IncMap: Pay as you go Matching of
Relational Schemata to OWL Ontologies

Christoph Pinkel', Carsten Binnig?, Evgeny Kharlamov?®, and Peter Haase'

! fluid Operations AG, D-69190 Walldorf, Germany,
2 University of Mannheim, D-68131 Mannheim, Germany,
3 University of Oxford, Oxford, UK

Abstract. Ontology Based Data Access (OBDA) enables access to re-
lational data with a complex structure through ontologies as conceptual
domain models. A key component of an OBDA system are mappings be-
tween the schematic elements in the ontology and their correspondences
in the relational schema. Today, in existing OBDA systems these map-
pings typically need to be compiled by hand, which is a complex and la-
bor intensive task. In this paper we address the problem of creating such
mappings and present IncMap, a system that supports a semi-automatic
approach for matching relational schemata and ontologies. Our approach
is based on a novel matching technique that represents the schematic ele-
ments of an ontology and a relational schema in a unified way. IncMap is
designed to work in a query-driven, pay as you go fashion and leverages
partial, user-verified mappings to improve subsequent mapping sugges-
tions. This effectively reduces the overall effort compared to compiling
a mappings in one step. Moreover, IncMap can incorporate knowledge
from user queries to enhance suggestion quality.

1 Introduction

Effective understanding of complex data is a crucial task for enterprises to sup-
port decision making and retain competitiveness on the market. This task is not
trivial especially since the data volume and complexity keep growing fast in the
light of Big Data [I]. While there are many techniques and tools for scalable
data analytics today, there is little known on how to find the right data.

Today, enterprise information systems of large companies store petabytes of
data distributed across multiple — typically relational — databases, each with
hundreds or sometimes even thousands of tables (e.g., [2]). For example, an
installation of an SAP ERP system comes with tens of thousands of tables [3].
Due to the complexity of data a typical scenario for data analyses today involves
a domain expert who formulates an analytical request and an IT expert who has
to understand the request, find the data relevant to it, and then translate the
request into an executable query. In large enterprises this process may iterate
several times between the domain and IT experts, the complexity of data and
other factors, and may take up to several weeks.

Ontology-based data access (OBDA) [4] is an approach that has recently
emerged to provide semantic access to complex structured relational data. The

2 Christoph Pinkel et al.

core elements of an OBDA system are an ontology, describing the application
domain, and a set of declarative mappings, relating the ontological schema ele-
ments (e.g., names of classes and properties) with the relational schema elements
(e.g., names of table and attributes) of the underlying data sources. Using the
ontology and the mappings, domain experts can access the data directly by for-
mulating queries in terms defined in the ontology that reflects their vocabulary
and conceptualization. Using query rewriting techniques, the end-user queries
are then translated into queries over the underlying data sources.

Today, most approaches for ontology-based data access focus on the definition
of mapping languages and the efficient translation of high-level user queries over
an ontology into executable queries over relational data [4lJ5]. These approaches
assume that a declarative mapping of the schema elements of the ontology to
the relational elements is already given. So far, in real-world systems [6/7] that
follow the ontology-based data access principle, the mappings have to be created
manually. The costs for the manual creation of mappings constitute a significant
entry barrier for applying OBDA in practice.

To overcome this limitation we propose a novel semi-automatic schema match-
ing approach and a system called IncMap to support the creation of mappings
directly from relational schemata to ontologies.

We focus on finding one-to-one (direct) correspondences of ontological and
relational schema elements, while we also work on extensions for finding more
complex correspondences. In order to compute mapping suggestions IncMap uses
a relational schema, an OWL ontology, a set of user conjunctive queries over the
ontology, and user feedback as basic input.

The matching approach of IncMap is inspired by the Similarity Flooding
algorithm of Melnik et al. [§] that works well for schemata that follow the same
modeling principles (e.g., same level of granularity). However, applying the Sim-
ilarity Flooding algorithm naively for matching schema elements of a relational
schema to an OWL ontology results in rather poor quality of the suggested cor-
respondences as we show in our experiments. A major reason is the impedance
mismatch between ontologies and relational schemata: While ontologies typi-
cally model high-level semantic information, relational schemata describe the
syntactical structure on a very low level of granularity.

