
ODEDialect: a set of declarative languages for
implementing ontology translation systems

Oscar Corcho, Asunción Gómez-Pérez

Ontological Engineering Group. Departamento de Inteligencia Artificial.
Facultad de Informática. Universidad Politécnica de Madrid.

Campus de Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. (Spain)
{ocorcho,asun}@fi.upm.es

Abstract. The implementation of ontology translation systems is a complex task
where many types of translation decisions have to be made. These decisions are
usually hidden inside the systems source code. In order to allow building,
maintaining and understanding more easily ontology translation systems, we
propose ODEDialect, a set of languages to express translation decisions
declaratively and at different layers: lexical, syntax, semantic, and pragmatic.
This paper describes the three languages that comprise ODEDialect: ODELex,
ODESyntax, and ODESem, which express transformations in the lexical,
syntax, and semantic and pragmatic layers, respectively.

1 Introduction
Ontologies can be implemented in varied ontology languages (DAML+OIL, FLogic,
KIF, LOOM, OCML, OIL, Ontolingua, OWL, RDF, RDF Schema, etc.) and ontology
tools (KAON, OilEd, OntoEdit, the Ontolingua Server, OntoSaurus, Protégé-2000,
WebODE, and WebOnto). For a detailed comparison of these languages and tools we
refer to [10]. Languages and tools have their own expressiveness and reasoning
capabilities, and are based on different knowledge representation (KR) paradigms and
combinations of them (frames, first order logic, description logic, semantic networks,
etc.). Besides, languages have different syntaxes, and tools have different APIs.

There are important connections and implications between the knowledge modelling
components used to build an ontology in such languages and tools, and the KR paradigms
used to represent formally such components. With frames and first order logic, the
knowledge components commonly used are [11]: classes, relations, functions, formal
axioms, and instances; with description logics, they are [2]: concepts, roles, and
individuals; with semantic networks, they are: nodes and arcs between nodes; etc.

The ontology translation problem [11] appears when we decide to reuse an
ontology (or part of an ontology) with a tool or language different from those where
the ontology is available. If we force each ontology-based system developer,
individually, to commit to the task of translating and incorporating to their systems the
ontologies that they need, they will require both a lot of effort and a lot of time to
achieve their objectives [19]. Therefore, ontology reuse will be highly boosted as long
as we provide ontology translation services among those languages and/or tools.

Since ontology tools and languages have different expressiveness and reasoning
capabilities, translations between them are not straightforward nor easily
reusable. They normally require to take many decisions at different levels, which
range from low layers (i.e., how to transform a concept name identifier from one
format to the another) to higher layers (i.e., how to transform a ternary relation among
concepts to a format that only allows representing binary relations between concepts).

However, current ontology translation systems do not usually take into account
such a layered structure of translation decisions. Furthermore, in these systems
translation decisions are usually hidden inside their programming code. Both
aspects make it difficult to understand how ontology translation systems work.

To contribute solving this problem, in this paper we propose ODEDialect, a set of
languages that allow expressing declaratively translation decisions at different levels:
lexical, syntax, semantics, and pragmatics (this layered structure is based on the theory
of signs [18]). This paper describes the three languages that comprise ODEDialect:
ODELex, which expresses transformations in the lexical layer; ODESyntax, which
expresses transformations in the syntax layer; and ODESem, which expresses
transformations in the semantic and pragmatic layers.

This paper is structured as follows: section 2 describes the four layers where ontology
translation problems may appear, with examples of how transformations have to be made
at each layer. Section 3 describes the three languages that comprise ODEDialect, with
their grammars and examples of their use. Section 4 presents the main conclusions of our
work and future work. Section 5 presents related work on ontology translation.

2 Ontology translation layers
The layered classification of translation decisions presented in this paper is based on
existing work on formal languages and on the theory of signs [18]. Such works
consider the existence of several levels in the definition of a language: syntax (related
to how the language symbols are structured), semantics (related to the meaning of
those structured symbols), and pragmatics (related to the intended meaning of the
symbols, that is, how symbols are interpreted or used).

In the context of semantic interoperability, some authors have proposed
classifications of the problems to be faced when managing different ontologies in,
possibly, different formats. We enumerate only the ones that are due to differences
between the source and target formats1. Euzenat [7] distinguishes the following non-
strict levels of language interoperability: encoding, lexical, syntactic, semantic, and
semiotic. Chalupsky [5] distinguishes two layers: syntax and expressivity (aka
semantics). Klein [14] distinguishes four levels: syntax, logical representation,
semantics of primitives, and language expressivity, where the last three levels
correspond to the semantic layer identified in the others. Figure 1 shows the
relationship between these classifications.

