Semantic Distributed Messaging Middleware

Ananth Krishna, Simon Miles, Luc Moreau, Michael Luck

Abstract

Messaging middleware provides asynchronous communication between
services in distributed environments. However, security, reliability and
performance issues compel such middleware to be distributed, and distri-
bution throws up its own problems such as identifying messaging channels
which could then be subscribed to. In particular, interested parties need to
identify channels defined in remote locations while not knowing details of
how they are defined. A common vocabulary using semantic descriptions
offers a solution to this problem. In this paper, we describe the design
and implementation of federated messaging middleware using semantic
description of channels.

1 Introduction

Messaging middleware is required to provide asynchronous communication be-
tween services and users in distributed environments. However, significant secu-
rity, privacy, reliability and performance issues in messaging middleware are yet
to be fully addressed. In relation to security and privacy, many organisations
want to have access to their messages and subscription information under their
control. In such cases, they would want to deploy messaging middleware that is
only accessible from inside their organisation, but still receiving messages from
external sources. Reliability is affected by having a single instance of messaging
middleware, since it is a single point of failure. Finally, the performance of mes-
saging middleware is adversely affected by increasing the number of subscribers
to a message channel, because subscribers have different preferences for receiv-
ing messages on the same channel and their subscriptions must be managed
concurrently. In this paper, we argue that distributing messaging middleware
provides a clean solution for the above problems.

Although existing messaging middleware such as Websphere MQ (formerly
IBM MQ Series) [3] and Sonic MQ [2] can work in a distributed context, our ap-
proach to distributing messaging middleware and addressing concerns involved
with it is very different. In this paper, we think of distribution in terms of the
messaging middleware being deployed at multiple locations, each deployment
qualifying as an instance of the messaging middleware. We envisage multiple
instances of the messaging middleware, each working independently as a peer.
Each instance of the messaging middleware is secure within its own context and
has messages and subscription information stored in a place under its control.



This addresses privacy and security issues, which have not been fully addressed
in Websphere MQ’s implementation, that provide access to messages and other
related information through sharing repositories and/or memory. Similarly,
Sonic MQ’s implementation is focussed more on high scalability and message
brokers deployed at multiple locations to balance load between them, which
requires sharing subscription information with other message brokers in the
distribution.

Messages in a messaging middleware are sent on message channels. Iden-
tifying such message channels is essential to allow interested parties to send
messages to, or to subscribe to, these channels. This is difficult because inter-
ested parties do not have knowledge about message channels defined in remote
locations, and would need to identify them to receive or send messages. When
messaging middleware is distributed, the problem is further compounded by
the fact that one instance of messaging middleware does not have knowledge of
the message channels of other instances. A common vocabulary is therefore re-
quired to identify message channels, and we propose using semantic descriptions
for this purpose in distributed environments.

In this paper, we first provide a brief background for our messaging middle-
ware and motivation for our work, which can be found in Section 2. In the next
section, we then proceed to describe the design and implementation of federated
messaging middleware using semantic descriptions of message channels, which
we call topics. Sections 4 and 5 specify the algorithms for creation of, subscrip-
tion to and publishing on semantically-described distributed topics. Section 6
discusses the application of our work to the automatic management of user in-
terests. In Section 7, we compare our approach to related work, identifying the
impact of our approach, and we consider future research avenues in Section 8.

2 Background: ™ Grid and its Application

2.1 ™Grid and the Williams-Beuren Syndrome

™Y Grid is an e-Science project that aims to help biologists and bioinformaticians
perform workflow-based in silico experiments and also help them in automat-
ing the management of such workflows through personalisation, notification of
change and publication of experiments. The focus of ™ Grid is on increasingly
data-intensive bioinformatics, and the provision of a distributed environment
that supports the in silico experimental process.

