
Integrating Prose as First-Class Citizens
with Models and Code

Markus Voelter

independent/itemis, voelter@acm.org

Abstract. In programming and modeling we strive to express structures
and behaviors as formally as possible to support tool-based processing.
However, some aspects of systems cannot be described in a way that
is suitable for tool-based consistency checking and analysis. Examples
include code comments, requirements and software design documents.
Because they can only be analyzed manually, they are often out-of-sync
with the code and do not reflect the current state of the system. This
paper demonstrates how language engineering based on language work-
benches can help solve this problem by seamlessly mixing prose and pro-
gram nodes. These program nodes can range from simple references to
other elements over variables and formulas to embedded program frag-
ments. The paper briefly explains the language engineering technology
behind the approach as well as a number of prose-code integrated lan-
guages that are part of mbeddr, an integrated language and tool stack
for embedded software engineering.

1 Introduction

Even though developers and systems engineers would love to get rid of prose
as part of the development process and represent everything with machine-
processable languages and formalisms, prose plays an important role.

In requirements engineering, prose is the starting point for all subsequent for-
malizations. Classical requirements engineering uses prose in Word documents or
Doors databases, together with tables, figures and the occasional formula. Since
these requirements are not versioned together with the code, it is hard to branch
and tag them together with the implementation. In safety-critical domains, re-
quirements tracing is used to connect the requirements to implementation arti-
facts. Traceability across tools is challenging in terms of tool integration.

During the implementation phase, developers add comments to the code.
These comments must be associated with program elements expressed in various
languages. For example, an architecture description language, a state machine
modeling language or a business rule language are considered as part of the
implementation. Comments also refer to code (for example, a comment that
documents a function typically refers to the arguments of that function), and it
is hard to keep these code references in sync with the actual code as it evolves.

Depending on the process, various design documents must be created during
or after the implementation. These are di↵erent from code comments in that

Proceedings of MPM 2013 17

they look at the bigger picture and ”tell a story”; they are not inlined into the
code, they are separate documents. Nonetheless they are tightly integrated with
the code, for example, by referring to program elements or by embedding code
fragments. Today, such documents are usually written in Latex, Docbook or
Word – and synchronized manually with the implementation code.

Problem Prose is is often badly integrated with the artifacts it relates to. It
cannot be checked for consistency with implementation artifacts. Mixing prose
and code or models is hard: either they reside in separate files, or, if pseudo-code
is embedded into a requirements document, it is not checked with regards to
syntax and type system rules. No IDE support for the programming or modeling
language is available. This leads to a lot of tedious and error-prone manual
synchronization work.

Contribution This paper proposes a highly integrated approach for handling
prose in the context of model-driven engineering tools that solves the challenges
outlined above. The implementation behind the approach relies on language en-
gineering and language workbenches, and an implementation has been developed
as part of the mbeddr platform.

2 mbeddr and MPS

mbeddr1 is an open source project supporting embedded software development
based on incremental, modular domain-specific extension of C [7,8]. It also sup-
ports languages that address other aspects of software engineering such as re-
quirements or documentation (which is what is discussed in this paper).

mbeddr Overview mbeddr builds on the JetBrains MPS language work-
bench2, a tool that supports the definition, composition and use of general pur-
pose or domain-specific languages. MPS uses a projectional editor, which means
that, although a syntax may look textual, it is not represented as a sequence of
characters which are transformed into an abstract syntax tree (AST) by a parser.
Instead, a user’s editing actions lead directly to changes in the AST. Projection
rules render a concrete syntax from the AST. Consequently, MPS supports non-
textual notations such as tables, and it also supports unconstrained language
composition and extension – no parser ambiguities can ever result from combin-
ing languages (see [6] for details).