The contributions of the paper are the following:

— In Section[3] we propose a novel graph structure called IncGraph to represent
schema elements from both ontologies and relational schemata in a unified
way. Therefore, we devise algorithms to convert an ontology as well as a
relational schema into their unified IncGraph representation. We also briefly
discuss techniques to further improve IncGraph.

— In Section [d] we present our matching algorithm that we use for matching
IncGraphs. Its most prominent feature is that IncMap can produce the map-
ping incrementally, query by query. While the original Similarity Flooding
algorithm generates correspondences for all schema elements, IncMap sup-
ports a pay as you go matching strategy. For each query we produce only
required mappings. IncMap leverages the structure of mappings from previ-

IncMap: Pay as you go schema matching 3

ous queries to improve suggestion quality. This effectively reduces the total
effort for the user to verify mapping suggestions.

— Section [5| presents an experimental evaluation using different (real-world)
relational schemata and ontologies. We see that even in the basic version of
IncMap, the effort for creating a mapping is up to 20% less than using the
Similarity Flooding algorithm in a naive way. In addition, the incremental
version of IncMap can reduce the total effort by another 50% — 70%.

2 Background

In this section we briefly introduce ontologies [9], relational schemata, and the
Similarity Flooding algorithm [g].

Ontologies. An ontology O specifies a conceptualization of a domain in terms
of classes and properties and consists of a set of axioms. Without explanation,
ontologies in this paper are OWL ontologies and we will use the following OWL
constructs: object and data properties P, and domains Domain(P) and ranges
Range(P) of properties. We denote with Class(O) and Property(O) the sets of
class and property names, respectively, occurring in the ontology O. For a given
ontology O, with C' € Domain(P) we denote the fact that one can derive from
O that the class name C is a domain of the property P. Also, C’ € Range(P)
denotes the fact that C’ is a range of P and it is derivable from O.

Relational Schemata. A relational schema R defines a set of relations (tables)
T, where each table defines a set of columns ¢. We also assume that a schema
contains foreign keys k that define references between tables.

Sitmilarity Flooding Algorithm. The Similarity Flooding algorithm matches a
given schema S with a schema &’. In the first step, directed labeled graphs
G(S) and G(S’) are constructed from S and S’, where the nodes represent the
schema elements, and the edges with labels define relationships between the
schema elements. There is no exact procedure to construct the graphs from
the schemata given in [§]. Thus, the Similarity Flooding algorithm is open for
any graph construction process. The second step in the algorithm is to merge
G(S) and G(S’) into one graph, a so-called pairwise connectivity graph PCG.
Intuitively, each node of the PCG is a pair of nodes, and represents a potential
match between schema elements of S and §’. Then, the PCG is enriched with
inverse edges and edge weights (propagation coefficients), where the value of the
weights is based on the number of outgoing edges with the same label from a
given node. This graph is called the induced propagation graph IPG. The final
step of the algorithm is a fix-point computation to propagate initial similarities
by using the structural dependencies represented by the propagation coefficients.
The fix-point computation termination is based either on threshold values or the
number of iterations. The result is a ranked list of suggested mappings. We refer
to [8] for further details.

4 Christoph Pinkel et al.

Algorithm 1: IncGraph for constructing graphs from ontologies

INPUT : OWL ontology O
OUTPUT: Graph G = (V,Lbly, £, Lblg)

1 Let G = (V,Lbly, E,Lbleg), V = {nT}, Lbly = {(nt,T)}, £ =0, Lblg = 0;
2 foreach C € Class(O) do V := V U {nc} and Lblg (n¢) := C
3 foreach P € Property(O) do
4 V:=VU{np} and Lbly(np) := P; Let C € Domain(P);
5 if P is an object property then
6 E:=E8U{(nc,np)} and Lbly ((nc,np)) := ‘ref’;
7 Let C’ € Range(P);
8 E:=EU{(np,ngs)} and Lbly((np,ner)) := ‘ref?’;
9 else if P is a data property then
10 L E:=E8U{(nc,np)} and Lble((nc,np)) := ‘value’

11 return G.