In ™ Grid, we have considered several bioinformatics use cases, each involv-
ing a project to analyse the properties of a particular disease. One such project
is to study the Williams-Beuren Syndrome [8]. Here, we have an organisation
with large databases with access restricted to users and applications inside the
organisation’s private network. The data in these databases is changed fre-
quently by applications and users working over this data. Services known as
filter services are deployed in the organisation to analyse the current content of
the data and determine whether there is a significant change related to a par-



ticular biological entity, e.g. a given gene. Now, there is a set of genes for which
scientists analysing the Williams-Beuren Syndrome are interested in having the
most up-to-date information at all times. These scientists include members of
other organisations, and in particular universities who do not have direct access
to this data.

2.2 ™YQGrid Notification Services and Topics

To ensure up-to-date information about the data requires that scientists are
notified of the results of the analyses performed by the filter services. We have
developed a messaging middleware called the ™Y Grid Notification Service (NS),
which is a part of the ™ Grid system, and essentially provides asynchronous
communication between publishers and subscribers. In this sense, a publisher
(or producer) is any application or component that publishes notifications, while
a subscriber (or consumer) is any application or component that consumes no-
tifications.

In the use case, the organisation holding the databases with restricted ac-
cess and the analysis services has a notification service deployed in its network
by which they can send out notifications about the results of the analysis. By
contrast, the scientists on the Williams-Beuren Syndrome project use their own
notification service, allowing them to receive notifications at the time most con-
venient to them, and store them securely within their organisation until then.
As messages are published in a notification service different to the ones the scien-
tists of Williams-Beuren Syndrome are subscribing to, this requires a mechanism
to identify and share topics on both notification services. The mechanism re-
quired to achieve this is the semantic distributed messaging middleware that we
have designed and shall discuss in detail in this paper.

A topic is a message channel in the messaging middleware and is used to
identify the kind of messages being sent or received. Typically, topics are cre-
ated by publishers with the intent that messages they publish under a given
topic are all related in the same way. For instance, ™ Grid has defined a topic
WorkFlowEvents, for sending all events generated when running in silico ex-
periments. When describing details of distributing the messaging middleware,
topics residing on each instance of the messaging middleware are called locally-
defined topics.

A subscriber interested in receiving messages related to a specific topic can
register an interest in that topic with the NS hosting that topic. This reg-
istration of interest represents a subscription, which has an expiration time
representing duration of interest. Publishers publish messages on a given topic;
these messages are retained by the NS and later propagated to the appropriate
subscribers who possess an unexpired subscription. The use of topics and sub-
scriptions in this way constitutes the publish-subscribe model, and facilitates an
asynchronous messaging model.



2.3 ™Grid Information Model and User Profiles

The ™ Grid project also has a conceptual data model for capturing the entire
e-Science process. This data model, referred to as the information model [6], de-
fines users and information held about users of ™ Grid. This latter information
is referred to as the user profiles of the scientists.

A user profile is the collection of computer-parsable information that the sys-
tem holds about a particular user. This information could be used by deployed
services to allow the user to access those services or enable the user to customise
services for themselves. Customisation of a service for a particular user by us-
ing information provided by them is known as personalisation, and the ™ Grid
project aims to allow scientists to personalise services for themselves. To enable
such personalisation to a high degree, ™ Grid provides structured user profiles
that have information, such as areas of interest, to particular users of ™Y Grid.

Thus, user profiles of scientists contain interest expressed by scientists in
certain areas like the Williams-Bueruen Syndrome. The interest expressed by a
scientist is expressed semantically so that some reasoning of can be performed
on this semantic description to automatically subscribe the scientist to receive
results of analysis of the relevant genes. Subscribing to users’ interests in this
manner requires automatic user interest management, which we have designed
and will discuss in detail in Section 6.

2.4 Ontologies

If the vocabulary for describing message channels is known in advance by all
clients that may wish to subscribe to, or publish on, a topic, then they can
do so without having to know about or contact the other clients. In an open
distributed system, this is fundamentally important, as knowledge of other par-
ticipants of that system at any given time cannot be defined at design or devel-
opment time. We propose using an ontology to provide a common vocabulary
of terms for semantically describing topics. From a notification service’s per-
spective, each term is a single, arbitrary URIL.