The next layer in mbeddr is an extensible implementation of the C99 pro-
gramming language in MPS. On top of that, mbeddr ships with a library of
reusable extensions relevant to embedded software. As a user writes a program,
he can import language extensions from the library into his program. The main
extensions include test cases, interfaces and components, state machines, deci-
sion tables and data types with physical units3. For many of these extensions,
mbeddr provides an integration with static verification tools (model checking

1
http://mbeddr.com

2
http://jetbrains.com/mps

3 I do not distinguish between models and code. While C99 artifacts would proba-
bly be called code, state machines would likely be called models. Since both are

Proceedings of MPM 2013 18

Integrating Prose as First-Class Citizens with Models and Code

state machines, verifying interface contracts or checking decision tables for con-
sistency and completeness; see also [5]).

Finally, mbeddr supports three important aspects of the software engineering
process: requirements engineering and tracing [9], product line variability and
documentation. All are implemented in a generic way that makes them reusable
with any mbeddr-based language. We discuss the prose aspect of requirements,
documentation and code comments in the rest of this paper.

Multiline Text Editing The projectional nature of the MPS editor has
important advantages with regards to extensibility of languages. However, it also
means that the editor is a bit more rigid than a regular text editor. In particular,
until recently, MPS did not support multiline strings with the familiar editing
experience where pressing Enter creates a line break, pressing " moves the cursor
to the line above the current one, or deleting a few words on a line ”pulls up” the
text from the next line. However, the mps-multiline

4 MPS plugin, developed
by Sascha Lisson, has enabled this behavior. In addition, an additional plugin5

supports embedding program nodes into this multiline prose. At any location
in the multiline text, a user can press Ctrl-Space and select from the code
completion menu a language concept. An instance of this concept is then inserted
at the current location. The program node ”flows”with the rest of the text during
edit operations. Other editing gestures can also be used to insert nodes. For
example, an existing regular text word can be selected, and, using a quick fix, it
can wrapped with an emph(...) node, to mark the word as emphasized.

The set of language concepts that can be embedded in prose text this way
is extensible; the concept simply has to implement the IWord interface. For
a developer who is familiar with MPS, the implementation takes only a few
minutes.

Implementing an Embeddable Word In MPS, language elements (called
concepts) have children, references and properties. They can also inherit from
other concepts and implement concept interfaces such as IWord. The multiline
prose editor widget works with instances of IWord, and by implementing this
interface we can ”plug in” new language concepts into the multiline editor. An
example is ArgRefWord which can be embedded into function comments to ref-
erence an argument of that function:

concept ArgRefWord implements IWord
references: concept properties:
Argument arg 1 transformKey = @arg

It states that the concept implements IWord, that it references one Argument

(by the role name arg) and it uses the @arg transformation key: typing @arg in
a comment, followed by Ctrl-Space, instantiates an ArgRefWord.

tightly integrated in mbeddr, the distinction makes no sense and I use the two terms
interchangeably.

4
http://github.com/slisson/mps-multiline

5
http://github.com/slisson/mps-richtext

Proceedings of MPM 2013 19

Integrating Prose as First-Class Citizens with Models and Code

A reference to an argument should be rendered as @arg(argName), so we
have to define an appropriate editor:

[- @arg (%arg%->{name}) -]

The editor defines a list of cells [- -] inside which we define the constant @arg,
followed by the name property of the referenced Argument, enclosed in parenthe-
ses. To restrict this IWord to comments of functions, a constraint is used:

can be child constraint for ArgRefWord {
(node, parent, operationContext)->boolean {
node<> comment = parent.ancestor<DocumentationComment>;
node<> owner = comment.parent;
return owner.isInstanceOf(Function) }

We also define the scope for the arg reference, since only those arguments owned
by the function under which the documentation comment lives are valid targets:

link {arg} scope: (refNode, enclosingNode)->sequence<node<Argument>>) {
enclosingNode.ancestor<Function>.arguments; }

Finally, a generator has to be defined that is used when HTML or LATEXoutput
is generated. In this case we simply override a behavior method that returns the
text string that should be used:

public string toTextString() overrides IWord.toTextString {
"@arg(" + this.arg.name + ")"; }

This completes the implementation. All in all, only 10 lines of code have to be
written (the remaining ones shown above are IDE sca↵olding)

3 Integrating Prose with Models

In this section we look at various examples of integrating prose with code, ad-
dressing the challenges discussed in Section 1.