Algorithm 2: IncGraph for constructing graphs from relational schemata

INPUT : Relational Schema R

OUTPUT: Graph G = (V,Lbly, &,Lblg)

Let V =0,1Lbly =0, £ =0, Lbleg = 0;

foreach table T in R do

V:=VU{nr} and Lbly(ny) :=T;

foreach column c in R do
V:=VU{nc} and Lbly(n.) := ¢
E:=EU{(nr,nc)} and Lbleg ((n7, ne)) := ‘value’
if ¢ has a foreign key k to some table T’ then

L V:= VU {n} and Lbly(ng) := k;

EU{(nr,nk)} and Lblg((nr,ng)) := ‘ref’
EU{(ng,nps)} and Lble ((ng, npr)) := ‘ref’

O © ® N O Wbk WN K

E:
E:

=

11 return G.

3 The IncGraph Model

In this section, we describe the IncGraph model used by IncMap to represent
schema elements of an OWL ontology O and a relational schema R in a unified
way.
An IncGraph model is defined as directed labeled graph G = (V,Lbly, &, Lblg).

It can be used as input by the original Similarity Flooding algorithm (Section
or IncMap. V represents a set of vertices, £ a set of directed edges, Lbly a set
of labels for vertices (i.e., one label for each vertex) and Lblg a set of labels for
edges (i.e., one label for each edge). A label I, € Lbly represents a name of a
schema element whereas a label [¢ € Lblg is either “ref” representing a so called
ref-edge or “value” representing a so called val-edge.

3.1 IncGraph Construction

The goal of the procedures for the basic construction is to incorporate explicit
schema information from O and R into the IncGraph model. Incorporating im-
plicit schema information is discussed in the next section.

Algorithm [I] creates an IncGraph model G for a given ontology O. The algo-
rithm constructs a vertex ne for each class name C' € Class(Q) and a vertex

IncMap: Pay as you go schema matching 5

Ontology O Relational Schema R

Director Movie

director title
PK L director

FK

IncGraph(O) Incgraph(R)

Fig. 1. IncGraph Construction Example

np for each property name P € Property(O) using the names of these ontology
elements as label in Lbly,. Directed edges in the IncGraph model are created
for each domain and range definition in O. The labels Lbl¢ for edges are either
“ref” in case of an object property or “value” in case of a data property. For
a domain definition in O the direction of the edge in G is from the node n¢
representing the domain of P to the node np representing the property P. For a
range definition the direction of the edge in G is from the node np representing
object property to the node n¢s representing the range of P (i.e., another class).
If an object property in O has no range (respectively, domain) definition, then a
directed labeled edge to a node nT is added to explicitly model the most general
range (respectively, domain), i.e., a top-level concept T like Thing.

Algorithm [2| creates a IncGraph model G for a given relational schema R:
The algorithm constructs a vertex nr for each table and a vertex n. for each
column using the names of these schema elements as labels Lbly,. Directed edges
with the label “value” are created from a node ny representing a table to a node
n. representing a columns of that table. For columns with a foreign key k an
additional node ny is created. Moreover, two directed edges with the label “ref”
are added, which represent a path from node nr to a node np/ representing the
referenced table via node ny.

Figure [1| shows the result of applying these two algorithms to the ontology
O and the relational schema R in this figure. Both O and R describe the same
entities Directors and Mowies using different schema elements. The resulting
IncGraph models of O and R represent the schema structure in a unified way.

3.2 IncGraph Annotations

IncGraph is designed to represent both relational schemata and ontologies in
a structurally similar fashion because matching approaches such as ours work
best when the graph representations on both the source and target side are as
similar as possible. However, even in IncGraph structural differences remain due
to the impedance mismatch and different design patterns used in ontologies and
relational schemata, respectively.