In judging whether two message channels are identified by the same semantic
description (i.e. they share semantic terms), we do not perform any reasoning
over those descriptions. The match is purely syntactic between semantic con-
cepts and does not take account of equivalence of terms, subsumption of one
concept in another, or any other ontology relation. This is a deliberate design
decision to ensure that the middleware remains flexible and independent of the
availabilty of any ontology language, and to ensure that performance is not un-
duly affected, as it would be if reasoning was performed every time a topic was
created or a message was published. The advantage of using an ontology for
identifying topics, as opposed to just a list of terms agreed by the community,
is because it allows for more flexible behaviour in the context in which the mes-
saging middleware is used. For example, users may browse for topic identifiers
using the relations in a community-agreed ontology. As another example, we do
use reasoning on the relations between ontology terms to automatically manage



user interests. This is discussed in detail in Section 6. Where two computational
processes with no prior knowledge of each other interact, there must be a mech-
anism to allow them to interpret each others’ messages. This problem applies
to messaging middleware but is far more general and outside the scope of this
work. In ™ Grid, we assume that clients of ™ Grid architecture components,
including the notification service, can interpret messages following the ™ Grid
information model expressed in XML, except where another form of interaction
is explicitly defined.

Our work on federated notification services and automatic user interest man-
agement is particularly applicable to the problems described above. We have
implemented federated notification services and have started applying the re-
sults to this application; testing is in progress at the time of writing this paper.

2.5 Motivation Summary
In summary, the following requirements motivate our work.

e Due to security requirements and the interaction of parties that have no
prior knowledge of each other, such as in virtual organisations, messaging
middleware is needed where each organisation can keep control over its
own subscription information and messages received.

e Current technologies, such as IBM MQ Series and Sonic MQ, are based on
sharing of either messages, subscription information or both and, there-
fore, are not suitable.

e We have particular use cases in bioinformatics, where database providers
send notifications to scientists, with both parties controlling their own
messaging context.

e Given that the communicating members of a community may not have
direct contact or prior knowledge of each other, we need a mechanism to
identify and connect topics on notification services.

3 Architecture and Design

As mentioned in Section 1, we envisage distributed messaging middleware as
having multiple instances of notification services deployed in separate locations
but still routing messages to each other. In our model, we have more than
one instance of the NS, with each instance working independently of others
in a federation. Distributing messaging middleware in our model effectively
means distributing the channels on which messages are sent. In this section,
we describe the architectural design of the federated Notification Services by
distributing the message channels.



Topic Registry

MS-A: TOPIC-A
MES-B: TOPIC-B
NS-C ; TOPIC-C

NS-D : TOPIC-D via NS-C

Notification Service B.

TOPIC-B
tns:semantictypet

S

Notification Service A.

TOPIC-A
trs:semantictype1

Notification Service C. Notification Service D.

TOPIC-C
tns-semantictypet

OFIC-D
tns:samantictyped

FIREWALL
A Iy
({ ) Message Channel between Notification Services
Amm e ! \ Wirtual M je Channel bet n Notification Services

Discovery and Registration of Notification Services
= by Virtual Topics in the Service Registry.

Figure 1: Federation of Notification Services



3.1 Federated Notification Services

In Figure 1, we show four distributed Notification Services (NS-A, NS-B, NS-C
and NS-D). Users of each service, who have access to create topics, define topics
(TOPIC-A, TOPIC-B, TOPIC-C and TOPIC-D) on notification services NS-A,
NS-B, NS-C and NS-D respectively. At the time of creation, each locally-defined
topic has semantic terms associated with it. It can be seen from figure 1 that
all four semantic terms are syntactically the same (i.e.tns:semantictypel). As
described in Section 2.4, there is no reasoning done on semantic terms associated
with these topics and a syntactic match between the semantic terms suggests
that all four topics described above share the same semantic terms. Hence,
these topics are grouped under a single wvirtual topic, a virtual topic being a
unique identifier created and managed by the Topic Registry. A Topic Registry
is an extended service registry that is discussed in detail in Section 3.2. Virtual
topics contain locally defined topics sharing the same semantic descriptions in
the federation, thereby facilitating lookup of such topics, and services that host
these topics.