3.1 Requirements Engineering

As discussed in [9], mbeddr’s requirements engineering support builds on the
following three pillars. First, requirements can be collected as part of mbeddr
models and they are persisted along with any other code artifact. A requirement
has an ID, a prose description, relationships to other requirements (refines,
conflicts with) as well as child requirements. Second, the requirements lan-
guage is extensible in the sense that arbitrary additional attributes (described
with arbitrary DSLs) can be added to a requirement. Examples include business
rules or use cases, actors and scenarios. The third pillar is traceability: trace
links can be attached to any program element in any language.

In the context of this paper, the interesting aspect is that the prose descrip-
tion can contain additional nodes, such as references to other requirements (the
§req nodes in Fig. 1). References to actors, use cases and scenarios are also
supported. Since these are real references, they are automatically renamed if the
target element is renamed. If the target element is deleted, the reference breaks
and leads to an error. Referential integrity can easily be maintained.

Proceedings of MPM 2013 20

Integrating Prose as First-Class Citizens with Models and Code

Fig. 1. Requirements descriptions can contain references to other requirements (the
§req node in the text above), as well as references to actors, use cases and scenarios.

Fig. 2. A state machine with a comment attached to it. Inside the comment, we refer-
ence two of the states of the state machine.

Note that the mainstream requirements management tool, DOORS, cannot
embed references in the requirements description, they can only be added as
a separate attribute, which is awkward in terms of the semantic connection
between the text and the reference.

3.2 Code Comments

In classical tools, a comment is just specially marked text in the program code.
As part of this text, program elements (such as module names or function argu-
ments) are mentioned. We observe two problems with this approach. First, the
association of the comment with the commented element is only by proximity
and convention – usually, a comment is located above the commented element
(this is true only in textual editors, graphical modeling tools usually do not have
this problem). Second, references to other program elements are by name only –
if the name changes, the reference is invalid. mbeddr improves on both counts.

First, a comment is not just associated by proximity with the commented
program node, it is actually attached to it. Structurally the comment is a child
of the commented node, even though the editor shows it on top (Fig. 2). If the
element is moved, copied, cut, pasted or deleted, the comment always goes along
with the commented element.

Second, comments can contain IWords that refer to other program elements.
For example, the comment on the state machine in Fig. 2 references two of the
states in the state machine. Some of the words that can be used in comments
can be used in any comment (such as those that reference other modules or func-
tions), whereas others are restricted to comments for certain language concepts
(references to states can only be used in comments on or under a state machine).

Note that some IDEs support real references in comments for a specific lan-
guage (for example, Eclipse JDT renames argument names in JavaDoc comments

Proceedings of MPM 2013 21

Integrating Prose as First-Class Citizens with Models and Code

Fig. 3. This piece of document code uses \code tags to format parts of the text in code
font. It also references C program elements (using the cm and cc tags). The references
are actual, refactoring-safe references. In the generated output, these references are also
formatted in code font.

for functions if an argument is renamed). mbeddr’s support is more generic in
that it automatically works for any kind of reference inside an IWord. This is
important, since a cornerstone of mbeddr is the ability to extend all languages
used in it (C, the state machine language or the requirements language). The
commenting facility must be similarly generic.

3.3 Design Documents

mbeddr supports a documentation language. Like other languages for writing
documents (such as LATEX or Docbook), it supports nested sections, text para-
graphs and images. We use special IWords to mark parts of texts as emphasized,
code-formatted or bold. Documents expressed in this language live inside MPS
models, which means that they can be versioned together with any other mbeddr
artifact. The language comes with generators to LATEX and HTML, new ones (for
example, to Docbook) can be added.