We consider this issue by supporting annotations in IncGraph. Annotations
basically are additional ref-edges in either the source or target model that can
be designed to bridge structural gaps for different design patterns or levels of

6 Christoph Pinkel et al.

granularity. For instance, shortcut edges in the relational IncGraph model could
represent a multi-hop join over a chain of relationship relations. Annotations can
be constructed by plug-ins during IncGraph construction.

We plan to evaluate the opportunities of different kinds of annotations in
future work.

4 The IncMap System

In this section, we present our matching approach and system called IncMap. In-
cMap takes a source and target IncGraph as input, i.e., the IncGraphs produced
for a relational schema and for an ontology as described in Section [3}

4.1 Overview of IncMap

In its basic version, IncMap applies the original Similarity Flooding algorithm
(with minor adaptions) and thus creates initial mapping suggestions for the
IncGraph of an ontology O and a relational schema R. In its extended version,
IncMap activates inactive ref-edges before executing the Similarity Flooding
algorithm to achieve better mapping suggestions.

Another extension is the incremental version of IncMap. In this version the
initial mapping suggestions are re-ranked by IncMap in a semi-automatic ap-
proach by including user feedback. Re-ranking works iteratively in a query-driven
fashion thus increasing the quality of the suggested mappings. In each iteration,
IncMap applies a version of the Similarity Flooding algorithm (as described be-
fore). However, in addition between each iteration user feedback is incorporated.

The idea of user feedback is that the user confirms those mapping suggestions
of the previous iteration, which are required to answer a given user query over
ontology O. Confirmed suggestions are used as input for the next iteration to
produce better suggestions for follow-up queries. This is in contrast to many
other existing approaches (including the original Similarity Flooding algorithm)
that return a mapping for the complete source and target schema only once.

IncMayp is designed as a framework and provides different knobs to control
which extensions to use and within each extension which concrete variants to
choose (e.g., to select a concrete strategy for activating inactive edges). The goal
of this section is to present IncMap with all its variants and to show their benefits
for different real-world data sets in our experimental evaluation in Section [} A
major avenue of future work is to apply optimization algorithms to find the best
configurations of IncMap for a given ontology O and schema R automatically
by searching the configuration space based on the knobs presented before.

4.2 Basic Matching in IncMap

As already mentioned, in the basic version of IncMap, we simply apply the
Similarity Flooding algorithm for the two IncGraphs produced for a relational
schema R and for an ontology O similar to the process as described in Section

As a first step, IncMap generates the PCG (i.e., a combined graph which pairs
similar nodes of both input IncGraphs) using an initial lexical matching, which

IncMap: Pay as you go schema matching 7

supports interchangeable matchers as one knob for configuration. One difference
is the handling of inactive ref-edges in the input IncGraphs. For inactive ref-
edges, which are not handled in the original Similarity Flooding, we apply the fol-
lowing rule when building the PCG: if an edge in the PCG refers to at least one inac-
tive ref-edge in one of the IncGraph models, it also becomes inactive in the PCG.

In addition, other than in the original Similarity Flooding approach, where
propagation coefficients for the IPG are ultimately determined during graph con-
struction, our propagation coefficients can be calculated several times when the
graph changes with the activation and deactivation of edges. Also, propagation
coefficients in IncMap are modular and can be changed. In particular, a new
weighting formula supported by IncMap considers the similarity scores on both
ends of an edge in the IPG. The intuition behind this is that a higher score in-
dicates better chances of the match being correct. Thus, an edge between two
matches with relatively high scores is more relevant for the structure than an
edge between one isolated well-scored match and another with a poor score. For
calculating the weight w(e) of a directed edge e = (n1,ng) from n; to ng in the

IPG where [is the label of the edge, we currently use two alternatives:
— Original Weight as in [§]: w(e) = 1/out; where out; is the number of edges

connected to node nq with the same label [
— Normalized Similarity Product: w(e) = (score(ny) x score(ns))/out;.

