
Efficiency of Ontology Mapping Approaches

Marc Ehrig and Steffen Staab

Institute AIFB, University of Karlsruhe

Abstract. (Semi-)automatic mapping — also called (semi-)automatic alignment
— of ontologies is a core task to achieve interoperability when two agents or
services use different ontologies. In the existing literature, the focus has so far
been on improving the quality of mapping results. We here consider QOM, Quick
Ontology Mapping, as a way to trade off between effectiveness (i.e. quality)
and efficiency of the mapping generation algorithms. We show that QOM has
lower run-time complexity than existing prominent approaches. Then, weshow
in experiements that this theoretical investigation translates into practical bene-
fits. While QOM gives up some of the possibilities for producing high-quality
results in favor of efficiency, our experiments show that this loss of quality is
marginal.

1 Introduction

Semantic mapping1 between ontologies is a necessary precondition to establish inter-
operation between agents or services using different ontologies. In recent years we have
seen a range of research work on methods proposing such mappings [1–3]. The focus
of the previous work, however, has been laid exclusively on improving theeffectiveness
of the approach (i.e. the quality of proposed mappings such as evaluated agains some
human judgement given either a posteriori or a priori).

When we tried to apply these methods to some of the real-world scenarios we ad-
dress in other research contributions (e.g., [4]), we foundthat existing mapping meth-
ods were not suitable for the ontology integration task at hand, as they all neglected
efficiency. To illustrate our requirements: We have been working in realms where light-
weight ontologies are applied such as the ACM Topic hierarchy with its 104 concepts or
folder structures of individual computers, which corresponded to104 to 105 concepts.
Finally, we are working with Wordnet exploiting its106 concepts (cf. [5]). When map-
ping between such light-weight ontologies, the trade-off that one has to face is between
effectiveness and efficiency. For instance, consider the knowledge management plat-
form built on a Semantic Web And Peer-to-peer basis in SWAP [4]. It is not sufficient
to provide its user with the best possible mapping, it is alsonecessary to answer his
queries within a few seconds — even if two peers use two different ontologies and have
never encountered each other before.

In this paper we present an approach that considers both the quality of mapping
results as well as the run-time complexity. Our hypothesis is that mapping algorithms
may be streamlined such that the loss of quality (compared toa standard baseline) is

1 Frequently also called alignment.

marginal, but the improvement of efficiency is so tremendousthat it allows for the
ad-hoc mapping of large-size, light-weight ontologies. Tosubstantiate the hypothesis,
we outline a comparison of the worst-case run-time behavior(given in full detail in
[6]) and we report on a number of practical experiments. The approaches used for our
(unavoidably preliminary) comparison represent a wide range of different classes of
algorithms for ontology mapping. From these approaches we can already infer a good
performance of our new efficient approach QOM, for which complexity is of O(n)
(measuring withn being the number of the entities in the ontologies) againstO(n2) for
the approach that comes closest.

The remainder of the paper starts with a clarification of terminology (Section 2). To
compare the worst-case run-time behavior of different approaches, we then describe a
canonical process for ontology mapping that subsumes the different approaches com-
pared in this paper (Section 3). The process is a core building block for later deriving
the run-time complexity of the different mapping algorithms. Section 4 presents our
toolbox to analyse these algorithms. In Section 5, different approaches for proposing
mappings are described and aligned to the canonical process. The way to derive their
run-time complexity is outlined in Section 6. Experimentalresults (Section 7) comple-
ment the comparison of run-time complexities.

2 Terminology

2.1 Ontology

As we currently focus on light-weight ontologies, we build on RDF/S2 to represent
them. To facilitate the further description, we briefly summarize its major primitives
and introduce some shorthand notations. An RDF model is described by a set of state-
ments, each consisting of a subject, a predicate and an object. An ontologyO is defined
by its set of ConceptsC (instances of “rdf:Class”) with a corresponding subsumption
hierarchyHC (a binary relation corresponding to “rdfs:subClassOf”). RelationsR (in-
stances of “rdf:Property”) exist between single concepts.Relations are arranged alike in
a hierarchyHR (“rdfs:subPropertyOf”). An entityi ∈ I may be an instance of a class
c ∈ C (“rdf:type”). An instancei ∈ I may have onej or many role fillers fromI for a
relationr fromR. We also call this type of triple(i, r, j) a property instance.