Each service discovers other services publishing messages on the virtual topic
by looking up the information in a Topic Registry. Here, a virtual topic adver-
tisement (Virtual Topic 1234#) is identified by the semantic term, and contains
the contact details of each notification service, along with the locally defined
topic on which messages will be published. Using the information contained in
the virtual topic, each NS sets up message channels to other notification services
in the federation. Details of how these message channels are set up with other
notification services is dicussed in detail in Section 4.2. Some services might
choose not to allow message channels to be established to every other service in
the federation, e.g. NS-D in the figure cannot communicate with NS-A or NS-B
directly due to a firewall. In this case, messages to this NS are routed through
an intermediary, NS-C in the figure. NS-A and NS-B have minimal information
about NS-D, drawn from the Topic Registry, so that they know to send NS-D a
copy of all messages via NS-C, thus creating a virtual message channel. Routing
messages to notification services behind a firewall is discussed in more detail in
Section 5.2. Below, we provide more detail about the discovery mechanism and
the ontologies of semantic terms.

3.2 Topic Registry for Discovery of Virtual Topics

For one notification service to discover which other notification services are
publishing messages on a virtual topic, there must be a central broker to which
all the services advertise and discover these facts. In ™ Grid, we provide an
extended service registry [7], known as the Topic Registry, which also holds
centralised information on virtual topics for discovery by notification services.
A notification service first publishes its contact details in the registry, so that
others can know how and where to subscribe to it. Virtual topics are described in
the registry by virtual topic adverts. Each virtual topic advert is identified by an
associated piece of semantic metadata and contains a list of notification services



NS Client

}

/

Define topic on kocal WS

!

Attach semantic description to
locally defined topic.

giocal NS registered
with the Service
Regisiry?

YES
¥

Lookup Tople Registry for toplcs
sharing same semantics,

MO s

Register the local NS
with the Servica Registry

¥

Is Virtual topic
advertisemeant found ?

NO
h J

Publish contact details of the NS
and routing information if any,
with the Service Registry,

YES —

Associate locally defined topic to
the Virtual Topic using the Virual
Topic Advertisement

Regisiry with semantic description

Create a Virlual Topic in the Topic

provided by the locally defined topic.

-~

Figure 2: Algorithm for Discovery and Creation of Virtual Topics

that are publishing on that virtual topic, with the associated contact details of
the service, the locally-defined topic name that is used for the virtual topic on
the service, and possibly routing information. The advert is first discovered, or
created if it does not exist, by the notification service providing the identifying

semantic metadata to the registry.

4 Creation of Semantic Distributed Topics

In this section, we describe the creation of virtual topics that are identifiable
in the federation, the self-organisation of distributed topics, and subscription to

virtual topics.




4.1 Discovery and Creation of Virtual Topics

The algorithm for discovery and creation of virtual topics is presented as a flow
diagram in Figure 2. As shown in the figure, a client of a NS can locally define
a topic with some semantic information associated with it. That semantic in-
formation will comprise one or more terms in an ontology, as described in the
design and architecture section. The NS then uses the Topic Registry to discover
any notification services with topics that share the same semantic description.
Messages published on a locally-defined topic do not have to carry any seman-
tic information, as there is no semantic reasoning performed anywhere in the
messaging middleware. This is done to maintain flexibility and facilitate high
performance.

If the lookup from the registry finds no existing virtual topic, the NS creates
one in the registry. If a virtual topic is found and returned by the Topic Registry,
the new locally-defined topic is associated with the virtual topic.

4.2 Self Organisation of Distributed Topics

When a NS discovers a virtual topic and associates a locally-defined topic with
this virtual topic, it should be made known to other notification services partici-
pating in the federation. Services participating in the federation are notification
services that host locally-defined topics, which are associated with the virtual
topic. Notifying all pariticipating services in the federation about any changes
associated with a virtual topic facilitates automatic and dynamic reorganisation
of services in the federation. We have developed an algorithm for this purpose,
which is presented as a flow diagram in Figure 3.

