Efficiency of Ontology Mapping Approaches

Marc Ehrig and Steffen Staab

Institute AIFB, University of Karlsruhe

Abstract. (Semi-)automatic mapping — also called (semi-)automatic alignment
— of ontologies is a core task to achieve interoperability when two agents or
services use different ontologies. In the existing literature, the focsisbdar
been on improving the quality of mapping results. We here consider Q@iMkQ
Ontology Mapping, as a way to trade off between effectiveness (iaitgu
and efficiency of the mapping generation algorithms. We show that QGM ha
lower run-time complexity than existing prominent approaches. Thershoes

in experiements that this theoretical investigation translates into practice4 ben
fits. While QOM gives up some of the possibilities for producing high-quality
results in favor of efficiency, our experiments show that this loss ofitgua
marginal.

1 Introduction

Semantic mappirigbetween ontologies is a necessary precondition to edtaiblisr-
operation between agents or services using different ogitd. In recent years we have
seen a range of research work on methods proposing such myadgi-3]. The focus
of the previous work, however, has been laid exclusivelynoproving theeffectiveness
of the approach (i.e. the quality of proposed mappings sadatvaluated agains some
human judgement given either a posteriori or a priori).

When we tried to apply these methods to some of the real-woddasios we ad-
dress in other research contributions (e.g., [4]), we fotlnad existing mapping meth-
ods were not suitable for the ontology integration task atdhas they all neglected
efficiency To illustrate our requirements: We have been working itnneavhere light-
weight ontologies are applied such as the ACM Topic hiesavath its 10* concepts or
folder structures of individual computers, which corrasged to10* to 10° concepts.
Finally, we are working with Wordnet exploiting it$° concepts (cf. [5]). When map-
ping between such light-weight ontologies, the tradetwdt bne has to face is between
effectiveness and efficiency. For instance, consider tlmviedge management plat-
form built on a Semantic Web And Peer-to-peer basis in SWAPI{# not sufficient
to provide its user with the best possible mapping, it is @lscessary to answer his
queries within a few seconds — even if two peers use two diffeontologies and have
never encountered each other before.

In this paper we present an approach that considers bothutidéygof mapping
results as well as the run-time complexity. Our hypothesihat mapping algorithms
may be streamlined such that the loss of quality (comparedsiandard baseline) is

! Frequently also called alignment.

marginal, but the improvement of efficiency is so tremenditad it allows for the
ad-hoc mapping of large-size, light-weight ontologies.stibstantiate the hypothesis,
we outline a comparison of the worst-case run-time behgigwen in full detail in
[6]) and we report on a number of practical experiments. Th@@aches used for our
(unavoidably preliminary) comparison represent a widegeaof different classes of
algorithms for ontology mapping. From these approachesameatready infer a good
performance of our new efficient approach QOM, for which claxipy is of O(n)
(measuring witt being the number of the entities in the ontologies) agairsi®) for
the approach that comes closest.

The remainder of the paper starts with a clarification of tealegy (Section 2). To
compare the worst-case run-time behavior of different aggies, we then describe a
canonical process for ontology mapping that subsumes fferatit approaches com-
pared in this paper (Section 3). The process is a core bgilliock for later deriving
the run-time complexity of the different mapping algorithn®ection 4 presents our
toolbox to analyse these algorithms. In Section 5, diffeegaproaches for proposing
mappings are described and aligned to the canonical protheswvay to derive their
run-time complexity is outlined in Section 6. Experimentgults (Section 7) comple-
ment the comparison of run-time complexities.

2 Terminology

2.1 Ontology

As we currently focus on light-weight ontologies, we build RDF/S to represent
them. To facilitate the further description, we briefly suarine its major primitives
and introduce some shorthand notations. An RDF model isritbestby a set of state-
ments, each consisting of a subject, a predicate and antohjeontologyO is defined
by its set of Concept€ (instances of “rdf:Class”) with a corresponding subsuopti
hierarchyH ¢ (a binary relation corresponding to “rdfs:subClassOf"gl&ionsR (in-
stances of “rdf:Property”) exist between single concepé&dations are arranged alike in
a hierarchyH g, (“rdfs:subPropertyOf”). An entity € Z may be an instance of a class
c € C (“rdf:type”). An instancei € Z may have ong or many role fillers front for a
relationr from R. We also call this type of tripléi, r, j) a property instance.