The layers described in this section are mainly based on Euzenat’s classification.
This classification is the only one in the context of semantic interoperability that deals

1 Semantic interoperability problems do not only appear because ontologies are available in

different formats, but also because of their content, their ontological commitments, etc. We
only focus on problems related exclusively to differences among ontology languages or tools.

with pragmatics (the term “semiotics” is used in this case to refer to a subset of
pragmatics). However, we consider that the lexical and encoding layers do not need to
be splitted when dealing with ontologies, so that they form a unique lexical layer.

Fig 1. Relationships between classifications of semantic interoperability problems.

2.1 Lexical problems
The lexical layer deals with the “ability to segment the representation in characters and
words (or symbols)” [7]. Different languages and tools normally use different
character sets and grammars to generate their terminal symbols. Therefore, in this
layer we deal with transformations of ontology component identifiers, of pieces of text
used for natural language documentation purposes, and of values.

Lexical transformations mainly consist in replacing non-allowed characters by
others (e.g., class identifiers in Protégé-2000 can contain blank spaces – for instance,
Travel Agency –, and this is not possible in Ontolingua – it would be transformed to
Travel-Agency –), or replacing identifiers that are reserved keywords in a format to
other ones that are not reserved keywords (e.g., if an OWL ontology contains the class
:THING, it cannot be transformed to Protégé-2000).

Other sources of problems in lexical transformations are related to the scope of
ontology component identifiers and the restrictions related to overlapping identifiers.
These problems appear when, in the source format, a component is defined inside the
scope of another, and hence its identifier is local to the latter, and in the target format
the correspondent component has a global scope. Therefore there could be clashes of
identifiers in case that in the source format two components have the same identifier.

2.2 Syntax problems
This layer deals with the “ability to structure the representation in structured
sentences, formulas or assertions” [7]. Ontology components in each language or tool
are defined with different grammars. Hence, this translation layer deals with the
problems related to how symbols are structured in the source and target formats,
taking into account their derivation rules for ontology components.

The following types of transformations are included in this layer: transformations
of ontology component definitions according to the grammars of the source and target
formats (e.g., the grammar to define a concept in Ontolingua is different than that of
OCML) and transformations of datatypes (e.g., the datatype “date” in WebODE must
be transformed to the datatype “&xsd;date” in OWL).

Syntax

Semantic

Pragmatic

[Morris, 1938] [Chalupsky,2000] [Klein,2001] [Euzenat,2001]

Syntax

Expressivity

Syntax

Logical representation

Language expressivity
Semantics of primitives

Lexical

Semantic

Encoding

Syntax

Semiotic

With regard to the syntax differences between formats, we can distinguish basically
three groups of languages and tools: Lisp-based formats (usual in many classical
languages and tools, such as Ontolingua, LOOM, or OCML), XML-based formats
(usual in ontology markup languages), and ad-hoc text formats (like in FLogic).
Besides, several languages and tools provide ontology management APIs in different
programming languages, such as Java, C++, Lisp, etc., which could be considered as
another form of syntax for representing ontologies.

With regard to datatypes, we can distinguish basically two groups of languages and
tools: those with their own datatypes (integer, float, number, string, etc.), and those
that allow using XML Schema datatypes (usually ontology markup languages).

2.3 Semantic problems
The semantic layer deals with the “ability to construct the propositional meaning of
the representation” [7]. Different ontology languages and tools can be based on the
same KR paradigm, on different KR paradigms (frames, semantic networks, first order
logic, conceptual graphs, etc.) or on combinations of them.

In this layer we deal not only with simple transformations (e.g., FLogic concepts
are transformed into Ontolingua and OWL classes), but also with complex
transformations of expressions that are usually related to the fact that the source and
target formats are based on different KR paradigms (e.g., WebODE disjoint
decompositions are transformed into subclass-of relationships and PAL constraints in
Protégé-2000, FLogic instance attributes attached to a concept are transformed into
datatype properties in OWL and unnamed property restrictions for the class).

Most of the work on ontology translation done so far has been devoted to solving
the problems that arise in this layer. For example, there are several formal, semi-
formal, and informal methods for comparing ontology languages and ontology tools’
knowledge models ([1], [4], [8], [6], [15], etc.), which aim at helping to decide
whether two formats have the same expressiveness or not. These approaches allow
deciding whether knowledge can be preserved in the transformation and whether the
reasoning mechanisms of the source and target formats will infer the same knowledge.

Basically, these studies analyse the expressiveness (and, in some cases, the
reasoning mechanisms) of the source and target formats, so that we can know which
types of components can be translated directly from a format to another, which ones
can be expressed using other types of components from the target format, which ones
cannot be expressed in the target format, and which ones can be expressed, although
losing part of the knowledge represented in the source format.

In summary, the problems found in this layer are mainly related to the different KR
formalisms in which the source and target formats are based. This does not mean that
translating between two formats based on the same KR formalism is straightforward.
There may be differences in the types of ontology components that can be represented
in each of them. This is specially important with DL languages, since many different
combinations of primitives can be used in each language, and hence many possibilities
exist in the transformations between them, as shown in [8]. However, the most
interesting results appear when the KR formalisms are different.