As shown in Figure 3, when some semantic term is associated with a new
locally-defined topic in a NS, the NS discovers and associates the locally-defined
topic with a virtual topic in the Topic Registry. The NS hosting the new locally-
defined topic then performs a look-up on the Service Registry, which holds
information about other participating notification services. The information
returned is used by this NS to invoke a callback on all other participating services
to notify them of the presence of a new locally-defined topic. Similarly, when
a locally-defined topic is deleted from a NS, the NS performs a look-up on the
Topic Registry and subsequently the Service Registry to get contact details
of all participating services as described before and triggers these services to
initiate suitable action to account for the deleted topic. In this way, notification
services can either define a new locally-defined topic or delete an existing topic
dynamically and other participating services will organise their locally-defined
topics to work in this distributed context.

4.3 Subscription to Virtual Topics

Subscribers to a virtual topic, if they choose to, can be unaware of the fact that
it is a wvirtual topic they are subscribed to. This is because the mechanism of
subscribing to a virtual topic is similar to registering a subscription to a locally-



Attach semantic description to a
lacally-defined taple in the local NS

L A

Associate the new locally-defined topic
with a virtual topic in the Topic
Registry based on semantic terms
associated with the locally-defined
fopic,

Y

Lising the virtual topic advert returmed
from the Topic Registry, parform a
lock-up on the Service Registry 1o get
contact details of all participating
Services.

Natify all participating services of the
presence of a new locally-defined

fopic,

Activate asynchronous message
listeners on all paricipating services to
forward messages to all kocally-
defined topics which are part of the
virtual topic.

Figure 3: Algorithm for Self Organisation of Distributed Topics

10



Notification Service A Notification Service B

i TOPIC-A & :‘t TORIC:B
' P

i P 1

BROKER TO FORWARD BROKER TO FORWARD
MESSAGES ON TOPIC-A TO NS- MESSAGES ON TOPIC-B TO NS-
B ON TOFIC-B A ON TOPIC-A

Figure 4: A Simple Example of the Cyclical Dependency Problem

defined topic as described in Section 2.2. In order to subscribe to a virtual
topic, a client of a NS discovers a relevant topic by browsing the contents of the
NS, and registers a subscription to receive messages from it. If the topic under
consideration is associated with a virtual topic, the client receives messages
published by trusted remote publishers who are part of the federation.

5 Publishing Messages on Distributed Topics

Messages sent by publishers on topics associated with a virtual topic should be
broadcast around the federation to all other services participating in that virtual
topic. However, we also need to ensure the efficiency of message distribution
and to overcome security issues. We discuss two algorithms to do this below.

5.1 Cyclical Messaging Filter

Every notification service in a federation both publishes and subscribes to the
locally-defined topics of all the other services. This means that a published mes-
sage would, without prevention, return to the service that originally forwarded
the message. This problem, the cyclical dependency problem, is illustrated in
Figure 4, in which message M1 is published on TOPIC-A on NS-A. Because
TOPIC-A and TOPIC-B are part of the same virtual topic, a broker exists in
NS-A to forward all messages published on TOPIC-A to NS-B on TOPIC-B.
When NS-B receives the message, however, it has its own broker which forwards
the message back to NS-A on TOPIC-A. Therefore, message M1 would continue
to cycle between the notification services in the federation forever.

The mechanism that we propose to solve the cyclical dependency problem
is instantiated as a suitable filter in the brokers that forward messages to other
services in the federation. The filter ignores messages forwarded by other bro-
kers and so prevents a cycle occurring. So, for example, in Figure 4, message
M1 would be stopped by the broker on NS-B because it recognises that the mes-
sage has been forwarded by the broker on NS-A. Recognition that a message
has been forwarded from another broker requires additional information to be

11



attached to the message itself. This information takes the form of metadata in
the header of the message and is attached by each broker before it forwards the
message. The final concern is that the metadata is not accidentally or mali-
ciously attached by publishers to the original message, which would prevent the
mechanism from working correctly. We are still evaluating possible solutions
to this and in particular are considering use of digital signatures to solve this
problem.