2.2 Mapping

We here define our use of the term “mapping”. Given two onte®@, andO,, map-
ping one ontology onto another means that for each entityo@otC, relation R, or
instancel) in ontology O, we try to find a corresponding entity, which has the same
intended meaning, in ontologys.

Definition 1. We define an ontology mapping functiamp, based on the vocabulary,
£, of alltermse € £ and based on the set of possible ontologi2as a partial function:

—map: €& x O x O — &, with
2 http:/lwww.w3.0rg/RDFS/

— Ve € O1(3f € Oz : map(e,01,02) = f Vmap(e,01,02) = L)
indicating that an entity is mapped to exactly one othertgmti none.

A terme interpreted in an ontologg is either a concept, a relation or an instance,
i.e.ejp € CURUZ. We usually writee instead ofe|o when the ontology) is clear
from the context of the writing. We writewap, o, (e) for map(e, Oy, Oz). We derive
arelationmap, o, by definingmap, o, (e, f) < mapg, o,(e) = f. We leave out
01, Oz when they are evident from the context and writep(e) = f andmap(e, f),
respectively. Once a (partial) mappingap, between two ontologie®; and O, is
established, we also sagptitity e is mapped onto entity” iff map(e, f). A pair of
entities (e, f) that is not yet inmap and for which appropriate mapping criteria still
need to be tested is calleccandidate mapping

2.3 Example

The following example illustrates an example mapping. TwtnmgiesO; andO, de-
scribing the domain of car retailing are given (Figure 1)eAsonable mapping between
the two ontologies is given in Table 1 as well as by the dasined in the figure.

Qntology 2

Ontology 1

has Property—{ Wotor! 23456
has Motor— arg's Porsehe

-

- -
S rcra——-=—-—

Fig. 1. Example Ontologies and their Mappings

| OntologyO; | OntologyOs |
Object Thing

Car Automobile

Porsche KA-128Vlarc’s Porsche

Speed Characteristig

250 km/h fast

Table 1. Mapping Table for Relatiomap,,, o, (e, f)

3 Process

We briefly introduce a canonical process that subsumeseaathtipping approaches we
are aware of. Figure 2 illustrates its six main steps. It is started wito wntologies,
which are going to be mapped onto one another, as its input:

1. Feature engineeringransforms the initial representation of ontologies inforanat
digestible for the similarity calculations. For instanttee subsequent mapping process
may only work on a subset of RDFS primitives.

2. Selection of Next Search Step§.he derivation of ontology mappings takes place
in a search space of candidate mappings. This step may ¢hegseto compute the
similarity of a subset of candidate concepts paiis , c2)|c1 € O1,c2 € Oy} and to
ignore others.

3. Similarity Computation determines similarity values between pairs of entitigf
based on their definitions i®; andO,, respectively.

4. Similarity Aggregation. In general, there may be several similarity values for a
candidate pair of entities f from two ontologiesD,, O, e.g. one for the similarity of
their labels and one for the similarity of their relationsto other terms. These different
similarity values for one candidate pair must be aggregateda single aggregated
similarity value.

5. Interpretation uses the individual or aggregated similarity values towdamappings
between entities fron®; andO,. Some mechanisms here are, e.g., to use thresholds
for similarity mappings, to perform relaxation labellimgy, to combine structural and
similarity criteria.
6. lteration. Several algorithms perform an iteration over the wholecess in order
to bootstrap the amount of structural knowledge. Iterati@y stop when no new map-
pings are proposed. Note that in a subsequent iterationrseveral of steps 1 through
5 may be skipped, e.g. because all features might alreadyatilalzle in the appropri-
ate format or because some similarity computation mighy bel required in the first
round.

Eventually, the output returned is a mapping table reptesgprthe relation
mapo, o,-

Iteration (6) \
2 o 3 . 4 S Qutput
Search Step Similarity Similarity Inter -
Selection Computation Aggergation pretation

Fig. 2. Mapping Process

Input
@ P Feature
@ Engineering

3 The process is inspired by CRISP-DM, http://www.crisp-dm.org/, thes8Ruadustry Standard
Process for Data Mining.

4 A Toolbox of Data Structures and Methods

The principal idea of this section is to provide a toolbox afalstructures and methods
common to many approaches that determine mappings. Thés g a least common
denominator based on which concrete approaches instagttae process depicted in
Figure 2 can be compared more easily.

