the translation system; and actions that throw error messages, assign 
values to variables or call other functions, either predefined or defined by the user. 
The following primitives can be used: 
- CREATE. It creates (and returns) an ontology component in the target ontology. 

This action receives as input parameters the ontology component type to be 
created, the number of the specific constructor to be used, and the rest of 
parameters needed to create the ontology component.  

- ADD. It adds one or several values to a specific property of an ontology 
component of the target ontology. The ontology component, the property and the 
value(s) are specified as input parameters. 

- REMOVE. It removes a value from a specific property of an ontology component 
of the target ontology. The ontology component, the property and the value to be 
removed are specified as input parameters. 

- REMOVEALL. It removes all the values from a specific property of an ontology 
component of the target ontology. The ontology component and the property are 
specified as input parameters. 

The following control flow structures can be used: 
- EXEC. It executes a rule with the set of parameters that match its antecedent. 



- If condition {actions} else {actions}. It specifies the set of actions to be performed 
if the condition specified is evaluated as true, and, optionally, the set of actions to 
be performed if the condition specified is evaluated as false. 

- ForEach variable IN set_variable {actions}. It specifies the set of actions to be 
performed for each ontology component inside the multiple-valued variable. 

Finally, variable assignments can be performed with var = value, and the predefined 
functions GETCOMPONENT and GETALLCOMPONENTS can be used to obtain a 
specific component or all the components of the source or the target formats (with the 
parameters specified in the ODESyntax specification). The ERROR function can be 
used in cases where the options that allow executing it are not allowed.  
Below we provide the code of a transformation rule that transforms WebODE 
concepts into OWL classes. For each WebODE concept, it creates an OWL class with 
the concept name, it adds a natural language description, if it exists, and it states that it 
is a subclass of the parent concepts. Finally, for each instance attribute of the concept, 
the rule ADDInstanceAttributes is triggered. 
%AddClasses 
WebODE.Concept concept --> 
  {C = CREATE(OWL.Class,1,concept.name); 
   if (concept.description != null) 
        ADD(C,description,concept.description); 
   ADD(C,subClassOf,concept.parentConcepts); 
   forEach ia IN concept.instanceAttributes 
 EXEC(%AddInstanceAttributes,WebODE.InstanceAttribute,ia); 
  } 
 
Finally, we show a transformation rule that corresponds to the pragmatic post-
processing of datatype properties so as to remove the redundant domains. This rule 
checks whether the datatype property domain is a union of classes. In that case, if any 
of the classes in that union is already a subclass of any of the other concepts in the 
union, then the class can be removed, since it is already considered in the domain. 

 
%PostProcessing_RemoveDPRedundantDomains 
OWL.DatatypeProperty P --> 
 {forEach U in P.domain { 
    if (U.isUnionOf) 
      forEach D in U.classes  
        forEach E in U.classes  
          if (E.isSubclassOf(D)) REMOVE(U,class,E) 
 } 

4   Conclusions and future work 
This paper describes ODEDialect, a set of languages – ODELex, ODESyntax, and 
ODESem – that allow expressing declaratively ontology translation systems. With 
ODEDialect, translation decisions can be made at four different layers (lexical, syntax, 
semantic, and pragmatic), based on existing classifications of semantic interoperability 
and on the theory of signs. We assume that this layered approach makes it easier to 
construct and maintain ontology translation systems. The types of transformations at 
each layer are different, and thus the languages for expressing transformations at each 
layer are different as well, except for the semantic and pragmatic ones. 



One of the design issues considered for the creation of these languages has been 
that they should allow expressing declaratively most of the transformations to be made 
at each layer. However, at the same time it should be flexible enough to allow 
representing any type of transformation required. We have achieved these objectives 
by proposing a large set of primitives in these languages and by allowing the inclusion 
of user-defined code in the general purpose programming language Java. 

The ODEDialect language has been successfully used to specify translation 
decisions of the import and export services of the WebODE ontology engineering 
workbench to and from OWL DL, RDF(S), and Protégé-2000, although these 
ontology translation systems have not been generated automatically but manually from 
their ODEDialect specifications. This experience have given us enough insight to be 
able to build a compiler that automates these tasks in the near future. 

5   Related work 
Two systems allow creating ontology translation systems declaratively: Transmorpher 
and OntoMorph. Transmorpher [9] is aimed at facilitating the definition and 
processing of complex transformations in XML, using XSLT. Among other domains, 
this tool has been used to transform ontologies between DL languages, using DLML2 
and giving support to the ontology translation approach “family of ontology 
languages” [8]. Its main limitation is that it only deals with problems in the lexical and 
syntactic layers, and can only be applied to languages with XML syntax. 

OntoMorph [5] allows specifying transformations between the source and the target 
formats by means of pattern-based transformation rules. Transformations are 
performed in two phases: syntactic rewriting and semantic rewriting. The last one 
needs the ontology or part of it translated into PowerLoom, so that this KR system can 
be used for certain kinds of reasoning (e.g., discovering whether a class is subclass of 
another). Since this tool is based on PowerLoom (and consequently on Lisp), it cannot 
handle easily all the problems that may appear in the lexical and syntax layers. 

ODEDialect improves the support given by these systems by specifying 
transformations at more levels, so that ontology translation systems are easier to 
create, understand and maintain. Besides, ODEDialect can be applied to a wider range 
of formats, not necessarily based on XML or Lisp. On the contrary, the previous 
systems create ontology translation systems automatically from the specifications of 
ontology translation decisions. This is not possible yet in ODEDialect. 
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