2.4 Pragmatic problems
This layer deals with the “ability to construct the pragmatic meaning of the
representation (its meaning in context)”. In this layer we deal with transformations to
be made in the resulting ontology so that human users and ontology-based
applications will notice as less differences as possible with respect to the ontology in
the original format, either in one-direction transformations or in cyclic
transformations.

Transformations in this layer require, among other, the following: adding special
labels to ontology components so as to preserve their original identifier in the source
format (e.g., adding an own slot to all the Protégé-2000 classes obtained when
transforming an ontology from another tool or language); transforming sets of
expressions into more legible syntactic constructs in the target format (e.g.,
transforming a set of Protégé-2000 PAL constraints into a single class description);
somehow “hiding” completely or partially some ontology components that were not
defined in the source ontology, but which have been created as part of the
transformations (such as the anonymous classes that are usually created when
transforming between a DL-based format to a frame-based format); etc.

2.5 Relationships between ontology translation layers
Figure 2 shows an example of a transformation from the ontology platform WebODE
to the language OWL DL. In this example, we transform two ad hoc relations with the
same name (usesTransportMean) and with different domains and ranges (a flight uses
an airTransportMean and a cityBus uses a bus). In OWL DL the scope of an object
property is global to the ontology, and so we cannot define two different object
properties with the same name. The example shows that translation decisions have to
be made at all layers, and that the decisions taken at one layer can affect the decisions
to be made at the others, hence showing the complexity of this task.

Option 1 is driven by semantics: to preserve semantics in the transformation, two
different object properties, with different identifiers, are defined. Option 2 is driven by
pragmatics: only one object property is defined from both ad hoc relations, since we
assume that they refer to the same meaning, but some knowledge is lost in the
transformation (the one related to the object property domain and range). Finally,
option 3 is also driven by pragmatics, with more care on the semantics: again, only
one object property is defined, its domain and range is more restricted than in option
2, although we still lose the exact correspondence between each domain and range.

3 Description of ODEDialect
Taking into account the preceding transformation layers and the main characteristics
of each of them, and the fact that implementing ontology translation decisions is
difficult, we propose a set of languages to express such transformations declaratively.
This set of languages will express transformations in the lexical layer (ODELex), in
the syntax layer (ODESyntax), and in the semantic and pragmatic layers (ODESem).
ODESem deals with problems in both the semantic and pragmatic layers because they
require similar types of transformations, and thus they can be implemented similarly.

Fig 2. Example of translation decisions to be taken at several layers.

In the following sections we present the main features of each language, with
examples extracted from the ontology translation system from WebODE to OWL DL.

3.1 ODELex: declarative specification of transformations at the lexical layer
Problems in the lexical layer are normally easy to handle, because it is usually enough
to take into account the rules and conventions for creating identifiers and texts in the
source and target formats. ODELex allows specifying all the transformations to be
made at this layer. This language is similar to lex [16, 17], JLex [3], and other widely-
used lexical analysers for building compilers. While these languages are aimed at
building compilers, ODELex is optimised for building ontology translation systems,
by restricting some of their primitives and by providing specific ones related to the
construction of ontology translation systems, as described below.

An ODELex specification is composed of three parts, which contain: user code,
declarations, and lexical rules. Java-style comments can be added at the beginning of
the document, or inside the other parts. We will now describe each of these parts:

User code. The first part of an ODELex document contains the user code, where users
may include any Java functions used in the rest of the specification plus any Java
import statements needed for these functions. These functions usually implement
complex transformations to be made to ontology component identifiers or pieces of
text, or they are used as a kind of macro definitions for a sequence of transformations
that have to be performed using standard functions from the Java API. In the
following example, we have defined a Java function (convertToURI) that transforms a
string value into a corresponding string value that is a valid URI:
import java.net.*;
private String convertToURI (String id){
 URI id_URI = new URI(URLEncoder.encode(id,"ISO-8859-1"))
 return id_URI.toString();
}

These definitions are copied verbatim into the Java source file generated for dealing
with lexical transformations. In this part there is also the possibility of referencing
transformation functions from a lexer created with typical lexical analysis tools.

Declarations. This part of an ODELex specification contains the declaration of the
ontology components (from the source and target formats) dealt with by the lexical
transformation tool. It also contains the declaration of the ontology components of the
target format whose identifiers cannot overlap (which means that they cannot share the
same identifiers because they share the same scope).
In the example below, the declaration part defines some of the WebODE ontology
components (concepts, instance attributes, and ad hoc relations) and attribute values.
With respect to OWL, it defines four ontology components (classes, object properties,
datatype properties, and instances) and datatype values. It also states that the sets of
identifiers of the four ontology components must be disjoint (they cannot overlap).
Three WebODE components are not first class citizens of the ontology, since they are
defined inside the scope of others; instance and class attributes are defined inside the
scope of a concept, and ad hoc relations are defined inside the scope of two concepts.
Finally, the %transient keyword states that once the transformation of a component
has been performed, it is not interesting to store the result of such transformation. In
the example, this happens with attribute values in both formats.