2.2 Mapping

We here define our use of the term “mapping”. Given two ontologiesO1 andO2, map-
ping one ontology onto another means that for each entity (conceptC, relationR, or
instanceI) in ontologyO1, we try to find a corresponding entity, which has the same
intended meaning, in ontologyO2.

Definition 1. We define an ontology mapping function,map, based on the vocabulary,
E , of all termse ∈ E and based on the set of possible ontologies,O as a partial function:

– map : E × O ×O ⇀ E , with

2 http://www.w3.org/RDFS/

– ∀e ∈ O1(∃f ∈ O2 : map(e,O1, O2) = f ∨ map(e,O1, O2) = ⊥)
indicating that an entity is mapped to exactly one other entity or none.

A term e interpreted in an ontologyO is either a concept, a relation or an instance,
i.e. e|O ∈ C ∪ R ∪ I. We usually writee instead ofe|O when the ontologyO is clear
from the context of the writing. We writemapO1,O2

(e) for map(e,O1, O2). We derive
a relationmapO1,O2

by definingmapO1,O2
(e, f) ⇔ mapO1,O2

(e) = f . We leave out
O1, O2 when they are evident from the context and writemap(e) = f andmap(e, f),
respectively. Once a (partial) mapping,map, between two ontologiesO1 and O2 is
established, we also say “entity e is mapped onto entityf ” iff map(e, f). A pair of
entities(e, f) that is not yet inmap and for which appropriate mapping criteria still
need to be tested is called acandidate mapping.

2.3 Example

The following example illustrates an example mapping. Two ontologiesO1 andO2 de-
scribing the domain of car retailing are given (Figure 1). A reasonable mapping between
the two ontologies is given in Table 1 as well as by the dashed lines in the figure.

Ontology 1 Ontology 2Ontology 1 Ontology 2

Fig. 1.Example Ontologies and their Mappings

OntologyO1 OntologyO2

Object Thing
Car Automobile

Porsche KA-123Marc’s Porsche
Speed Characteristic

250 km/h fast
Table 1.Mapping Table for RelationmapO1,O2

(e, f)

3 Process

We briefly introduce a canonical process that subsumes all the mapping approaches we
are aware of.3 Figure 2 illustrates its six main steps. It is started with two ontologies,
which are going to be mapped onto one another, as its input:

1. Feature engineeringtransforms the initial representation of ontologies into aformat
digestible for the similarity calculations. For instance,the subsequent mapping process
may only work on a subset of RDFS primitives.

2. Selection of Next Search Steps.The derivation of ontology mappings takes place
in a search space of candidate mappings. This step may choose, e.g., to compute the
similarity of a subset of candidate concepts pairs{(c1, c2)|c1 ∈ O1, c2 ∈ O2} and to
ignore others.

3. Similarity Computation determines similarity values between pairs of entitiese, f

based on their definitions inO1 andO2, respectively.

4. Similarity Aggregation. In general, there may be several similarity values for a
candidate pair of entitiese, f from two ontologiesO1, O2, e.g. one for the similarity of
their labels and one for the similarity of their relationship to other terms. These different
similarity values for one candidate pair must be aggregatedinto a single aggregated
similarity value.

5. Interpretation uses the individual or aggregated similarity values to derive mappings
between entities fromO1 andO2. Some mechanisms here are, e.g., to use thresholds
for similarity mappings, to perform relaxation labelling,or to combine structural and
similarity criteria.

6. Iteration. Several algorithms perform an iteration over the whole process in order
to bootstrap the amount of structural knowledge. Iterationmay stop when no new map-
pings are proposed. Note that in a subsequent iteration one or several of steps 1 through
5 may be skipped, e.g. because all features might already be available in the appropri-
ate format or because some similarity computation might only be required in the first
round.

Eventually, the output returned is a mapping table representing the relation
mapO1,O2

.