Referencing Code Importantly, the documentation language also supports
tight integration with mbeddr languages, i.e. C, exiting C extensions or any other
language developed on top of MPS. The simplest case is a reference to a program
element. Fig. 3 shows an example.

Embedding Code Code can also be embedded into documents. In the docu-
ment source, the to-be-embedded piece of code is referenced. When the document
is generated to LATEX or HTML, the actual source code is embedded either as
text or as a screenshot of the notation in MPS (since MPS supports non-textual
notations such as tables, not every program element can be sensibly embedded
as text). Since the code is only embedded when the document is generated, the
code is always automatically consistent with the actual implementation.

Visualizations A language concept that implements the IVisualizable in-
terface can contribute visualizations, the context menu for instances of the ele-
ment has a Visualize item that users can select to render a diagram in the IDE.
The documentation language supports embedding these visualizations. As with
embedding code, the document source references a visualizable element. During
output generation, the diagram is rendered and embedded in the output.

4 Extensibility

A hallmark of mbeddr is that everything can be extended by end users (with-
out invasively changing the extended languages), and the prose-oriented lan-

Proceedings of MPM 2013 22

Integrating Prose as First-Class Citizens with Models and Code

Fig. 4.Amodular extension of the documentation language that supports the definition
of glossary terms and the relationships between them. Terms can be referenced from
any other prose, for example from comments or requirements.

Fig. 5. An example where variable declarations and equations are integrated directly
with prose. Since the expressions are real C expressions, they are type checked. To
make this possible, the variables have types; these are specified in the properties view,
which is not shown in the figure. To provoke the type error shown above, boolean has
been defined as the type of the N variable.

guages can be extended as well. The extension mechanism that uses new lan-
guage concepts that implement the IWord interface has already been discussed.
This section discusses a few example of further extensions, particularly of the
documentation language (Section 3.3).

Glossaries An obvious extension is support for glossaries. A glossary defines
terms which can be referenced from other term definitions or from regular text
paragraphs or even requirements or code comments. Such term definitions are
subconcepts of AbstractParagraph, so they can be plugged into regular docu-
ments. Fig. 4 shows an example of a term definition.

The term in Fig. 4 also shows how other terms are referenced using the
[Term|Text] notation (such references, like others, are generated to hyperlinks
when outputting HTML). The first argument is a (refactoring-safe) reference to
the target term. The optional second argument is the text that should be used
when generating the output code; by default, it is the name of the referenced
term. Terms can also express relationships to other terms using the ->(...)

notation, which creates a dependency graph between the terms in the glossary.
A visualization is available that renders this graph as a diagram.

Formulas Another extension adds variable definitions and formulas to prose
paragraphs (Fig. 5) which are exported to the math mode of the respective
target formalism. However, the variables are actual referenceable symbols and
the equations are C expressions. Because of this, the C type checker performs
type checks for the equations (see the red underline under N in Fig. 5). mbeddr’
interpreter for C expressions can be plugged in to evaluate the formulas. This
way, live test cases could be integrated directly with prose.

Going Meta Section 3.3 has demonstrated how programs written in arbitrary
languages can be integrated (by reference or by embedding) with documents
written in the documents language. However, sometimes the language defini-
tions themselves need to be documented, to explain how to develop languages in
MPS/mbeddr. To make this possible, a modular extension of the documentation

Proceedings of MPM 2013 23

Integrating Prose as First-Class Citizens with Models and Code

language can be used to reference or embed language implementation artifacts.
Similarly, documentation language documents can be embedded as well, to write
documents that explain how to use the documentation language. The user guide
for the documentation language6 has been created this way.