WebODE.Concept
WebODE.InstanceAttribute %scope (WebODE.Concept)
WebODE.Relation %scope (WebODE.Concept,WebODE.Concept)
WebODE.Value %transient

OWL.Class
OWL.ObjectProperty
OWL.DatatypeProperty
OWL.Instance
OWL.DatatypeValue %transient
no-overlap (OWL.Class, OWL.ObjectProperty,OWL.DatatypeProperty,
 OWL.Instance)

Lexical transformation rules. This part of an ODELex specification contains the
actual transformations to be performed to each ontology component of the source
format in order to obtain its correspondence in the target format. For each component
in the lexical rule header, the following information must be specified:
- INIT: the initial transformation to be performed. For instance, in the example

below we propose to transform the identifier of a WebODE ad hoc relation to an
OWL ObjectProperty by converting the identifier to a URI, with the function
convertToURI specified above.

- TABLE: if the component is not transient, it specifies how to store the result of the
transformation. In the example below we propose to store the ad hoc relation
identifier, and its two associated concept identifiers in the table WebODE.Relation,
and the corresponding identifier obtained from the transformation in the table
OWL.ObjectProperty, maintaining the corresponding links to each other.

- REPEATED: if the component is not transient and cannot be repeated under
certain circumstances, it specifies an alternative transformation to be performed.
For instance, if after the transformation the OWL object property identifier already
existed as an OWL object property identifier and if the WebODE ad hoc relation
with the same ad hoc relation identifier and domain concept already existed as
well, then we propose to maintain the identifier to be provided for the transformed
object property (and we obtain it with the predefined function GET). The same
applies if the same ad hoc relation identifier and range concept already existed. In
another situation, a new identifier is created by adding the character “1” to the
current transformed identifier.

- OVERLAP: if the component is not transient and there cannot be overlaps in the
target format, it specifies the transformation to be performed to the identifier
already generated. This is repeated until there is no overlap. In the example, we
add a number to the OWL object property identifier until there is no collision with
other class, datatype property or instance identifiers (not object properties).

%WebODE. Relation IDENTIFIER
 WebODE.Concept IDENTIFIER WebODE.Concept IDENTIFIER
 /* The 2nd and 3rd identifiers are the domain and range */
 INIT: {$1=convertToURI(%1)}
 TABLE:{([WebODE.Relation,%1,%2,%3],[OWL.ObjectProperty,$1])}
 REPEATED:
 {[WebODE.Relation,%1,%2,_] ==>
 {$1=GET([WebODE.Relation,%1,%2,_])},

 [WebODE.Relation,%1,_,%3] ==>
 {$1=GET([WebODE.Relation,%1,_,%3])},
 default ==> {$1=addNumber($1)}}
 OVERLAP: {$1=addNumber($1)}

3.2 ODESyntax: declarative specification of transformations at the syntax layer
Our approach assumes that the source and the target formats of the transformations
have their own Java APIs defined. Thus the transformations expressed in this layer are
simple, as in the lexical layer. With regard to the source format, in this layer we
describe the correspondence between each component and its accessors (either for the
component itself, for all the components of a specific type, or for pieces of
information of each component). With regard to the target, in this layer we describe
the correspondence between each component and its constructors, adding and
updating methods, as well as the accessors that might be needed. In this layer we also
specify correspondences between attribute datatypes of the source and target formats.

As with the lexical layer, in the syntactic layer we propose the use of the language
ODESyntax, which allows specifying all the correspondences outlined above. This
language is also based on another one available for building compilers, such as yacc
[13, 17], JCup [12], etc. A specification in ODESyntax is divided in five parts: user
code, declarations, accessors, constructor and updates, and datatype transformations.

User code. As with ODELex, the first part of an ODESyntax specification contains the
user code, where all the auxiliary Java functions to be used in the rest of the
specification are included. This code is copied verbatim into the Java source file
generated for dealing with syntax transformations. In this part we can also refer to
transformation functions created by typical syntax analysis tools.