Considering a candidate mappifty f) requires the investigation of these entities
and their definitions ir0; andO,. The process in Section 3 distinguishes the investi-
gation in two steps. In the first step, described in the nelssaction, features for the
two entitiese, f are defined to describe them in a concise way. Then we appilasiy
measures to the features to actually compare the two eygitieg different dimensions.

4.1 Features

Features typically extracted are derived from intensi@salvell as from extensional
ontology definitions:

— ldentifiers i.e. strings with dedicated formats, such as unified resoidentifiers
(URIS) or RDF labels.

— RDF/S Primitivessuch as properties or subclass relations

— Derived Features which constrain or extend simple RDFS primitives
(most-specific-class-of-instance)

— Aggregated Features.e. more than one simple RDFS primitive, e.g. a sibling is
every instance-of the parent-concept of an instance

— OWL Primitives such as the sameAs relations

— Domain Specific Featurese. features which only apply to a certain domain with
a predefined shared ontology, e.g. in an application where dite represented as
instances and the relation hashcode-of-file is defined, wéhisfeature to compare
representations of concrete files

4.2 Similarity Measures

Definition 2. We define a similarity measure for comparison of ontologytieatas a
function as follows (cf. [7]):

—sim:EXEXOxO—]0,1]

Different similarity measuresimy (e, f, O1, O3) are indexed through a labelFurther,
we leave ouD1, O, when they are evident from the context and wsitevx (e, f). The
following similarity measures are needed to compare theiguely defined ontology
features.

— Object Equalityis based on existing logical assertions — especially dessrfrom
previous iterationssimp;(a, b) := {1|mappre,(a) = b, 0lotherwise}

— Explicit Equalitychecks whether a logical assertion already forces twoiestio
be equalsime,y(a,b) := {1|3statement(a, “sameAs”,b), 0|otherwise}

— String Similaritymeasures the similarity of two strings on a scale from 0 tof1 (c
[8]) based on Levenshtein’s edit distaneé [9].
simger(c,d) := max(0, %)

— SimSetFor many features we have to determine to what extent tveocgentities
are similar. To remedy the problem multidimensional seg[itO] measures how
far two entities are from all other entities and assumesititay have very similar

distances to all other entities, they must be very similar:

simset(E, F) = ngfe . %

with e = (sim(e, e1), sim(e, ez), ..., sim(e, f1) sim(e, f2),...), f analogously
— Aggregated Similaritysimgg, (e, f) = &=tz ”kk “dj(s”"k ef

with w; being the weight for each individual S|m|Iar|ty measured aj being

a function to transform the original similarity valuedj : [0,1] — [0,1]) e.g. @

sigmoid function.

4.3 Interpretation
To derive a mapping from the similarity values we interprgtikarity as follows:

— (sim(e, f) > t) — (map(e) = f), witht € [0... 1] being a defined threshold

5 Approaches to Determine Mappings

In the following we now use the toolbox, and extend it, toayiider to define a range of
different mapping generation approaches. In the courski®fkection we present our
novel Quick Ontology Mapping approach - QOM.

5.1 NOM - Naive Ontology Mapping

Our Naive Ontology Mapping (NOM) constitutes a straightifard baseline for later
comparisons. It is defined by the steps of the process modellass:

1. Feature EngineeringFirstly, NOM uses RDF triples as features.

2. Search Step SelectioAll entities of the first ontology are compared with all eietst
of the second ontology.

3. Similarity Computation The similarity computation between an entity@f and an
entity of O, is done by using a wide range of similarity functions. Eachilsirity func-
tion is based on a feature (Section 4.1) and the respectivitagsty measure (Section
4.2). For NOM they are shown in Table 2.