4.3 Extended IncMap: Iterative User Feedback

Query-driven incremental mappings allow to leverage necessary user feedback
after each iteration to improve the quality of mapping suggestions in subsequent
iterations. One of the reasons why we have chosen Similarity Flooding as a basis
for IncMap is the fact that user feedback can be integrated by adopting the
initial match scores in an IPG before the fix-point computation starts.

Though the possibility of an incremental approach has been mentioned al-
ready in the Similarity Flooding paper [8], it so far has not been implemented
and evaluated. Also, while it is simple to see where user feedback could be in-
corporated in the IPG, it is far less trivial to decide which feedback should be
employed and how exactly it should be integrated in the graph. In this paper we
focus on leveraging only the most important kind of user feedback, i.e., the pre-
vious confirmation and rejection of suggested mappings. We have devised three
alternative methods how to add this kind of feedback into the graph.

First, as a confirmed match corresponds to a certain score of 1.0, while a
rejected match corresponds to a score of 0.0, we could simply re-run the fix-point
computation with adjusted initial scores of confirmed and/or rejected matches.
We consequently name this first method Initializer. However, there is a clear
risk that the influence of such a simple initialization on the resulting mapping is
too small as scores tend to change rapidly during the first steps of the fix-point
computation.

To tackle this potential problem, our second method guarantees maximum
influence of feedback throughout the fix-point computation. Instead of just ini-
tializing a confirmed or rejected match with their final score once, we could re-
peat the initialization at the end of each step of the fix-point computation after

8 Christoph Pinkel et al.

normalization. This way, nodes with definite user feedback influence their neigh-
borhood with their full score during each step of the computation. We therefore
call this method Self-Confidence Nodes. However, as scores generally decrease in
most parts of the graph during the fix-point computation and high scores become
more important for the ranking of matches in later fix-point computation steps,
this method implies the risk of over-influencing parts of the graph. For example,
one confirmed match in a partially incorrect graph neighborhood would almost
certainly move all of its neighbors to the top of their respective suggestion lists.

Finally, with our third method, we attempt to balance the effects of the pre-
vious two methods. We therefore do not change a confirmed match directly but
include an additional node in IPG that can indirectly influence the match score
during the fix-point computation. We name this method Influence Nodes. By
keeping the scores of those additional influence nodes invariant we ensure per-
manent influence throughout all steps of the fix-point computation. Yet, the in-
fluence node only indirectly affects the neighborhood of confirmed nodes through
the same propagation mechanism that generally distributes scores through the
graph.

5 Experimental Evaluation

The main goal of IncMap is to reduce the human effort for constructing map-
pings between existing relational database schemata and ontologies. Mapping
suggestions are intended to be used only after they have been validated by a
user. Thus, there are two relevant evaluation measures: first, the percentage of
the mappings in the reference mappings that can be represented by IncMap.
We specify this percentage for all reference mappings when introducing them.
Certain complex mappings (e.g., mappings performing data transformations)
cannot be represented by IncMap. These complex mappings are rare in all real-
world reference mappings we used in this paper. The second and most important
measure is the amount of work that a user needs to invest to transform a set
of mapping suggestions into the correct (intended) mappings. As the latter is
the most crucial aspect, we evaluate our approach by measuring the work time
required to transform our suggestions into the existing reference mappings.

5.1 Relational Schemata and Ontologies

To show the general viability of our approach, we evaluate IncMap in two sce-
narios with fairly different schematic properties. In addition to showing the key
benefits of the approach under different conditions, this also demonstrates how
the impact of modular parameters varies for different scenarios.