Declarations. This part of ODESyntax declares the list of ontology components dealt
with in the specification. This list does not need to contain the same components than
the ODELex specification, since it has a different purpose (syntactic transformations
instead of lexical ones). Besides, it does not have to consider whether a component is
transient or not, nor whether there can be overlap or not with other components, since
these problems are already solved by the lexical layer specification.
This component list is usually based on the knowledge models of the source and target
formats, and usually corresponds as well to their APIs, because there is usually a
strong correspondence between the format API and its knowledge model (either of the
source or of the target format).
The declaration part also includes a list of namespaces, used to abbreviate long Java
packages in the rest of the specification. To refer to these namespaces, the
corresponding namespace identifier must be placed between square brackets (e.g.,
[ode] to refer to es.upm.fi.dia.ontology.webode.service.).
For example, the example below defines two namespaces (ode and jenaOnt), which
correspond to the packages where the knowledge models of the source and target
formats are defined. It also defines some of the ontology components used for the
syntactic transformations, together with their scope, in case that they depend on other
components, and with their corresponding Java class or interface.

%NAMESPACE ode es.upm.fi.dia.ontology.webode.service.;
%NAMESPACE jenaOnt com.hp.hpl.jena.ontology.;
/* WebODE components */
WebODE.Concept %scope (WebODE.Ontology) :[ode]Concept
WebODE.InstanceAttribute %scope (WebODE.Concept,WebODE.Ontology)
 :[ode]InstanceAttributeDescriptor
WebODE.Relation %scope (WebODE.Concept,WebODE.Concept)
 :[ode]TermRelation
/* OWL components */
OWL.Ontology :[jenaOnt]Ontology
OWL.Class :[jenaOnt]OntClass
OWL.ObjectProperty :[jenaOnt]ObjectProperty
OWL.DatatypeProperty :[jenaOnt]DatatypeProperty
OWL.Instance :[jenaOnt]Individual

Accessor methods. For each ontology component declared previously, this part of
ODESyntax may specify which methods are used for the following purposes:
- To access all (ALL) the ontology components of a specific type (e.g., a method that

retrieves all the concepts of an ontology).
- To access a specific ontology component (INDIVIDUAL) of a specific type (e.g., a

method that retrieves a concept of an ontology, given its identifier).
- To access different pieces of information (INFORMATION) of the ontology

component (e.g., methods or properties to access a concept identifier, a concept
description, the superclasses of a concept, etc.).

For each method in the first and second groups, we indicate a number that identifies
the method (there can be different methods with the same purpose), the method name
and parameters, and the object that it returns. For the third group, we specify the piece
of information’s identifier (which determines how we will access this information
from the semantic and pragmatic layers), the property or method to be used to access
to that information given a specific object of that type, and the datatype.
The example below shows the declaration corresponding to an ontology component of
the source format: a WebODE instance attribute. It shows that instance attributes are
defined inside the scope of an ontology and of a concept. There are two methods that
allow accessing all the instance attributes of a concept in an ontology: the first one is
used to access the instance attributes that are defined explicitly in that concept, and the
second one returns also those inherited through the concept taxonomy. Both of them
return an array of objects of the class InstanceAttributeDescriptor.
There is one method to get a specific instance attribute, given the ontology name, the
concept name and the attribute name.
Finally, the following information can be accessed from an instance attribute: the
concept to which it belongs, the attribute name, description, type, maximum and
minimum cardinality, maximum and minimum value, and explicit values. They are
accessed using properties of the Java class InstanceAttributeDescriptor, except for the
attribute type, which is accessed with an ad hoc function defined in the user code part.

%WebODE.InstanceAttribute IDENTIFIER
 WebODE.Concept IDENTIFIER WebODE.Ontology IDENTIFIER
ALL: {1:getInstanceAttributes(%3,%2)
 :[ode]InstanceAttributeDescriptor[];
 //gets only inst attributes defined locally to the concept

 2: getInstanceAttributes(%3,%2,true)
 :[ode]InstanceAttributeDescriptor[]
 //gets also inherited inst attributes
 }
INDIVIDUAL: {1:getInstanceAttribute(%3,%2,%1)
 :[ode]InstanceAttributeDescriptor}
INFORMATION:
 {concept :termName :String;
 name :name :String;
 description :description :String;
 type :getValueTypeName(valueType) :String;
 maxCard :maxCardinality :int;
 minCard :minCardinality :int;
 maxValue :maxValue :float;
 minValue :minValue :float;
 values :values :String[]}
If a specific method or property that we want to specify in this part is not defined in
the ontology access API of a format, we can define them either in the user code part of
the ODESyntax specification or in a separate file that will extend the current API.

Constructor and update methods. For each ontology component of the target format
that has been declared in the declaration part, this part of an ODESyntax specification
may declare the methods that will be used for the following purposes:
- To create the ontology component in the target ontology (e.g., a constructor or a

method that creates an OWL class). We use the keyword CREATE.
- To remove the ontology component from the target ontology (e.g., a method that

removes a class from an OWL ontology). We use REMOVE.
- To add information about the component (e.g., the method or property used to add

information about the class documentation, the superclasses, etc.). We use ADD.
- To remove completely some information of the ontology component (e.g., the

method or property to be used to remove all the class documentations, all the class
superclasses, etc.). We use REMOVEALL.