Cross-Cutting Concerns mbeddr supports two cross-cutting concerns that
can be applied to any language. Since the documentation language is just an-
other language, it can be used together with these cross-cutting languages. In
particular, the following two facilities are supported. First, requirements traces
can be attached to parts of documents such as sections, figures or paragraphs.
This way, requirements traceability can extend into, for example, software de-
sign documents. This is an important feature in safety-critical contexts. Second,
mbeddr supports product line variability. In particular, static negative variability
is supported generically. Using this facility, documents such as user guides, con-
figuration handbooks or software design documents can be made variant-aware
in the same way as any other product line implementation artifact.

Generating Documents Documents cannot just be written manually, they
can also be generated from other artifacts. For example, mbeddr’s requirements
language supports generating reports, which contain the requirements them-
selves, the custom attributes (via specific transformations) and trace informa-
tion. This feature is implemented by transforming requirements collections to
documents, and then using the generators that come with the documentation
language to generate the PDFs.

5 Related Work

The idea of more closely integrating code and text is not new. The most promi-
nent example is probably Knuth’s literate programming approach [4], where code
fragments are embedded directly into documents; the code can be compiled and
executed. While we have built a prototype with mbeddr that supports this ap-
proach, we have found referencing the code from documents (and generating it
into the final PDF) more scalable and useful.

The closest related work is Racket’s Scribble [2]. Following their paradigm
of documentation as code, Scribble supports writing structured documentation
(with Latex-style syntax) as part of Racket. Racket is an syntax-extensible ver-
sion of Scheme, and this extensibility is exploited for Scribble. Scribble supports
referencing program elements from prose, embedding scheme expressions (which
are evaluated during document generation) and embedding prose into code (for
JavaDoc-like comments). The obligatory literate programming example has also
been implemented. The main di↵erences between mbeddr’s approach and Racket
Scribble is that Scribble is implemented as Racket macros, whereas mbeddr’s fa-
cility are based on projectional editing. Consequently, the range of document
styles and syntactic extensions is wider in mbeddr. Also, mbeddr directly sup-
ports embedding figures and visualizations.

6
http://bit.ly/10gUs0q

Proceedings of MPM 2013 24

Integrating Prose as First-Class Citizens with Models and Code

Essentially all mainstream tools (incl. modeling tools, requirements manage-
ment tools or other engineering tools) treat prose as an opaque sequence of
characters. None of the features discussed in this paper are supported. The only
exception are Wiki-based tools, such as the Fitnesse tool for acceptance testing7.
There, executable test cases are embedded in Wiki code. A big limitation is that
there is no IDE support for the (formal) test case description language embedded
into the Wiki markup. mbeddr provides this support for arbitrary languages.

One exception to the statement made above is Mathematica8, which supports
mixing prose with mathematical expressions. It even supports sophisticated type
setting and WYSIWYG. Complete books, such as the Mathematica book itself,
are written with Mathematica. mbeddr does not support WYSIWYG. However,
mbeddr documents support integration with arbitrary MPS-based languages,
whereas Mathematica has a fixed programming language.

One way of integrating program code and prose that is often used in book
publishing are custom tool chains, typically based on LATEX or Docbook. Program
files are referenced by name from within the documents, and custom scripts copy
in the program code as part of the generation of the output. mbeddr’s approach
is much more integrated and robust, since, for example, even the references to
program fragments are actual references and not just names.

mbeddr’s approach to integrating references (to, for example, text sections,
figures or program nodes) into documents relies on user-supplied mark up: a ref-
erence must be inserted explicitly, either when creating the document, or using
a refactoring later. mbeddr makes no attempt at automatically understanding,
parsing or checking natural language (in contrast to some approaches in re-
quirements engineering [1,3]). My experience is that such approaches are not
yet reliable enough to be used in everyday work. However, it would be possible
to add automatic text recognition to the system; an algorithm would examine
existing text-only documents and introduce the corresponding nodes. We have
built a prototype for the trivial case where a term is referenced from another
term in the glossaries extension: by running a quick fix on a glossary document,
plain-text references to terms are replaced by actual term references.

mbeddr relies on MPS, whose projectional editor is one of the core enablers for
modular language extension. This means that arbitrary language constructs with
arbitrary syntax can be embedded into prose blocks. I have seen a prototype of
embedding program nodes into comments in Rascal9. However, at this point I do
not understand in detail the limitations and trade-o↵s of this approach. However,
one limitation is that the syntax is limited to parseable textual notations.