4. Similarity Aggregation NOM does not aggregate the individual similarity results
by a linear combination, but before aggregation it emplofisnation that emphasizes
high individual similarities and de-emphasizes low indival similarities e.g. a sigmoid
function. To produce an aggregated similarity (cf. Secid®) NOM appliesidj(z) =
wﬁ Weightswy, are assigned by maximizing the f-measure on training data.
5. Interpretation NOM interpretes similarity results by two means. First,ppkes a
threshold to discard spurious evidence of similarity. $elcdNOM enforces bijectivity

[No/| Feature | Measure |
1 label string similarity
2 URI string equality
3 sameAs relation |explicit equality
4 direct properties SimSet
... | 5 lallinherited propertigs ~ SimSet
Concept Similarity 6 | all super-concepts SimSet
7 all sub-concepts SimSet
8 concept siblings SimSet
9 direct instances SimSet
10 instances SimSet
1 label string similarity|
2 URI string equality
3 sameAs relation |explicit equality
Relation Similarity 4 | domain and range objeqt equality
5 | all super-properties SimSet
6 | all sub-properties SimSet
7 property siblings SimSet
8 | property instances SimSet
1 label string similarity|
2 URI string equality
Instance Similarityl 3 sameAs relation |explicit equality
4 | all parent-concepts SimSet
5 | property instances SimSet
Property-instance| 1 | domain and range | object equality
Similarity 2 parent property SimSet

Table 2.NOM: Features and Measures for Similarity

of the mapping by ignoring candidate pairs that would vieltitis constraint and by
favoring candidate pairs with highest aggregated sintylagores.

6. Iteration The first round uses only the basic comparison method basédabeis
(Function no. 1) to compute the similarity between entiti&g doing the computation
in several rounds one can access the already computed pdingsa more advanced
overall similarities. Therefore, in the second round arete¢hfter NOM relies on all the
similarity functions shown in table 2.

5.2 PROMPT

PROMPT is a semi-automatic tool described in [2]. It was ohéhe first tools for
ontology merging. For this paper we concentrate on the eetierformed to identify
possible mapping candidates aka. merging candidateshiBoPROMPT does not re-
quire all of the steps of the process model.

1. Feature EngineeringAs a plug-in to Protege, PROMPT uses the triples of RDFS as
features.

2. Search Step Selectiohike NOM, PROMPT relies on a complete comparison. Each
pair of entities from ontology one and two is checked foritiséhilarities.

3. Similarity Computation The system determines the similarities based on whether
entities have similar labels. Specifically, PROMPT chedaksidentical labels. This is

a further restriction compared to our similarity functiom. i, which also allows small
deviations in the spelling.

5. Interpretation PROMPT presents the pairs with a similarity above a definesbti

old threshold and therefore high probability of actuallyngeentities for merging to the
user. From these propositions, the user chooses the conmestwhich are, in the case
of PROMPT, merged.

6. Iteration Iteration is done in PROMPT to allow manual refinement. Afiteruser has
acknowledged the proposition, the system recalculatesdhesponding similarities
and comes up with new merging suggestions.

5.3 Anchor-PROMPT

Anchor-PROMPT represents an advanced version of PROMP@hwihcludes similar-

ity measures based on ontology structures.

3. Similarity Computation Anchor-PROMPT traverses paths between anchor points
(entity pairs already identified as equal). Along these paidw mapping candidates
are suggested. Specifically, paths are traversed alongrtinées and along relations.

5.4 GLUE

GLUE [3] uses machine learning techniques to achieve goqapings.

1. Feature Engineeringln a first step the Distribution Estimator uses a multi-smst
machine learning approach based on a sample mapping ®ettrisla strategy to iden-
tify equal instances and concepts.

2. Search Step SelectioAlso GLUE checks every entity pair.

3. Similarity Computation, 4. Similarity Aggregation The Similarity Estimator de-
termines the similarity of two instances based on the leares. From this also the
mapping of concepts is derived.

Concepts and relations are further compared using Retexhtibelling. The intuition
of Relaxation Labelling is that the label of a node (in ountglogy: mapping as-
signed to an entity) is typically influenced by the featuréthe node’s neighborhood
in the graph. The authors explicitly mention subsumptioagéiency, and “nearby”
nodes.A local optimal mapping for each entity is determineihg the similarity re-
sults of neighboring entity pairs from a previous round.

Normally one would have to check all possible labelling cgufations, which includes
the mappings of all other entities. The developers are wedra of the problem arising
in complexity, so they set up sensible partitions with theadeatures in the labelling
configurations.

5. Interpretation From the previous step we receive the probabilities of twiities
mapping onto each other. The maximum probable pair is therfiapping result.