- To remove a value from a specific piece of information of the ontology component
(e.g., the method or property to be used to remove a specific class documentation,
a specific class superclass, etc.). We use REMOVEINDIVIDUAL.

For each method in the first and second groups, we indicate a number that identifies
the method, the method name and parameters. For the rest of groups, we specify the
piece of information’s identifier (it determines how we will access this information
from the semantic and pragmatic layers), and the property or method to be used to
add, remove all, and remove one of the values of that piece of information,
respectively. Not all the pieces of information must be specified in all cases, but only
those used by the transformations in the semantic and pragmatic layers.
The example below declares an OWL class. There is one method to create classes in
the target ontology, createClass, which receives as an input the identifier of the class.
It also contains other methods to add a natural language description to the class and to
remove all the descriptions, and others to add a superclass, to remove all the class
superclasses, and to remove a specific superclass. The %1 parameter refers to the
OWL class identifier, and the $1 in the parameter means that the value for this
parameter (the actual description and the class identifier) will be provided by the

semantic or pragmatic layers in the first order. We will see how to define this
information in the semantic and pragmatic transformation layers.

%OWL.Class IDENTIFIER
CREATE: {1:createClass(%1)}
ADD: {description :addComment(%1,$1);
 subclassOf :addSuperClass(createClass($1))}
REMOVEALL: {description :removeAllComments(%1);
 subclassOf :removeAllSuperclasses(%1)}
REMOVEINDIVIDUAL:{subclassOf :removeSuperClass(createClass($1))}

As in other parts of ODESyntax, if a specific method or property used in this part is
not defined in the ontology access API of a format, we can define them either in the
user code part of the ODESyntax specification or in a separate file, extending the API.
Datatype transformations. This part contains the transformations to be made to the
attribute datatypes of the source format so as to transform them to the target format.
The example below shows how to specify these transformations. The first column,
specifies the attribute name in the source format. The second column specifies its
correspondence in the target format (in this example, all of them are XML Schema
datatypes). The transformations will be checked sequentially, according to the order
specified in this table. Besides, the “default” keyword can be used at the last line to
specify any other kind of datatype that could be found.

"boolean": "http://www.w3.org/2001/XMLSchema#boolean";
"string": "http://www.w3.org/2001/XMLSchema#string";
"URL": "http://www.w3.org/2001/XMLSchema#anyURI";
default %1: %1;

3.3 ODESem: declarative specification of transformations at the semantic and
pragmatic layers
The previous sections have described how to specify declaratively the transformations
in the lexical and syntactic layers. The main objective of both transformation layers is
to abstract the low-level details of the source and target formats (their syntax specific
features, the restrictions and naming conventions of ontology component identifiers,
etc.), so as to allow specifying the semantic and pragmatic transformations – which
are the most important and complex – at a higher abstraction level.

These translation decisions will be specified with the same declarative language:
ODESem. An ODESem specification is divided into three parts: user defined code,
declarations and semantic and pragmatic rules.

User code. This part contains auxiliary Java code used in the rest of the specification.

Semantic and pragmatic transformation rule declarations and processing order.
This part of ODESem contains the declaration of the transformation rules to be
defined later, together with the order in which they have to be processed. Unlike in
ODELex and ODESyntax, the order of the definitions is relevant, since they define the
order in which these transformation rules will be processed.

The example below shows the rule declarations for the WebODE export service to
OWL DL. The rules 1 to 6 are in charge of the semantic and pragmatic
transformations of WebODE components: it adds ontology information (ontology
container), classes, object properties, disjoint and exhaustive decompositions, and
instances. Finally, three pragmatic transformations remove redundant domains in
OWL datatype properties, and redundant domains and ranges in object properties.
1: %AddOntologyContainer;
2: %AddClasses;
3: %AddObjectProperties;
4: %AddDisjointDecompositions;
5: %AddExhaustiveDecompositions;
6: %AddInstances;
7: %PostProcessing_RemoveDPRedundantDomains;
8: %PostProcessing_RemoveOPRedundantDomains;
9: %PostProcessing_RemoveOPRedundantRanges;

Semantic and pragmatic transformation rules. This part of the specification contains
at least the rules declared previously, plus any other auxiliary rules that can be called
from these ones. A transformation rule is defined with two parts:
- The LHS (Left Hand Side) of the rule contains the information needed to trigger

the rule, which can be either the source ontology component to be transformed or a
target component to be modified. In both cases, the LHS contains the ontology
component type, as defined with ODESyntax, and an identifier that will be used to
refer to the specific component in the RHS (Right Hand Side) of the rule. If no
information is needed to trigger the rule, the keyword NULL must be used.

- The RHS of the rule contains the sequence of actions to be performed in order to
obtain the corresponding ontology component(s) in the target format.