Search Step

Selection

Similarity

Computation

Similarity

Aggergation

Iteration

2 3 4

6

Feature

Engineering

Inter-

pretation

1 5Input Output
Search Step

Selection

Similarity

Computation

Similarity

Aggergation

Iteration

2 3 4

6

Feature

Engineering

Inter-

pretation

1 5InputInput OutputOutput

Fig. 2.Mapping Process

3 The process is inspired by CRISP-DM, http://www.crisp-dm.org/, the CRoss Industry Standard
Process for Data Mining.

4 A Toolbox of Data Structures and Methods

The principal idea of this section is to provide a toolbox of data structures and methods
common to many approaches that determine mappings. This gives us a least common
denominator based on which concrete approaches instantiating the process depicted in
Figure 2 can be compared more easily.

Considering a candidate mapping(e, f) requires the investigation of these entities
and their definitions inO1 andO2. The process in Section 3 distinguishes the investi-
gation in two steps. In the first step, described in the next subsection, features for the
two entitiese, f are defined to describe them in a concise way. Then we apply similarity
measures to the features to actually compare the two entities along different dimensions.

4.1 Features

Features typically extracted are derived from intensionalas well as from extensional
ontology definitions:

– Identifiers: i.e. strings with dedicated formats, such as unified resource identifiers
(URIS) or RDF labels.

– RDF/S Primitives: such as properties or subclass relations
– Derived Features: which constrain or extend simple RDFS primitives

(most-specific-class-of-instance)
– Aggregated Features: i.e. more than one simple RDFS primitive, e.g. a sibling is

every instance-of the parent-concept of an instance
– OWL Primitives: such as the sameAs relations
– Domain Specific Features: i.e. features which only apply to a certain domain with

a predefined shared ontology, e.g. in an application where files are represented as
instances and the relation hashcode-of-file is defined, we use this feature to compare
representations of concrete files

4.2 Similarity Measures

Definition 2. We define a similarity measure for comparison of ontology entities as a
function as follows (cf. [7]):

– sim : E × E × O ×O ⇀ [0, 1]

Different similarity measuressimk(e, f,O1, O2) are indexed through a labelk.Further,
we leave outO1, O2 when they are evident from the context and writesimk(e, f). The
following similarity measures are needed to compare the previously defined ontology
features.

– Object Equalityis based on existing logical assertions — especially assertions from
previous iterations:simobj(a, b) := {1|mapprev(a) = b, 0|otherwise}

– Explicit Equalitychecks whether a logical assertion already forces two entities to
be equal:simexp(a, b) := {1|∃statement(a, “sameAs′′, b), 0|otherwise}

– String Similaritymeasures the similarity of two strings on a scale from 0 to 1 (cf.
[8]) based on Levenshtein’s edit distance,ed [9].
simstr(c, d) := max(0, min(|c|,|d|)−ed(c,d)

min(|c|,|d|))

– SimSet: For many features we have to determine to what extent two sets of entities
are similar. To remedy the problem multidimensional scaling [10] measures how
far two entities are from all other entities and assumes thatif they have very similar
distances to all other entities, they must be very similar:

simset(E,F) =
∑

e∈E e

|E| ·
∑

f∈F f

|F |

with e = (sim(e, e1), sim(e, e2), . . . , sim(e, f1), sim(e, f2), . . .), f analogously

– Aggregated Similarity:simagg(e, f) =
∑

k=1...n wk·adj(simk(e,f))
∑

k=1...n wk

with wk being the weight for each individual similarity measure, and adj being
a function to transform the original similarity value (adj : [0, 1] → [0, 1]) e.g. a
sigmoid function.

4.3 Interpretation

To derive a mapping from the similarity values we interpret similarity as follows:

– (sim(e, f) > t) → (map(e) = f), with t ∈ [0 . . . 1] being a defined threshold

5 Approaches to Determine Mappings

In the following we now use the toolbox, and extend it, too, inorder to define a range of
different mapping generation approaches. In the course of this section we present our
novel Quick Ontology Mapping approach - QOM.

5.1 NOM - Naive Ontology Mapping

Our Naive Ontology Mapping (NOM) constitutes a straight forward baseline for later
comparisons. It is defined by the steps of the process model asfollows:

1. Feature EngineeringFirstly, NOM uses RDF triples as features.

2. Search Step SelectionAll entities of the first ontology are compared with all entities
of the second ontology.

3. Similarity Computation The similarity computation between an entity ofO1 and an
entity ofO2 is done by using a wide range of similarity functions. Each similarity func-
tion is based on a feature (Section 4.1) and the respective similarity measure (Section
4.2). For NOM they are shown in Table 2.