6. Iteration Simply to gain meaningful results the relaxation labellsigp has to be
repeated several times.

5.5 QOM - Quick Ontology Mapping

The goal of this paper is to present an efficient mapping @lgnr We propose the
Quick Ontology Mapping (QOM) approach for this purpose. Puaceeding it to check
each process step of the effective but inefficient NOM apgrdar measures that could
raise efficiency.

1. Feature EngineeringLike NOM, the ontologies for the QOM approach have to be
given in RDFS triples.

2. Search Step Selectioth major problem in run-time complexity is due to the num-
ber of candidate mapping pairs which have to be comparedtt@lfcfind the best
mappings. We try to minimize this number.

In particular we use a dynamic programming approach [11this approach we
have two main data structures, i.e. problem descriptiomst We have the analysis of
entity pairs which ought to be compared. And second an ageuttiag the individual
analyses into a meaningful (and efficient) order in whicly e executed. Each analy-
sis then may or may not initiate a new problem descriptiorctviig then aligned in the
agenda. The newly created problem descriptions dependeamthlysis strategy that is
pursued. The approach we pursue corresponds to a beam seaittich we try to fo-
cus on the most promising comparisons. This is done at thettmsing completeness
of the analysis.

To focus on the most promising entity pairs we consider agipktructures that di-
rect the beam effectively and efficiently. QOM pursues tHessquent strategies strate-
gies to create new entity pair analyses: A naive approachdasdose a fixed number (or
percentage) alindom entity pairérom all possible pairs. As the duration of one loop in
the process is shorter, we receive results earlier thanutduoe the case for complete
comparisons. Secorldbelsplay a major role in the similarity process. The problem
description therefore only contains entities whose labedsclose to each other. Practi-
cally the entity labels are placed into a sorted list. Forgeatity in the list we schedule
the neighbors which have the same first three letter for thepasison analysis. Third
we compare only entities for which adjacent entities westgagd new mappings in a
previous iterationlapping Change PropagatignOur combinedapproach makes use
of different optimization strategies: we use the label aigenhe random agenda, and
the mapping change propagation agenda. During the itesatie focus shifts from la-
bels, which are good to identify the first mappings, to rangehich is the only way to
find mappings if no other relations lead to the mappings. A loemof other strategies
(e.g. based on the taxonomy, already identified mappings)rabinations of strategies
were pretested with very simple data sets but didn’t retuomising results.

3. Similarity Computation In order to implement an efficient and effective strategy
we trade-off between the efficiency of single methods anul dowerage. After having
identified the presumably most costly methods, we try to tailveir cost or eliminate
them. In particular, we remove rules which compare wholetses and replace them

through rules which access only a limited number of entftieshe comparison, as one
can see in Table 3. All other rules are maintained from the N&pidroach.

| |Change] Feature [Measuré

— 5a |properties of super-conceptSimSet
— 6a direct super-concepts | SimSet
— 7a direct sub-concepts | SimSet
— 109 instances of sub-conceptsSimSet

— ba | direct super-properties | SimSet

— 6a direct sub-properties | SimSet

[Instance Similarity— 4a [direct parent-concepts | SimSet|
Table 3. Changed Rules and Complexity

Concept Similarity]

Relation Similarity

4. Similarity Aggregation The aggregation of single methods is the same as in the
NOM approach.

5. Interpretation Also the interpretation steps remains. A threshold is deitezd and
bijectivity has to be ensured.

6. Iteration We also retain the multiple rounds. In all our tests we find #fier five to
ten rounds hardly any further changes occur to the mappbig.té/e therefore restrict
the number of runs to ten.

6 Comparing Run-time Complexity

We determine the worst case run-time complexity of the mapproposing algorithms
depending on the size of the two given ontologies. Therelywanted to base our
analysis on realistic ontologies and not on artifacts, wgwanted to avoid the con-
sideration of large ontologies withleaf concepts but a depth of the concept hierarchy
H¢ of n — 1. For this purpose, we constrain our ontologies to have pat@msettings
like the ones found in [12]. They have examined the struadfigelarge number of on-
tologies and found, e.g., that concept hierarchies tylyitelve a branching factdrof
around2. They also found that the concept hierarchies are neitheerarly shallow
nor extremely deep. Hence, we base all subsequent resistecbrconstraints.