5.2 Routing

Some notification services cannot be sent messages directly for many possible
reasons, particularly if the security infrastructure of the owning organisation
prevents incoming messages from untrusted sources. In such cases, messages
must be routed through a trusted intermediary. This routing information can
be registered, along with the locally-defined topic, under the virtual topic in
the registry. When the brokers at each notification service in a federation wish
to forward messages to others that cannot be directly contacted, they use the
routing information to send it instead to the intermediary. As the intermediary
is a notification service itself, it can forward messages to the hidden service.
For the intermediary to recognise that a particular message should be routed to
another service, this information must be attached to the message. Alternative
approaches like WS-Routing exist to support this, and we discuss these in detail
in Section 7 below.

6 User Interest Management

In some cases, users and the middleware that supports them must subscribe
to topics without prior knowledge of how those topics have been defined. For
instance, a scientist running a set of experiments needs to receive notifications
about the progress and results of each. A new topic is created for each ex-
periment by the middleware enacting that experiment. The scientist should
be subscribed to this topic on the basis of their interest in the experiment.
The semantic identification of topics, along with suitable user profiles, allows
automatic user interest management to take place in ™ Grid. In the follow-
ing sections, we describe the use of semantics in defining user profiles, and the
method by which subscription can be automated using this information.

6.1 Semantic User Profiles

To enable users to subscribe automatically to topics in the NS, there has to be
a mechanism of matching user profiles to topics. In the mechanism described in
the sections above, we discussed the use of semantic terms as suitable identifiers
of topics. If semantic descriptions are also contained with the user profiles, a
direct match can be made between them.

12



In ™ Grid, we provide structured user profiles with semantic information on
user interests, organisational context, and so on. In addition, there exists an
ontology of semantic terms (which is the same ontology as is used to identify
topics), from which descriptions of user interests can be made. We can use
the relations between terms in this ontology to develop a more sophisticated
matching algorithm. For example, a user with a broad interest in all experi-
ments related to a particular project can be automatically subscribed to topics
related to each specific experiment in that project. As opposed to just syntactic
matching in virtual topics, which we have described in Section 2.4, the matching
algorithm in this case would reason on the semantics to automatically identify
the topic concepts and subscribe to the user’s profile. Details of the structure
of the user profiles can be found in [6].

6.2 Automatic Subscription

Semantic information contained in user profiles can be used to discover topics
with the same semantics in the Topic Registry. Using the federation mechanism,
the user is subscribed to all the relevant virtual topics found. This can be done
with no intervention from the user, so they do not have to be aware of the
number or nature of the topics to which they are subscribed; it simply requires
that the system ensures they are kept informed of all relevant notifications.

7 Related Work

In the upcoming GOLD [1] project, virtual organisations for chemical analysis
are being addressed. As it is a high security domain, trust management between
parties participating across virtual organisations is essential. The trust man-
agement proposed in this project involves a trusted third party service enforcing
a given contract between the participants (a contract service), and a policy for
every organisation that controls interactions with this contract service. With
our federated notification services, an alternative solution could be envisaged.
Notification services, private to their virtual organisations, can be made to work
in a trusted federation, where the interactions are performed through a message
channel identified by a semantic description, i.e. by a virtual topic. The seman-
tic description defines the contract to which all participants must conform in
order to be members of the virtual organisation. Given the security between
the notification services and the registry that holds the virtual topic advertise-
ment, the message channel can be set up securely only between these partipants,
creating a trusted domain.

The WS-Notification [4] specification proposes standards for implementing
both point-to-point and publish-subscribe messaging middleware. In publish-
subscribe messaging, significant importance has been given to metadata at-
tached to message channels, to enable them to be identified in a distributed
context. There is also mention of federated message brokers to achieve improved
performance in messaging middleware. While the specifications are still under

13



development, we can see our work being compatible with WS-Notification.