4. Similarity Aggregation NOM does not aggregate the individual similarity results
by a linear combination, but before aggregation it employs afunction that emphasizes
high individual similarities and de-emphasizes low individual similarities e.g. a sigmoid
function. To produce an aggregated similarity (cf. Section4.2) NOM appliesadj(x) =

1
1+e−5(x−0.5) . Weightswk are assigned by maximizing the f-measure on training data.

5. Interpretation NOM interpretes similarity results by two means. First, it applies a
threshold to discard spurious evidence of similarity. Second, NOM enforces bijectivity

No. Feature Measure

Concept Similarity

1 label string similarity
2 URI string equality
3 sameAs relation explicit equality
4 direct properties SimSet
5 all inherited properties SimSet
6 all super-concepts SimSet
7 all sub-concepts SimSet
8 concept siblings SimSet
9 direct instances SimSet
10 instances SimSet

Relation Similarity

1 label string similarity
2 URI string equality
3 sameAs relation explicit equality
4 domain and range object equality
5 all super-properties SimSet
6 all sub-properties SimSet
7 property siblings SimSet
8 property instances SimSet

Instance Similarity

1 label string similarity
2 URI string equality
3 sameAs relation explicit equality
4 all parent-concepts SimSet
5 property instances SimSet

Property-instance
Similarity

1 domain and range object equality
2 parent property SimSet

Table 2.NOM: Features and Measures for Similarity

of the mapping by ignoring candidate pairs that would violate this constraint and by
favoring candidate pairs with highest aggregated similarity scores.

6. Iteration The first round uses only the basic comparison method based onlabels
(Function no. 1) to compute the similarity between entities. By doing the computation
in several rounds one can access the already computed pairs and use more advanced
overall similarities. Therefore, in the second round and thereafter NOM relies on all the
similarity functions shown in table 2.

5.2 PROMPT

PROMPT is a semi-automatic tool described in [2]. It was one of the first tools for
ontology merging. For this paper we concentrate on the actions performed to identify
possible mapping candidates aka. merging candidates. For this PROMPT does not re-
quire all of the steps of the process model.

1. Feature EngineeringAs a plug-in to Protege, PROMPT uses the triples of RDFS as
features.

2. Search Step SelectionLike NOM, PROMPT relies on a complete comparison. Each
pair of entities from ontology one and two is checked for their similarities.

3. Similarity Computation The system determines the similarities based on whether
entities have similar labels. Specifically, PROMPT checks for identical labels. This is
a further restriction compared to our similarity function no. 1, which also allows small
deviations in the spelling.

5. Interpretation PROMPT presents the pairs with a similarity above a defined thresh-
old threshold and therefore high probability of actually being entities for merging to the
user. From these propositions, the user chooses the correctones which are, in the case
of PROMPT, merged.

6. Iteration Iteration is done in PROMPT to allow manual refinement. Afterthe user has
acknowledged the proposition, the system recalculates thecorresponding similarities
and comes up with new merging suggestions.

5.3 Anchor-PROMPT

Anchor-PROMPT represents an advanced version of PROMPT which includes similar-
ity measures based on ontology structures.

3. Similarity Computation Anchor-PROMPT traverses paths between anchor points
(entity pairs already identified as equal). Along these paths new mapping candidates
are suggested. Specifically, paths are traversed along hierarchies and along relations.

5.4 GLUE

GLUE [3] uses machine learning techniques to achieve good mappings.

1. Feature EngineeringIn a first step the Distribution Estimator uses a multi-strategy
machine learning approach based on a sample mapping set. It learns a strategy to iden-
tify equal instances and concepts.

2. Search Step SelectionAlso GLUE checks every entity pair.

3. Similarity Computation, 4. Similarity Aggregation The Similarity Estimator de-
termines the similarity of two instances based on the learntrules. From this also the
mapping of concepts is derived.
Concepts and relations are further compared using Relaxation Labelling. The intuition
of Relaxation Labelling is that the label of a node (in our terminology: mapping as-
signed to an entity) is typically influenced by the features of the node’s neighborhood
in the graph. The authors explicitly mention subsumption, frequency, and “nearby”
nodes.A local optimal mapping for each entity is determinedusing the similarity re-
sults of neighboring entity pairs from a previous round.
Normally one would have to check all possible labelling configurations, which includes
the mappings of all other entities. The developers are well aware of the problem arising
in complexity, so they set up sensible partitions with the same features in the labelling
configurations.