Theorem 1. The worst case run-time behaviors of NOM, PROMPT, Anchd®MART,
GLUE and QOM are given by the following table:

2-l

NOM O(n? -log?(n))

PROMPT O(n?)

Anchor-PROMPT | O(n? - log?(n))

GLUE O(n?) Note: This result is based on optimistic as-

sumptions about the learner.

QOM O(n - log(n))

Proof Sketch 1 The following subjects represent a proof sketch for the dexites of
the specific approaches.

The number of entities involved in the feature and the coxitglef the respective
similarity measure eventually affect the run-time perfante of the algorithm.

The single elements of complexity are aligned to the cambpiocess of Section
3. First we determine the cost for feature engineerifeaf. The second step is the
selection of search stepsd)). The actual number of search stepsi.e. candidate mapping
pair comparisons is represented througbmp For each of these comparisons we need
to computek different similarity functionsim, and aggregate thermagg. From this
the interpretation of the similarity results with respectrhapping requires a run-time
complexity ofinter. Finally we have to iterate over the previous steps multiptees
(iter).

The worst case run-time complexity is defined for all apphesdy:

c = (feat + sel + comp - (3, simi + agg) + inter) - iter

Depending on the concrete values that show up in the indiidocess steps the dif-
ferent run-time complexities are derived in detail in [6].

In our considerations we do not regard the complexity dugdcage and access of
entities in a repository.

7 Empirical Evaluation and Results

In this section we show that the worst case considerationry oger to practical ex-
periments and that the quality of QOM is only negligibly lovtkan the one of other
approaches. The implementation itself was coded in Java tise KAON-framework
for ontology operations.

7.1 Test Scenario

Metrics We ensure comparability not only between our own test sebigisalso with
existing literature. Therefore we focus on using standafi@mation retrieval metrics to
measure our results. The metrics we measure over time anedefs follows (cf. [13]):

F#correct_found_-mapping

Precision p = el und oy
Recall r = #(1‘;76?t;foun -mappings

_ opr existing-mappings
F-Measuref; = =

Data Sets Three separate data sets were used for evaluation purpesesl world on-
tologies and especially their mappings are scarce, stagere asked to independently
create and map ontologies.

Russia 1In this first set we have two ontologies describing Russia fhdents created
the ontologies with the task to represent the content of hwlependent travel websites

4 http://kaon.semanticweb.org/

about Russia. These ontologies have approximately 406esngiach, including con-
cepts, relations, and instances. The total number of pessippings is 160, which the
students have assigned manually.

Russia 2The second set again covers Russia. This time the two fuotiteiogies are
more difficult to map. The differ substantially in both lab@ind structure. Each ontol-
ogy has about 300 entities with 215 possible mappings, wiiete already captured
during generation.

Tourism Finally, the participants of a seminar created two ontaegihich separately
describe the tourism domain of Mecklenburg-VorpommernthBamntologies have an
extent of about 500 entities. No instances were modellell this ontology though,
they only consist of concepts and relations. The 300 magpirege created manually.

Strategies We evaluated three mapping strategies:

— NOM - Naive Ontology Mapping: NOM is an approach making useaofiide
range of features and measures. Therefore it reaches igls & effectivity and
represents our quality baseline. In terms of complexity gimilar to the described
Anchor-PROMPT approach.

— LOM - Labels-only Ontology Mapping: LOM basically correspts to the
PROMPT approach. As this approach is rather simple and fastse it as a base-
line to evaluate the speed. Please note that the string ingtateasure in LOM
uses our string similarity based on Levenshtein, where&NHRT uses exact string
comparisons.

— QOM - Quick Ontology Mapping: QOM is our new approach focgson effi-
ciency. It uses an agenda of combined strategies as welasasether optimizing
measures as described.

These strategies were chosen because only for them we casldeesimilar starting
positions. Specifically, our three approaches are fullywruatic (whereas PROMPT
and Anchor-PROMPT are semi-automatic), and do not need taagning sets to begin
with (as GLUE needs). We will shortly make both software aathdsets available on
our website for the interested readers. Researchers acemelto enhance and re-use
them.