6 Conclusion

mbeddr is a scalable and practically usable tool stack for embedded software de-
velopment. However, a secondary purpose of mbeddr is to serve as a convincing

7
http://fitnesse.org/

8
http://www.wolfram.com/mathematica/

9
http://www.rascal-mpl.org/

Proceedings of MPM 2013 25

Integrating Prose as First-Class Citizens with Models and Code

demonstrator for the generic tools, specific languages paradigm, which empha-
sizes language engineering over tool engineering: instead of adapting a tool for a
specific domain, this paradigm suggests to use generic language workbench tools
and then use language engineering for all domain-specific adaptations.

As this paper shows, this approach can be extended to prose. Through the
ability to embed program nodes into prose, prose can be checked for consistency
with other artifacts. Of course, this does not address all aspects of prose. For
example, consider a program element (such as a function) that is referenced
from a prose document that explains the semantics of this program element.
If the semantics changes (by, for example, changing the implementation of the
function), the explaining prose does not automatically change. However, Find
Usages can always be used to find all locations where in prose a program element
is referenced. This simplifies the subsequent manual adaptations significantly.

Since prose is now edited with an IDE, some of the IDE services can be used
when editing documents: go-to-definition, find usages, quick fixes, refactorings
(to split paragraphs or to introduce term references in prose) or visualizations.
Taken together with the direct integration with code artifacts, this leads to a very
productive environment for managing requirements or writing documentation.

Acknowledgements I thank the mbeddr and MPS development teams for
creating an incredibly powerful platform that can easily accommodate the fea-
tures described in this paper. We also thank Sascha Lisson for building develop-
ing the multiline and richtext plugins for MPS.

References

1. V. Ambriola and V. Gervasi. Processing natural language requirements. In Pro-
ceedings of the 12th IEEE Intl. Conf. on Automated Software Engineering, 1997.

2. M. Flatt, E. Barzilay, and R. B. Findler. Scribble: closing the book on ad hoc docu-
mentation tools. In Proceedings of the 14th ACM SIGPLAN international conference
on Functional programming, ICFP ’09, New York, NY, USA, 2009. ACM.

3. V. Gervasi and B. Nuseibeh. Lightweight validation of natural language require-
ments. Software: Practice and Experience, 32(2):113–133, 2002.

4. D. E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.
5. D. Ratiu, M. Voelter, B. Schaetz, and B. Kolb. Language Engineering as Enabler

for Incrementally Defined Formal Analyses. In FORMSERA’12, 2012.
6. M. Voelter. Language and IDE Development, Modularization and Composition

with MPS. In 4th Summer School on Generative and Transformational Techniques
in Software Engineering (GTTSE 2011), LNCS. Springer, 2011.

7. M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: Instantiating a language
workbench in the embedded software domain. Journal of Automated Software En-
gineering, 2013.

8. M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an extensible c-based
programming language and ide for embedded systems. In Proc. of the 3rd conf.
on Systems, programming, and applications: software for humanity, SPLASH ’12,
pages 121–140, New York, NY, USA, 2012. ACM.

9. M. Voelter and F. Tomassetti. Requirements as first-class citizens: Tight integration
between requirements and code. In Proc. of the 2013 Dagstuhl Workshop on Model-
Based Development of Embedded Software, 2013.

Proceedings of MPM 2013 26

Integrating Prose as First-Class Citizens with Models and Code