5. Interpretation From the previous step we receive the probabilities of two entities
mapping onto each other. The maximum probable pair is the final mapping result.

6. Iteration Simply to gain meaningful results the relaxation labellingstep has to be
repeated several times.

5.5 QOM - Quick Ontology Mapping

The goal of this paper is to present an efficient mapping algorithm. We propose the
Quick Ontology Mapping (QOM) approach for this purpose. Ourproceeding it to check
each process step of the effective but inefficient NOM approach for measures that could
raise efficiency.

1. Feature EngineeringLike NOM, the ontologies for the QOM approach have to be
given in RDFS triples.

2. Search Step SelectionA major problem in run-time complexity is due to the num-
ber of candidate mapping pairs which have to be compared to actually find the best
mappings. We try to minimize this number.

In particular we use a dynamic programming approach [11]. Inthis approach we
have two main data structures, i.e. problem descriptions. First we have the analysis of
entity pairs which ought to be compared. And second an agendaputting the individual
analyses into a meaningful (and efficient) order in which they are executed. Each analy-
sis then may or may not initiate a new problem description which is then aligned in the
agenda. The newly created problem descriptions depend on the analysis strategy that is
pursued. The approach we pursue corresponds to a beam searchin which we try to fo-
cus on the most promising comparisons. This is done at the cost of losing completeness
of the analysis.

To focus on the most promising entity pairs we consider ontology structures that di-
rect the beam effectively and efficiently. QOM pursues the subsequent strategies strate-
gies to create new entity pair analyses: A naive approach is to choose a fixed number (or
percentage) ofrandom entity pairsfrom all possible pairs. As the duration of one loop in
the process is shorter, we receive results earlier than it would be the case for complete
comparisons. Secondlabelsplay a major role in the similarity process. The problem
description therefore only contains entities whose labelsare close to each other. Practi-
cally the entity labels are placed into a sorted list. For every entity in the list we schedule
the neighbors which have the same first three letter for the comparison analysis. Third
we compare only entities for which adjacent entities were assigned new mappings in a
previous iteration (Mapping Change Propagation). Ourcombinedapproach makes use
of different optimization strategies: we use the label agenda, the random agenda, and
the mapping change propagation agenda. During the iterations the focus shifts from la-
bels, which are good to identify the first mappings, to random, which is the only way to
find mappings if no other relations lead to the mappings. A number of other strategies
(e.g. based on the taxonomy, already identified mappings) orcombinations of strategies
were pretested with very simple data sets but didn’t return promising results.

3. Similarity Computation In order to implement an efficient and effective strategy
we trade-off between the efficiency of single methods and their coverage. After having
identified the presumably most costly methods, we try to lower their cost or eliminate
them. In particular, we remove rules which compare whole sub-trees and replace them

through rules which access only a limited number of entitiesfor the comparison, as one
can see in Table 3. All other rules are maintained from the NOMapproach.

Change Feature Measure

Concept Similarity

−→ 5a properties of super-conceptsSimSet
−→ 6a direct super-concepts SimSet
−→ 7a direct sub-concepts SimSet
−→ 10a instances of sub-conceptsSimSet

Relation Similarity
−→ 5a direct super-properties SimSet
−→ 6a direct sub-properties SimSet

Instance Similarity−→ 4a direct parent-concepts SimSet
Table 3.Changed Rules and Complexity

4. Similarity Aggregation The aggregation of single methods is the same as in the
NOM approach.

5. Interpretation Also the interpretation steps remains. A threshold is determined and
bijectivity has to be ensured.

6. Iteration We also retain the multiple rounds. In all our tests we find that after five to
ten rounds hardly any further changes occur to the mapping table. We therefore restrict
the number of runs to ten.