7.2 Results and Discussion

We present the results of the strategies on each of the thtaesets in Figure 3. The x-
axis shows the elapsed time on a logarithmic scale, theyemxresponds to the reached
f-measure on correct mappings. The dots represent the edarleach iteration step.

The f-measure value of the NOM strategy rises very slowlyrbathes high ab-
solute values. Unfortunately it requires a lot of calculattime. LOM reaches good
results in much shorter time. Please notice that for onteogith a small number of
similar labels (Figure 3, graph 2) this strategy is not §atiery. Finally the QOM Strat-
egy is plotted. It reaches high quality levels very fastdmis of absolute values it also
seems to reach the best quality results of all strategies.i§tan effect of having the
largest amount of rounds.

1
0.9 1 09 *NOM 2
QoM
08 - S00————— 08 LOM
07 07
hd 06
06 P
e =
: g . X4
H 805
g o5 g
£ 04 *NOM 304 *
QoM
03 LOM 03
02 02 <
0,1 01
0 0
1000 10000 100000 1000000 1000¢ 1000 10000 100000 1000000
time (ms) time (ms)
* 3
09
*
08 o
07 *
® 06
H
gos
£ .
<04 #NOM
03 Qom
' LOM
02
01
0

1000 10000 100000 1000000 10000000

time (ms)

Fig. 3. Mapping quality reached over time with Russia 1 [1], Russia 2 [2], andigiou[3] on-
tologies.

This paper focuses on comparing efficient algorithms wiikienanes. The absolute
f-measure values are often lower than one might expect, tithas to keep in mind
that some of the mappings may not even be determined by humans

We had the hypothesis that faster mapping results can baebtaith only a neg-
ligible loss of quality.

— The first fact is that optimizing for efficiency lowers the cak quality. If ontolo-
gies are not too large we should refrain from doing this.

— Labels are very important for mapping, if not the most impotfeature of all, and
alone return very satisfying results.

— The Quick Ontology Mapping approach shows equally goodtethan the slower
strategies, effectively not lowering quality.

— QOM is with a factor of 10 to 100 times faster, depending orsttenario.

Recapitulating we can say that making use of ontology spdeiéitures allows to build
mapping approach which is both very effective and efficient.

8 Related Work

Various authors have tried to find a general descriptionmflarity with several of them
being based on knowledge networks. [14] give a general aerof similarity. As the

basic ontology mapping problem has been around for some fiestrtools have already
been developed to address this. The tools PROMPT and AnB@ivRPT [2] use labels
and to a certain extent the structure of ontologies. Howelreir focus lies on ontology
merging i.e. how to create one ontology out of two. Potentiatches are presented
to the user for confirmation. In their tool ONION [15] the aoth take up the idea
of using rules and inferencing for mapping, but the infenegds based on manually
assigned mappings or simple heuristics (as e.g. label cosopa). [3] already use a
general approach of relaxation labelling in their tool GLUHbwever, most of their
work is based on the similarity of instances only. Besides#éty first steps are taken in
the direction of complex matches. These could also incluodeatenation of two fields
such as “first name” and “last name” to “name”[16]. [17] fuetipresent an approach for
semantic mappings based on SAT. Recapitulating, despateatge number of related
work, there are very few approaches raising the issue ofesifiy.

To get a broader view, especially for ideas on efficiency rations, we name
related areas. [18] express their insights from a datab@se ¥any ideas from the
database community, especially concerning efficiency [$8p, also have to be re-
garded for ontologies. However, even though these algosthave been optimized for
many years, they can only be partly used for our purposesegsatre mainly oriented
towards (domain-specific) instance comparisons ratherdgbhema matching. Another
community involved in similarity and mapping are objecieoted representations[20]
in which surprisingly little work has been done. Finallyeag communication greatly
benefits from mapping, and has therefore been involved indpie (e.g. [21]). Even
though efficiency has been a topic in related areas, onlylitdeycan directly be trans-
ferred to ontology mapping.

9 Conclusion

The mapping problem arises in many scenarios. We have shawetlzgodology for
identifying mappings between two ontologies based on ttedligent combination of
ontology features and similarity measures. Our focus wakow that the whole ontol-
ogy mapping process can be done efficiently. We presenteshapping process QOM
based on ontology features and similarity measures. Axditly we made use of on-
tology specific features to create an efficient approachomiétieal considerations and
practical evaluation proved our initial hypothesis. QOMdgial effective than standard
time consuming approaches, but was achieved much moreeafficilt was by an or-
der of magnitude faster in theory and 10 to 100 times fastempirical evaluations.
We expect that the good results have an impact on applicatieiging on ontology

mapping.

