
Christophe Jacquet, Daniel Balasubramanian, Edward Jones, Tamás Mészáros, editors

Proceedings

7th International Workshop on

Multi-Paradigm Modeling

MPM 2013

co-located with Models 2013

Miami, Florida, 30 September 2013

Copyright c© 2013 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

To contact the editors:

Christophe Jacquet
Department of Computer Science
Supélec Systems Sciences (E3S)
3 rue Joliot-Curie
91192 Gif-Sur-Yvette cedex, France
Christophe.Jacquet@supelec.fr

Daniel Balasubramanian
Institute for Software Integrated Systems
Vanderbilt University
1025 16th Ave. S, Suite 102
Nashville, TN 37212, USA
daniel@isis.vanderbilt.edu

Tamás Mészáros
Department of Automation and Applied Informatics
Budapest University of Technology and Economy (BUTE)
Budapest 1117, Magyar tudósok krt. 2. Hungary
Meszaros.Tamas@aut.bme.hu

Edward Jones
Google, Inc.

Contents

Preface . v

Invited paper

Andreas Horst, Bernhard Rumpe
Towards Compositional Domain Specific Languages 1

Regular papers

Ahsan Qamar, Sebastian Herzig, Christiaan J. J. Paredis
A Domain-Specific Language for Dependency Management in Model-Based
Systems Engineering . 7

Markus Voelter
Integrating Prose as First-Class Citizens with Models and Code 17

Masoumeh Taromirad, Nicholas Matragkas, Richard F. Paige
Towards a Multi-Domain Model-Driven Traceability Approach 27

Pieter J. Mosterman, Gabor Simko, Justyna Zander
A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System
Models . 37

Bart Meyers, Joachim Denil, Frédéric Boulanger,
Cécile Hardebolle, Christophe Jacquet, Hans Vangheluwe

A DSL for Explicit Semantic Adaptation . 47

Posters

Vasco Amaral, Antonio Cicchetti, Romuald Deshayes
A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling
Framework . 57

Susann Gottmann, Frank Hermann, Claudia Ermel, Thomas Engel, Gianluigi Morelli
Towards Bidirectional Engineering of Satellite Control Procedures Using Triple
Graph Grammars . 67

Preface
The MPM workshop series brings together researchers and practitioners interested
in using explicit and heterogeneous models throughout the design of a system. The
7th edition took place on 30 September 2013 and was co-located with MODELS’13
in Miami.

Out of the 10 papers submitted and reviewed by at least three members of the
program committee, 5 were selected for oral presentation and 2 as posters. About
30 participants attended this edition of the workshop. A vote was cast among
the participants of the workshop to elect the best presentation. Markus Voelter’s
presentation was chosen unanimously.

In addition to the presentation of the selected papers from the technical program,
MPM’13 featured an invited presentation by Bernhard Rumpe who talked about
compositional multi-paradigm models for software development.

This volume contains versions of the selected papers that the authors had the
opportunity to enhance after the workshop and the fruitful discussions that occurred
during the whole day. The papers where collected using the EasyChair conference
system, formatted according to the LNCS style, and assembled using pdfLATEX and
the pdfpages package.

December 13, 2013
Gif-sur-Yvette

Christophe Jacquet
Daniel Balasubramanian
Edward Jones
Tamás Mészáros

Steering Committee
Mosterman, Pieter J., The Mathworks, Inc., USA
Vangheluwe, Hans, University of Antwerp, The Netherlands

McGill University, Canada
Karsai, Gabor, Vanderbilt University, USA
Levendovszky, Tihamér, Vanderbilt University, USA
Amaral, Vasco, Universidade Nova de Lisboa, Portugal
Lengyel, László, Budapest University of Technology and Economics, Hungary

Program Committee
Alferez, Maurício, INRIA, France
Barroca, Bruno, Universidade Nova de Lisboa, Portugal
Bellman, Kirstie, The Aerospace Corporation, USA
Boulanger, Frédéric, Supélec, France
Buchs, Didier, University of Geneva, Switzerland
Cuccuru, Arnaud, CEA LIST, France
Denil, Joachim, McGill University, Canada
Feng, Thomas Huining, LinkedIn Corp., USA
Giese, Holger, Hasso-Plattner-Institut, Germany
Hardebolle, Cécile, Supélec, France
Hewett, Wesley, Lockheed Martin MST, USA
Hostettler, Steve, University of Geneva, Switzerland
Kühne, Thomas, Victoria University of Wellington, New Zealand
Lucio, Levi, McGill University, Canada
McInnes, Allan, University of Canterbury, New Zealand
Mezei, Gergely, Budapest University of Technology and Economics, Hungary
Minas, Mark, University of the Federal Armed Forces, Germany
Paredis, Chris, Georgia Tech, Atlanta, Georgia, USA
Sarjoughian, Hessam, Arizona State University, USA
Srinivasan, Srini, Lockheed Martin, USA
Traoré, Mamadou K., Université Blaise Pascal, Clermont-Ferrand 2, France
Van Baelen, Stefan, iMinds, Belgium
Voeten, Jeroen, Eindhoven University of Technology, Netherlands
Westfechtel, Bernhard, University of Bayreuth, Germany

Towards Compositional Domain Specific Languages

Andreas Horst, Bernhard Rumpe

Software Engineering
RWTH Aachen University, Germany

http://www.se-rwth.de/

1 Introduction

The deployment of Domain Specific Languages (DSL) and in particular Domain Spe-
cific Modeling Languages (DSML) is becoming more and more prominent in various
domains. In order to cope with the complexity of the realization of DSLs, common and
well-established methods of software engineering such as modularization and reuse
need to be adapted and applied for DSLs. This has already been noted in [2] when the
emerging DSL era was still closely akin to compiler theory.