6 Comparing Run-time Complexity

We determine the worst case run-time complexity of the mapping proposing algorithms
depending on the size of the two given ontologies. Thereby, we wanted to base our
analysis on realistic ontologies and not on artifacts, e.g.we wanted to avoid the con-
sideration of large ontologies withn leaf concepts but a depth of the concept hierarchy
HC of n − 1. For this purpose, we constrain our ontologies to have parameter settings
like the ones found in [12]. They have examined the structureof a large number of on-
tologies and found, e.g., that concept hierarchies typically have a branching factorb of
around2. They also found that the concept hierarchies are neither extremely shallow
nor extremely deep. Hence, we base all subsequent results onsuch constraints.

Theorem 1. The worst case run-time behaviors of NOM, PROMPT, Anchor-PROMPT,
GLUE and QOM are given by the following table:

NOM O(n2 · log2(n))
PROMPT O(n2)
Anchor-PROMPT O(n2 · log2(n))
GLUE O(n2) Note: This result is based on optimistic as-

sumptions about the learner.
QOM O(n · log(n))

Proof Sketch 1 The following subjects represent a proof sketch for the complexities of
the specific approaches.

The number of entities involved in the feature and the complexity of the respective
similarity measure eventually affect the run-time performance of the algorithm.

The single elements of complexity are aligned to the canonical process of Section
3. First we determine the cost for feature engineering (feat). The second step is the
selection of search steps (sel). The actual number of search steps i.e. candidate mapping
pair comparisons is represented throughcomp. For each of these comparisons we need
to computek different similarity functionssimk and aggregate them (agg). From this
the interpretation of the similarity results with respect to mapping requires a run-time
complexity ofinter. Finally we have to iterate over the previous steps multipletimes
(iter).

The worst case run-time complexity is defined for all approaches by:

c = (feat + sel + comp · (
∑

k simk + agg) + inter) · iter

Depending on the concrete values that show up in the individual process steps the dif-
ferent run-time complexities are derived in detail in [6].

In our considerations we do not regard the complexity due to storage and access of
entities in a repository.

7 Empirical Evaluation and Results

In this section we show that the worst case considerations carry over to practical ex-
periments and that the quality of QOM is only negligibly lower than the one of other
approaches. The implementation itself was coded in Java using the KAON-framework4

for ontology operations.

7.1 Test Scenario

Metrics We ensure comparability not only between our own test series, but also with
existing literature. Therefore we focus on using standard information retrieval metrics to
measure our results. The metrics we measure over time are defined as follows (cf. [13]):

Precision p = #correct found mapping
#found mappings

Recall r = #correct found mappings
#existing mappings

F-Measuref1 = 2pr
p+r

Data SetsThree separate data sets were used for evaluation purposes.As real world on-
tologies and especially their mappings are scarce, students were asked to independently
create and map ontologies.

Russia 1In this first set we have two ontologies describing Russia. The students created
the ontologies with the task to represent the content of two independent travel websites

4 http://kaon.semanticweb.org/

about Russia. These ontologies have approximately 400 entities each, including con-
cepts, relations, and instances. The total number of possible mappings is 160, which the
students have assigned manually.

Russia 2The second set again covers Russia. This time the two furtherontologies are
more difficult to map. The differ substantially in both labels and structure. Each ontol-
ogy has about 300 entities with 215 possible mappings, whichwere already captured
during generation.

Tourism Finally, the participants of a seminar created two ontologies which separately
describe the tourism domain of Mecklenburg-Vorpommern. Both ontologies have an
extent of about 500 entities. No instances were modelled with this ontology though,
they only consist of concepts and relations. The 300 mappings were created manually.

Strategies We evaluated three mapping strategies:

– NOM - Naive Ontology Mapping: NOM is an approach making use ofa wide
range of features and measures. Therefore it reaches high levels of effectivity and
represents our quality baseline. In terms of complexity it is similar to the described
Anchor-PROMPT approach.

– LOM - Labels-only Ontology Mapping: LOM basically corresponds to the
PROMPT approach. As this approach is rather simple and fast we use it as a base-
line to evaluate the speed. Please note that the string matching measure in LOM
uses our string similarity based on Levenshtein, whereas PROMPT uses exact string
comparisons.

– QOM - Quick Ontology Mapping: QOM is our new approach focusing on effi-
ciency. It uses an agenda of combined strategies as well as several other optimizing
measures as described.