WS-Routing [5] proposes specifying which intermediaries a message will be
routed through, from source to destination, in the message header itself. Several
alternative routes could be specified in a header to avoid performance problems
or failures in particular intermediaries. We are investigating using this protocol
to aid the routing of notifications through several services.

8 Conclusions

Due to the problems of controlling security, privacy, performance and reliability
in the sending of messages between distributed parties, messaging middleware
must be distributed. Although some existing messaging middleware can be
made to work in a distributed context, we have proposed a mechanism differ-
ent to the existing ones and have addressed concerns which we believe have
not been fully addressed in other messaging middleware. As we have multiple
deployments of our messaging middleware, each working independently of one
another in a peer-to-peer manner, we have ensured privacy of messages in the
federation. Message channels are distributed over different locations, which has
resulted in simpler and faster concurrency management for subscribers having
different preferences to receive messages, and increased performance for clients
of the messaging middleware. Finally, distributing message channels has enabled
us to eliminate a single point of failure in the system.

Distributing messaging middleware separates the clients defining the mes-
sage channels from those that wish to use them. Thus, a mechanism by which
all distributed parties can identify and discover message channels is required.
For this purpose, we proposed using semantic descriptions to identify message
channels.

We have developed an algorithm to achieve distribution of our messaging
middleware using semantic information registered in a central location, and
implemented this as part of our Web Service messaging middleware. As part
of this work, we have addressed the problems of cycles of messages between
notification services and the routing of messages to services behind firewalls,
and developed techniques to avoid them. Further, we have extended our work
on semantically-described message channels to the automatic management of
user interests. Our work has been applied in the ™ Grid project to the analysis
of Williams-Beuren Syndrome.

The next stage of our work will be to address security issues in the architec-
ture of distributed messaging middleware. In particular, interactions between
the messaging middleware and the registry holding information on distributed
message channels must be made secure in order for trust to exist between the
parties sending and receiving notifications. Furthermore, we are also evaluating
potential routing algorithms for messages between services in different private
domains. Finally, we are investigating techniques to support reasoning over
ontologies to define message channels without compromising substantially on
performance of the messaging middleware.

14



9 Acknowledgements

This research is funded in part by the ™ Grid e-Science pilot project grant
(EPSRC GR/R677643), the PASOA project (EPSRC GR/S67623/01). Hannah
Tipney, May Tassabehji, Andy Brass from St Marys Hospital, Manchester, UK
performed the research on Williams-Beuren Syndrome and were supported by
the Wellcome Trust.

References

[1] GOLD: Project Description. http://www.neresc.ac.uk/projects/GOLD/projectdescription.html,
2004.

[2] Sonic MQ. http://www.sonicsoftware.com/products/sonicmq/, 2004.
[3] WebSphere MQ. http://www.ibm.com /websphere, 2004.

[4] WS-Notification. http://www-106.ibm.com/developerworks/library /specification/ws-
notification/, 2004.

[5] WS-Routing. http://msdn.microsoft.com/library/default.asp?url=/library /en-
us/dnglobspec/html/ws-routing.asp, 2004.

[6] M. Alpdemir, J. Ferris, R. M. Greenwood, P. Li, N. P. Sharman, and
C. Wroe. The mygrid information model. In UK e-Science Programme
All Hands Meeting 2004 (AHM2004), September 2004. To appear.

[7] Simon Miles, Juri Papay, Vijay Dialani, Michael Luck, Keith Decker, Terry
Payne, and Luc Moreau. Personalised grid service discovery. IEE Proceed-
ings Software: Special Issue on Performance Engineering, 150(4):252-256,
August 2003.

[8] R. Stevens, H.J. Tipney, C. Wroe, T. Oinn, M. Senger, P. Lord, C.A. Goble,
A. Brass, and M. Tassabehji. Exploring Williams-Beuren Syndrome Us-
ing myGrid. In Proceedings of 12th International Conference on Intelligent
Systems in Molecular Biology, Glasgow, UK, July 2004.

15