AcknowledgementfResearch reported in this paper has been partially finangéteb
EU in the IST projects SWAP (IST-2001-34103) and SEKT (19D2-506826).
References

1. Agrawal, R., Srikant, R.: On integrating catalogs. In: Proceediftisedenth international
conference on World Wide Web, ACM Press (2001) 603-612

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools fototmgy merging and

mapping. International Journal of Human-Computer StuBi8s2003) 9831024

. Doan, A., Domingos, P., Halevy, A.: Learning to match the scheshatata sources: A

multistrategy approach. VLDB Journad (2003) 279-301

. Ehrig, M., Haase, P., van Harmelen, F., Siebes, R., Staaltipgke®schmidt, H., Studer, R.,

Tempich, C.: The SWAP data and metadata model for semantics-basetbppeer systems.
In: Proceedings of MATES-2003. First German Conference on Mydtia Technologies.
LNAI, Erfurt, Germany, Springer (2003)

. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text docuohestering. In: Pro-

ceedings of the International Conference on Data Mining — ICDM-2BE Press (2003)

. Ehrig, M., Staab, S.: Quick ontology mapping with QOM. TechnicabrefJniversity of

Karlsruhe, Institute AIFB (2004) http://www.aifb.uni-karlsruhe.de/Wig8h/mapping/.

. Bisson, G.: Why and how to define a similarity measure for objectdoesgresentation

systems. Towards Very Large Knowledge Bases (1995) 236-246

. Maedche, A., Staab, S.: Measuring similarity between ontologieBréeeedings of the Eu-

ropean Conference on Knowledge Acquisition and Management (EK8yfinger (2002)

. Levenshtein, 1.V.: Binary codes capable of correcting deletios®riions, and reversals.

Cybernetics and Control Theory (1966)

Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall &99

Boddy, M.: Anytime problem solving using dynamic programming.FProceedings of the
Ninth National Conference on Artificial Intelligence, Anaheim, Califorraker Verlag
(1991) 738-743

Tempich, C., Volz, R.: Towards a benchmark for semantic watorgers - an analysis of the
DAML ontology library. In Sure, Y., ed.: Evaluation of Ontology-baskmbls (EON2003)
at Second International Semantic Web Conference (ISWC 2003)3)20

Do, H., Melnik, S., Rahm, E.: Comparison of schema matchinigietians. In: Proceedings
of the second int. workshop on Web Databases (German Informatiisto (2002)
Rodrguez, M.A., Egenhofer, M.J.: Determining semantic similaityong entity classes
from different ontologies. IEEE Transactions on Knowledge and Datirteering (2000)
Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented modekfticulation of ontology
interdependencies. Lecture Notes in Computer Sci&ii@&(2000) 86+

Do, H., Rahm, E.: COMA - a system for flexible combination of schematching ap-
proaches. In: Proceedings of the 28th VLDB Conference, HongK&hina (2002)
Bouquet, P., Magnini, B., Serafini, L., Zanobini, S.: A SAT-lhatgorithm for context
matching. In: IV International and Interdisciplinary Conference ondkling and Using
Context (CONTEXT’2003), Stanford University (CA, USA) (2003)

Roddick, J., Hornsby, K., de Vries, D.: A unifying semantic diseamodel for determining
the similarity of attribute values. In: Proceedings of the 26th AustralsianpDten Science
Conference (ACSC2003), Adelaide, Australia (2003)

McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of higimensional data sets
with application to reference matching. In: Knowledge Discovery and Dting. (2000)
169-178

Bergmann, R., Stahl, A.: Similarity measures for object-oriented mepresentations. Lec-
ture Notes in Computer Scien&d88(1998) 25+

Weinstein, P., Birmingham, W.P.. Comparing concepts in differeatiantologies. In: Pro-
ceedings of the Twelfth Workshop on Knowledge Acquistion, Modeling ldlattagement
(KAW’99), Banff, Alberta, Canada (1999)