These strategies were chosen because only for them we could ensure similar starting
positions. Specifically, our three approaches are fully automatic (whereas PROMPT
and Anchor-PROMPT are semi-automatic), and do not need large training sets to begin
with (as GLUE needs). We will shortly make both software and data sets available on
our website for the interested readers. Researchers are welcome to enhance and re-use
them.

7.2 Results and Discussion

We present the results of the strategies on each of the three data sets in Figure 3. The x-
axis shows the elapsed time on a logarithmic scale, the y-axis corresponds to the reached
f-measure on correct mappings. The dots represent the result after each iteration step.

The f-measure value of the NOM strategy rises very slowly butreaches high ab-
solute values. Unfortunately it requires a lot of calculation time. LOM reaches good
results in much shorter time. Please notice that for ontologies with a small number of
similar labels (Figure 3, graph 2) this strategy is not satisfactory. Finally the QOM Strat-
egy is plotted. It reaches high quality levels very fast. In terms of absolute values it also
seems to reach the best quality results of all strategies. This is an effect of having the
largest amount of rounds.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1000 10000 100000 1000000 10000000

time (ms)

f-
m

e
a
s
u

re

NOM

QOM

LOM

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1000 10000 100000 1000000

time (ms)

f-
m

e
a
s
u

re

NOM

QOM

LOM

1 2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1000 10000 100000 1000000 10000000

time (ms)

f-
m

e
a
s
u

re

NOM

QOM

LOM

3

Fig. 3. Mapping quality reached over time with Russia 1 [1], Russia 2 [2], and Tourism [3] on-
tologies.

This paper focuses on comparing efficient algorithms with naive ones. The absolute
f-measure values are often lower than one might expect, but one has to keep in mind
that some of the mappings may not even be determined by humans.

We had the hypothesis that faster mapping results can be obtained with only a neg-
ligible loss of quality.

– The first fact is that optimizing for efficiency lowers the overall quality. If ontolo-
gies are not too large we should refrain from doing this.

– Labels are very important for mapping, if not the most important feature of all, and
alone return very satisfying results.

– The Quick Ontology Mapping approach shows equally good results than the slower
strategies, effectively not lowering quality.

– QOM is with a factor of 10 to 100 times faster, depending on thescenario.

Recapitulating we can say that making use of ontology specific features allows to build
mapping approach which is both very effective and efficient.

8 Related Work

Various authors have tried to find a general description of similarity with several of them
being based on knowledge networks. [14] give a general overview of similarity. As the

basic ontology mapping problem has been around for some years first tools have already
been developed to address this. The tools PROMPT and AnchorPROMPT [2] use labels
and to a certain extent the structure of ontologies. However, their focus lies on ontology
merging i.e. how to create one ontology out of two. Potentialmatches are presented
to the user for confirmation. In their tool ONION [15] the authors take up the idea
of using rules and inferencing for mapping, but the inferencing is based on manually
assigned mappings or simple heuristics (as e.g. label comparisons). [3] already use a
general approach of relaxation labelling in their tool GLUE. However, most of their
work is based on the similarity of instances only. Besides equality first steps are taken in
the direction of complex matches. These could also include concatenation of two fields
such as “first name” and “last name” to “name”[16]. [17] further present an approach for
semantic mappings based on SAT. Recapitulating, despite the large number of related
work, there are very few approaches raising the issue of efficiency.

To get a broader view, especially for ideas on efficiency considerations, we name
related areas. [18] express their insights from a database view. Many ideas from the
database community, especially concerning efficiency (see[19]), also have to be re-
garded for ontologies. However, even though these algorithms have been optimized for
many years, they can only be partly used for our purposes, as they are mainly oriented
towards (domain-specific) instance comparisons rather than schema matching. Another
community involved in similarity and mapping are object-oriented representations[20]
in which surprisingly little work has been done. Finally, agent communication greatly
benefits from mapping, and has therefore been involved in thetopic (e.g. [21]). Even
though efficiency has been a topic in related areas, only verylittle can directly be trans-
ferred to ontology mapping.