IMDB and Movie Ontology. As a first scenario, we evaluate a mapping from the
schema of well known movie database IMDBH to the Movie Ontology [10]. With
27 foreign keys connecting 21 tables in the relational schema and 27 explicitly
modeled object properties of 21 classes in the ontology, this scenario is average

4 http://www.imdb.com

IncMap: Pay as you go schema matching 9

in size and structural complexity. The reference mappings we use to derive corre-
spondences for this scenari(ﬂ has been made available by the -ontop- team [IT].
A set of example queries is provided together with these reference mappings.
We use these to construct annotations for user queries as well as to structure
our incremental, query-by-query experiments. We extract a total of 73 potential
correspondences from this mapping, 65 of which can be represented by IncMap
as mapping suggestions. This corresponds to 89% of the mappings that could be
represented in IncMap.
MusicBrainz and Music Ontology. The second scenario is a mapping from the
MusicBrainz databaseﬂ to the Music Ontology [12]. The relational schema con-
tains 271 foreign keys connecting 149 tables, while the ontology contains 169
explicitly modeled object properties and 100 classes, making the scenario both
larger and more densely connected than the previous one. Here we use R2RML
reference mappings that have been developed in the project EUCLIDE As there
were no example queries provided with the mapping in this case, we use exam-
ple queries provided by the Music Ontology for user query annotations and to
structure the incremental experiment runs.

For these reference mappings, two out of 48 correspondences cannot be repre-
sented as mapping suggestions by IncMap as they require data transformations.
This corresponds to 95.8% of the mappings that could be represented in IncMap.

5.2 Work Time Cost Model

We evaluate our algorithms w.r.t. reducing work time (human effort). As the
user feedback process always needs to transform mapping suggestions generated
by IncMap into the correct mappings (i.e. to achieve a precision and recall of
100%), the involved effort is the one distinctive quality measure. To this end, we
have devised a simple and straightforward work time cost model as follows: we
assume that users validate mappings one by one, either accepting or rejecting
them. We further assume that each validation, on average, takes a user the same
amount of time t,47i4ate- The costs for finding the correct correspondence for any
concept in this case is identical with the rank of the correct mapping suggestion
in the ranked list of mapping suggestions for the concept times tyqidate-

As IncMap is interactive by design and would propose the user one mapping
suggestion after another, this model closely corresponds to end user reality. We
are aware that this process represents a simplification of mapping reality where
users may compile some of the mappings by other means for various reasons. Nev-
ertheless, this happens in the same way for any suggestion system and therefore
does not impact the validity of our model for the purpose of comparison.

5.3 Experimental Evaluation
Ezxperiment 1 — Naive vs. IncGraph. In our first experiment we compare the
effort required to correct the mapping suggestions when the schema and ontol-

® https://babbage.inf.unibz.it /trac/obdapublic/wiki/Example_MovieOntology
5 http://musicbrainz.org/doc/MusicBrainz_Database
" http://euclid-project.eu

10 Christoph Pinkel et al.

IMDB: Naive Similarity Flooding vs. IncGraph Music Ontology: Naive Similarity Flooding vs. IncGraph

12000

1400
Naive [initial] s Naive [initial] mmm
1300 » incGraph [initial] == 11000 |- IncGraph initial] =5
| Naive [f Naive [final] mss
1200 IncGraph IncGraph [final] mem
1100
1000
900

in
inal] m— 10000 |

(i

9000 |
8000 [
7000 |
6000 [

Effort [actions]
Effort [actions]

@
&
8
8

4000 |
3000 |

NWs Qg
8888338
83333838

2000 |
1000 -
0

100

Random LS Similarity _Inverse LS Dist, Random LS Similarity _ Inverse LS Dist.

(a) Naive vs. IncGraph

Music Ontology: Incremental Runs

6000 T
Non-Incremental s

IMDB: Incremental Runs

Non-Incremental s
Initializer s Initializer ===

700 Self-Confidence Nodes Self.Confidence Nodes
Influence Nodes 1 5000 - Influence Nodes =
600
) 4000 -
500 -
300 i i
] 2000 -
200 i i !
i | 1000 |] i
100] |
o 0

Norm. Sim. Product Original Weights Norm. Sim. Product Original Weights

Effort [actions]
N
8
8
Effort [actions]
@
8
8
8

(b) Incremental Evaluation

Fig. 2. Experimental Evaluation

ogy are represented naively, or as IncGraphs. Additionally, we vary the lexical
matcher used for the initial mapping between randomly assigned scores (minimal
base line), Levenshtein similarity and inverse Levenshtein distance. Figure
shows that IncGraph in all cases works better than the naive approach. As In-
cMap reliably improves the mapping for all configurations, it also underlines the
ability of IncMap to operate in a stable manner with different initial matchers.