Three groups of actions can be performed: actions that create new ontology
components, and add or remove components or information; actions that specify the
control flow of the translation system; and actions that throw error messages, assign
values to variables or call other functions, either predefined or defined by the user.
The following primitives can be used:
- CREATE. It creates (and returns) an ontology component in the target ontology.

This action receives as input parameters the ontology component type to be
created, the number of the specific constructor to be used, and the rest of
parameters needed to create the ontology component.

- ADD. It adds one or several values to a specific property of an ontology
component of the target ontology. The ontology component, the property and the
value(s) are specified as input parameters.

- REMOVE. It removes a value from a specific property of an ontology component
of the target ontology. The ontology component, the property and the value to be
removed are specified as input parameters.

- REMOVEALL. It removes all the values from a specific property of an ontology
component of the target ontology. The ontology component and the property are
specified as input parameters.

The following control flow structures can be used:
- EXEC. It executes a rule with the set of parameters that match its antecedent.

- If condition {actions} else {actions}. It specifies the set of actions to be performed
if the condition specified is evaluated as true, and, optionally, the set of actions to
be performed if the condition specified is evaluated as false.

- ForEach variable IN set_variable {actions}. It specifies the set of actions to be
performed for each ontology component inside the multiple-valued variable.

Finally, variable assignments can be performed with var = value, and the predefined
functions GETCOMPONENT and GETALLCOMPONENTS can be used to obtain a
specific component or all the components of the source or the target formats (with the
parameters specified in the ODESyntax specification). The ERROR function can be
used in cases where the options that allow executing it are not allowed.
Below we provide the code of a transformation rule that transforms WebODE
concepts into OWL classes. For each WebODE concept, it creates an OWL class with
the concept name, it adds a natural language description, if it exists, and it states that it
is a subclass of the parent concepts. Finally, for each instance attribute of the concept,
the rule ADDInstanceAttributes is triggered.
%AddClasses
WebODE.Concept concept -->
 {C = CREATE(OWL.Class,1,concept.name);
 if (concept.description != null)
 ADD(C,description,concept.description);
 ADD(C,subClassOf,concept.parentConcepts);
 forEach ia IN concept.instanceAttributes
 EXEC(%AddInstanceAttributes,WebODE.InstanceAttribute,ia);
 }

Finally, we show a transformation rule that corresponds to the pragmatic post-
processing of datatype properties so as to remove the redundant domains. This rule
checks whether the datatype property domain is a union of classes. In that case, if any
of the classes in that union is already a subclass of any of the other concepts in the
union, then the class can be removed, since it is already considered in the domain.

%PostProcessing_RemoveDPRedundantDomains
OWL.DatatypeProperty P -->
 {forEach U in P.domain {
 if (U.isUnionOf)
 forEach D in U.classes
 forEach E in U.classes
 if (E.isSubclassOf(D)) REMOVE(U,class,E)
 }

4 Conclusions and future work
This paper describes ODEDialect, a set of languages – ODELex, ODESyntax, and
ODESem – that allow expressing declaratively ontology translation systems. With
ODEDialect, translation decisions can be made at four different layers (lexical, syntax,
semantic, and pragmatic), based on existing classifications of semantic interoperability
and on the theory of signs. We assume that this layered approach makes it easier to
construct and maintain ontology translation systems. The types of transformations at
each layer are different, and thus the languages for expressing transformations at each
layer are different as well, except for the semantic and pragmatic ones.

One of the design issues considered for the creation of these languages has been
that they should allow expressing declaratively most of the transformations to be made
at each layer. However, at the same time it should be flexible enough to allow
representing any type of transformation required. We have achieved these objectives
by proposing a large set of primitives in these languages and by allowing the inclusion
of user-defined code in the general purpose programming language Java.

The ODEDialect language has been successfully used to specify translation
decisions of the import and export services of the WebODE ontology engineering
workbench to and from OWL DL, RDF(S), and Protégé-2000, although these
ontology translation systems have not been generated automatically but manually from
their ODEDialect specifications. This experience have given us enough insight to be
able to build a compiler that automates these tasks in the near future.

5 Related work
Two systems allow creating ontology translation systems declaratively: Transmorpher
and OntoMorph. Transmorpher [9] is aimed at facilitating the definition and
processing of complex transformations in XML, using XSLT. Among other domains,
this tool has been used to transform ontologies between DL languages, using DLML2
and giving support to the ontology translation approach “family of ontology
languages” [8]. Its main limitation is that it only deals with problems in the lexical and
syntactic layers, and can only be applied to languages with XML syntax.

OntoMorph [5] allows specifying transformations between the source and the target
formats by means of pattern-based transformation rules. Transformations are
performed in two phases: syntactic rewriting and semantic rewriting. The last one
needs the ontology or part of it translated into PowerLoom, so that this KR system can
be used for certain kinds of reasoning (e.g., discovering whether a class is subclass of
another). Since this tool is based on PowerLoom (and consequently on Lisp), it cannot
handle easily all the problems that may appear in the lexical and syntax layers.