9 Conclusion

The mapping problem arises in many scenarios. We have shown amethodology for
identifying mappings between two ontologies based on the intelligent combination of
ontology features and similarity measures. Our focus was toshow that the whole ontol-
ogy mapping process can be done efficiently. We presented ourmapping process QOM
based on ontology features and similarity measures. Additionally we made use of on-
tology specific features to create an efficient approach. Theoretical considerations and
practical evaluation proved our initial hypothesis. QOM isequal effective than standard
time consuming approaches, but was achieved much more efficiently. It was by an or-
der of magnitude faster in theory and 10 to 100 times faster inempirical evaluations.
We expect that the good results have an impact on applications relying on ontology
mapping.

AcknowledgementsResearch reported in this paper has been partially financed by the
EU in the IST projects SWAP (IST-2001-34103) and SEKT (IST-2003-506826).

References

1. Agrawal, R., Srikant, R.: On integrating catalogs. In: Proceedings of the tenth international
conference on World Wide Web, ACM Press (2001) 603–612

2. Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies59 (2003) 983–1024

3. Doan, A., Domingos, P., Halevy, A.: Learning to match the schemasof data sources: A
multistrategy approach. VLDB Journal50 (2003) 279–301

4. Ehrig, M., Haase, P., van Harmelen, F., Siebes, R., Staab, S., Stuckenschmidt, H., Studer, R.,
Tempich, C.: The SWAP data and metadata model for semantics-based peer-to-peer systems.
In: Proceedings of MATES-2003. First German Conference on Multiagent Technologies.
LNAI, Erfurt, Germany, Springer (2003)

5. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text documentclustering. In: Pro-
ceedings of the International Conference on Data Mining — ICDM-2003,IEEE Press (2003)

6. Ehrig, M., Staab, S.: Quick ontology mapping with QOM. Technical report, University of
Karlsruhe, Institute AIFB (2004) http://www.aifb.uni-karlsruhe.de/WBS/meh/mapping/.

7. Bisson, G.: Why and how to define a similarity measure for object based representation
systems. Towards Very Large Knowledge Bases (1995) 236–246

8. Maedche, A., Staab, S.: Measuring similarity between ontologies. In:Proceedings of the Eu-
ropean Conference on Knowledge Acquisition and Management (EKAW), Springer (2002)

9. Levenshtein, I.V.: Binary codes capable of correcting deletions, insertions, and reversals.
Cybernetics and Control Theory (1966)

10. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall (1994)
11. Boddy, M.: Anytime problem solving using dynamic programming. In: Proceedings of the

Ninth National Conference on Artificial Intelligence, Anaheim, California,Shaker Verlag
(1991) 738–743

12. Tempich, C., Volz, R.: Towards a benchmark for semantic web reasoners - an analysis of the
DAML ontology library. In Sure, Y., ed.: Evaluation of Ontology-basedTools (EON2003)
at Second International Semantic Web Conference (ISWC 2003). (2003)

13. Do, H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Proceedings
of the second int. workshop on Web Databases (German Informatics Society). (2002)

14. Rodrguez, M.A., Egenhofer, M.J.: Determining semantic similarityamong entity classes
from different ontologies. IEEE Transactions on Knowledge and Data Engineering (2000)

15. Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation of ontology
interdependencies. Lecture Notes in Computer Science1777(2000) 86+

16. Do, H., Rahm, E.: COMA - a system for flexible combination of schema matching ap-
proaches. In: Proceedings of the 28th VLDB Conference, Hong Kong, China (2002)

17. Bouquet, P., Magnini, B., Serafini, L., Zanobini, S.: A SAT-based algorithm for context
matching. In: IV International and Interdisciplinary Conference on Modeling and Using
Context (CONTEXT’2003), Stanford University (CA, USA) (2003)

18. Roddick, J., Hornsby, K., de Vries, D.: A unifying semantic distance model for determining
the similarity of attribute values. In: Proceedings of the 26th Australsian Computer Science
Conference (ACSC2003), Adelaide, Australia (2003)

19. McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional data sets
with application to reference matching. In: Knowledge Discovery and DataMining. (2000)
169–178

20. Bergmann, R., Stahl, A.: Similarity measures for object-oriented case representations. Lec-
ture Notes in Computer Science1488(1998) 25+

21. Weinstein, P., Birmingham, W.P.: Comparing concepts in differentiated ontologies. In: Pro-
ceedings of the Twelfth Workshop on Knowledge Acquistion, Modeling andManagement
(KAW’99), Banff, Alberta, Canada (1999)