Ezperiment 2 — Incremental Mapping Generation. Finally, we evaluated the
best previous configurations incrementally, i.e., leveraging partial mappings. Fig-
ure illustrates the effects on the total effort. We show total effort for all
three incremental methods, for different propagation coefficients. Most signifi-
cantly, incremental evaluation reduces the overall effort by up to 50% — 70%.
More specifically, Self-Confidence Nodes and Influence nodes work much better
than the naive Initializer approach.

6 Related Work

Many existing mapping systems rely on two-step mapping procedures: They em-
ploy lexical similarity of terms together with structural similarity of the struc-
tures ([I3JI4I15] or [T6UI7] for surveys). A very few of them rely on variations of
Similarity Flooding to perform the latter task. However, to the best of our knowl-
edge, all of these approaches focus on ontology-to-ontology rather than relational
schema-to-ontology mappings. RIMOM [18] performs a multi-strategy mapping
discovery between ontologies and performs mappings using a variant of the Sim-
ilarity Flooding algorithm, while it relies on structural similarities of ontologies
derived from sub-class and sub-property relationships, rather than connectivity

IncMap: Pay as you go schema matching 11

of classes via properties as we do in order to get a better alignment of relational
schemata and ontologies. In Yamm++ [I9] the authors used Similarity Flood-
ing and exploit both sub-class and sub-property relationships, and domain and
ranges of ontologies, while they did it in a naive way which, as our experimental
results showed, does not give good results for relational schemata-to-ontology
mappings. Moreover, they use Similarity Flooding to obtain new mappings on
top of the ones obtained via linguistic similarities, while we do not derive new
mappings but refine the ranking over the linguistically derived ones. There are
works on semi-automatic discovery of relational schema-to-ontology mappings,
but they use approaches different from ours: For example, [20] transforms re-
lational schemata and ontologies into directed labeled graphs respectively and
reuse COMA [21] for essentially syntactic graph matching. Ronto [22] uses a
combination of syntactic strategies to discover mappings by distinguishing the
types of entities in relational schemata. The authors of [23] exploit structure of
ontologies and relational schemata by calculating the confidence measures be-
tween virtual documents corresponding to them via the TF/IDF model. All these
approaches do not incorporate implicit schema information and do not support
an incremental mapping construction in the pay as you go fashion as IncMap
does. Finally, [24] describes an approach to derive complex correspondences for
a relational schema-to-ontology mapping using simple correspondences as input.
This work is orthogonal to the approach presented in this paper.

7 Conclusions and Outlook

We presented IncMap, a novel semi-automatic matching approach for generat-
ing relational schema-to-ontology mappings. Our approach is based on a novel
unified graph model called IncGraph for ontologies and relational schemata. In-
cMap implements a semi-automatic matching approach to derive mappings from
IncGraphs using both lexical and structural similarities between ontologies and
relational schemata. In order to find structural similarities IncMap exploits both
explicit and implicit schema information. Moreover, IncMap allows to incorpo-
rate user queries and user feedback in an incremental way, thus, enabling a pay
as you go fashion of the mapping generation. Our experiments with IncMap on
different real-world relational schemata and ontologies showed that the effort for
creating a mapping with IncMap is up to 20% less than using the Similarity
Flooding algorithm in a naive way. The incremental version of IncMap reduces
the total effort of mapping creation by another 50% — 70%. As future work we
plan to follow three lines: (1) add more implicit schema information (annota-
tions) to the IncGraphs, (2) support more complex mappings in IncMap, and
(3) devise a search strategy over the configuration space to auto-tune IncMap.