ODEDialect improves the support given by these systems by specifying
transformations at more levels, so that ontology translation systems are easier to
create, understand and maintain. Besides, ODEDialect can be applied to a wider range
of formats, not necessarily based on XML or Lisp. On the contrary, the previous
systems create ontology translation systems automatically from the specifications of
ontology translation decisions. This is not possible yet in ODEDialect.

Acknowledgements
This work is supported by the IST project Esperonto (IST-2001-34373).

References
1. Baader F (1996) A Formal Definition for the Expressive Power of Terminological

Knowledge Representation Languages. Journal of Logic and Computation 6(1):33–54

2 Description Logic Markup Language. http://co4.inrialpes.fr/xml/dlml/

2. Baader F, McGuinness D, Nardi D, Patel-Schneider P (2003) The Description Logic
Handbook: Theory, implementation and applications. Cambridge University Press,
Cambridge, United Kingdom

3. Berk E (1997) JLex: A lexical analyzer generator for Java, Technical Report, Department
of Computer Science, Princeton University. Latest version available at:
http://www.cs.princeton.edu/~appel/modern/java/JLex/current/manual.html

4. Borgida A (1996) On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence 82(1-2):353–367

5. Chalupsky H (2000) OntoMorph: a translation system for symbolic knowledge. In: Cohn
AG, Giunchiglia F, Selman B (eds) 7th International Conference on Knowledge
Representation and Reasoning (KR’00). Breckenridge, Colorado. Morgan Kaufmann
Publishers, San Francisco, California, pp 471–482

6. Corcho O, Gómez-Pérez A (2000) A Roadmap to Ontology Specification Languages. In:
Dieng R, Corby O (eds) 12th International Conference in Knowledge Engineering and
Knowledge Management (EKAW’00). Juan-Les-Pins, France. Springer-Verlag, Lecture
Notes in Artificial Intelligence (LNAI) 1937, Berlin, Germany, pp 80–96

7. Euzenat J (2001) Towards a principled approach to semantic interoperability. In: Gómez-
Pérez A, Grüninger M, Stuckenschmidt H, Uschold M (eds) IJCAI2001 Workshop on
Ontologies and Information Sharing, Seattle, Washington

8. Euzenat J, Stuckenschmidt H (2003) The `family of languages' approach to semantic
interoperability. In: Omelayenko B, Klein M (eds) Knowledge transformation for the
semantic web, IOS press, Ámsterdam, The Netherlands, pp49-63

9. Euzenat J, Tardif L (2001) XML transformation flow processing. Markup languages:
theory and practice 3(3):285–311

10. Gómez-Pérez A, Fernández-López M, Corcho O (2003) Ontological Engineering: with
examples from the areas of knowledge management, e-commerce and the Semantic Web,
Springer-Verlag, New York.

11. Gruber TR (1993) A translation approach to portable ontology specification. Knowledge
Acquisition 5(2):199–220

12. Hudson SE (1999) Cup’s User Manual, Technical Report, Graphic Visualization and
Usability Center, Georgia Institute of Technology. Latest version available at:
http://www.cs.princeton.edu/~appel/modern/java/CUP/manual.htm

13. Johnson SC (1975) Yacc: Yet Another Compiler Compiler, Computing Science Technical
Report No. 32, Bell Laboratories, Murray Hill, New Jersey

14. Klein M (2001) Combining and relating ontologies: an analysis of problems and solutions.
In: Gómez-Pérez A, Grüninger M, Stuckenschmidt H, Uschold M (eds) IJCAI2001
Workshop on Ontologies and Information Sharing, Seattle, Washington

15. Knublauch H (2003) Editing Semantic Web Content with Protégé: the OWL Plugin. 6th
Protégé workshop. Manchester, United Kingdom

16. Lesk ME (1975) Lex - A Lexical Analyzer Generator, Computing Science Technical
Report No. 39, Bell Laboratories, Murray Hill, New Jersey

17. Levine R, Mason T, Brown D (1992) Lex & Yacc, O'Reilly & Associates, second edition
Sebastopol, Canada

18. Morris CW (1938) Foundations of the theory of signs. In: Neurath O, Carnap R, Morris
CW (eds) International encyclopedia of unified science. Chicago University Press
[reprinted in C W Morris 1971 Writings on the theory of signs. Mouton, The Hague]

19. Swartout B, Ramesh P, Knight K, Russ T (1997) Toward Distributed Use of Large-Scale
Ontologies. In: Farquhar A, Gruninger M, Gómez-Pérez A, Uschold M, van der Vet P
(eds) AAAI’97 Spring Symposium on Ontological Engineering. Stanford University,
California, pp 138–148