8 Acknowledgements

This work was supported by the Seventh Framework Program (FP7) of the
European Commission under Grant Agreement 318338, the Optique project.

12

Christoph Pinkel et al.

References

1.

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Beyer, M. A., Lapkin, A., Gall, N., Feinberg, D., Sribar, V.T.: ‘Big Data’ is Only the
Beginning of Extreme Information Management. Gartner rep. G00211490 (2011)
Crompton, J.: Keynote talk at the W3C Workshop on Sem. Web in Oil & Gas
Industry (2008) http://www.w3.0org/2008/12/ogws-slides/Crompton.pdf.

SAP HANA Help: http://help.sap.com/hana/html/sql_export.html (2013)

Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:
Linking Data to Ontologies. J. Data Semantics 10 (2008) 133-173

Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The Com-
bined Approach to Ontology-Based Data Access. In: IJCAIL (2011) 26562661
Hepp, M., Wechselberger, A.: OntoNaviERP: Ontology-Supported Navigation in
ERP Software Documentation. In: International Semantic Web Conference. (2008)
Blunschi, L., Jossen, C., Kossmann, D., Mori, M., Stockinger, K.: SODA: Gener-
ating SQL for Business Users. PVLDB 5(10) (2012) 932-943

Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching. In: ICDE, IEEE
Computer Society (2002)

Motik, B., Patel-Schneider, P.F., Parsia, B.. OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (2012) W3C Rec.

Bouza, A.: MO — The Movie Ontology, http://www.movieontology.org (2010)
Rodriguez-Muro, M., Calvanese, D.: High Performance Query Answering over
DL-Lite Ontologies. In: KR. (2012)

Raimond, Y., Giasson, F., (eds): Music Ontology, www.musicontology.com (2012)
Jiménez-Ruiz, E., Grau, B.C.: LogMap: Logic-Based and Scalable Ontology Match-
ing. In: International Semantic Web Conference (1). (2011) 273-288

Lambrix, P., Tan, H.: SAMBO — A system for aligning and merging biomedical
ontologies. J. Web Sem. 4(3) (2006) 196-206

Fagin, R., Haas, L.M., Hernédndez, M.A., Miller, R.J., Popa, L., Velegrakis, Y.:
Clio: Schema Mapping Creation and Data Exchange. In: Conceptual Modeling:
Foundations and Applications. (2009) 198-236

Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Chal-
lenges. IEEE Trans. Knowl. Data Eng. 25(1) (2013) 158-176

Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. In: VLDB J. (2001) 334-350

Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A Dynamic Multistrategy Ontology
Alignment Framework. IEEE Trans. Knowl. Data Eng. (2009) 1218-1232

Ngo, D., Bellahsene, Z.: YAM++: A Multi-strategy Based Approach for Ontology
Matching Task. In: EKAW. (2012) 421-425

Dragut, E.C., Lawrence, R.: Composing Mappings Between Schemas Using a Ref-
erence Ontology. In: CoopIS/DOA/ODBASE (1). (2004) 783-800

Do, H.H., Rahm, E.. COMA — A System for Flexible Combination of Schema
Matching Approaches. In: VLDB. (2002) 610-621

Papapanagiotou, P., Katsiouli, P., Tsetsos, V., Anagnostopoulos, C., Hadjiefthymi-
ades, S.: Ronto: Relational to Ontology Schema Matching. In: AIS SIGSEMIS
BULLETIN. (2006) 32-34

Hu, W.,; Qu, Y.: Discovering Simple Mappings Between Relational Database
Schemas and Ontologies. In: ISWC/ASWC. (2007) 225-238

An, Y., Borgida, A., Mylopoulos, J.: Inferring Complex Semantic Mappings Be-
tween Relational Tables and Ontologies from Simple Correspondences. In: OTM
Conferences (2). (2005)

	IncMap: Pay as you go Matching of Relational Schemata to OWL Ontologies