As stated in this work, compositionality of DSLs can take place at several dimen-
sions. Various contributions in this field of ongoing research reflect this and only a brief
overview is given below. One form of DSL composition is the syntactic embedding
such as embedding DSLs in GPLs as described in [3, 4]. In [5] a family of DSMLs are
used for the generation of web information systems. There the composition is carried
out via the joint usage of several languages each with their own artifacts and hence no
syntactic embedding. Other contributions in the area consider the composition of the
models expressed in DSLs as a constructive model transformation [1] and examine the
effects of DSL composition at the infrastructure level [9] (e.g., syntax aware editors
etc.). The DSL framework and workbench MontiCore [7, 8, 10, 11] was designed and
realized particularly with respect to compositionality at various dimensions [6, 12].

Compositionality is of special interest if models of different modeling paradigms
- and hence expressed in different languages - need to be combined while at the same
time retaining their specific semantics. Whenever the different modeling paradigms are
integrated, it can be observed that each paradigm is equipped with its own modeling
language and that therefore such a paradigm integration is always also a model language
composition. This holds for the composition of structural and behavioral languages as
well as for the composition of languages with synchronous or real-time communication
and event triggered asynchronous models, etc. In the following the dimensions of such
compositions are discussed in more detail.

2 Compositional Language Definition

The major rationale of a DSL is its specificity. One could argue that therefore each DSL
has to be defined for the specific use case, i.e., the target domain. However, there usually
exist common parts being used in various DSLs. This also holds for DSLs serving
different paradigms as usually names, types, variables and often signatures are shared.

Proceedings of MPM 2013 1

Thus the DSL development process benefits from a library based approach. Common
language fragments can be provided as a library. The definition of concrete DSL then
imports, inherits or embeds the required common language definition components (e.g.,
in form of grammar nonterminals).

Furthermore, features such as checking of context conditions and especially type
correctness (i.e. semantic analysis) and other language infrastructure components (e.g.,
parser, abstract syntax tree (AST)) of a DSL need to be reusable in a reasonable manner.
This requires a thoughtful design of the Application Programming Interface (API) the
DSL infrastructure is based upon particularly with respect to compositionality.

3 Compositional Modeling

Often it is necessary or at least helpful to decompose a larger description into several
artifacts. This capability is the foundation of modularity and reusability and requires the
DSL infrastructure to feature processing of models distributed over individual artifacts
just as most GPL compilers can process source files in a rather independent and incre-
mental manner. DSL infrastructures hence have to support model artifact dependencies
and thus some sort of model path. This mechanism should also allow to incorporate
libraries.

For a simple DSL, this compositional modeling can basically be achieved by split-
ting models and distributing the resulting fragments over several artifacts. Typically the
resulting artifacts each encapsulate a specific part of the overall model and respectively
exhibit an explicit interface other artifacts can depend on. Therefore DSLs supporting
compositional models necessarily have to provide encapsulation, interfaces and im-
ports. This of course greatly impacts the design of the DSLs.

Apart from this rather straightforward case, the composition encompassing models
expressed in various DSLs - potentially even with differing modeling paradigms - yields
more complex requirements. For this to work, the aforementioned infrastructure (i.e.,
context conditions, AST, editors) needs to be capable of being glued together to perform
all desired and required tasks. The particular challenges of this complex scenario of
compositional modeling across language - and potentially even modeling paradigm -
boundaries is based on the following dimensions of composition:

– Syntactic: The syntactic dimension describes how the composition of models - in
particular expressed in different DSLs - looks like (e.g., textually embedding, split
among artifacts, graphical vs. textual etc.).

– Context Conditions: particularly complicated is the dimension of context condi-
tions that spread across the various languages being deployed together; where e.g.
types are shared.

– Semantic: The semantic dimension is about the meaning of the individual model
fragments and the meaning of their composition. As an example consider the com-
position of behavioral models (e.g., Statecharts) with structural models (e.g. object
diagrams); what does such a composed model express?

– Technical: The technical dimension deals with the tooling infrastructure of the com-
position. This for instance determines whether the different models can be pro-
cessed incrementally and/or individually.

Proceedings of MPM 2013 2

Towards Compositional Domain Specific Languages

– Methodical: Compositionality provides the ability to decompose a problem and to
solve it in parts. A good method can and must take decomposition into considera-
tion.

– Organizational: The decomposition of the problem also yields the possibility to
have developers solve particular sub-problems in parallel. This allows to organize
the team according to the particular composition of the models. Indeed in conven-
tional software engineering - especially for large projects - the organization of the
development team is typically based on the problem/product architecture and com-
ponent structure.

These considerations show that the possibility to decompose a model into several frag-
ments potentially spread across different artifacts and expressed in different languages
with clearly defined interfaces greatly influences the development process.

Typically the model composition boils down to the transport of names and related
information in the interfaces between the artifacts each encapsulating a part of the com-
posed model. Names are the primary mechanism to refer to when importing some con-
cept from another artifact. Names come with a lot of related information which includes
types, method signatures, etc. But most importantly a name needs to be equipped with
the kind of model element it represents, e.g., a method, an attribute, a state, an activity;
i.e., the respective concept of the DSL. In behavioral languages it is usually necessary
to provide some knowledge about behavioral dependencies, such as order dependen-
cies of messages, maximal waiting time before a timeout is executed within the answer
awaiting sender, etc. A different example is the composition two models, one being a
class diagram and the other an OCL invariant. There the name of a class used in the
invariant determines which attributes are valid to be used in the OCL invariant. This
name based dependency is independent from the actual form of syntactic composition,
i.e., it does not matter whether the two models are expressed in separated artifacts or
combined in one artifact using language embedding.

4 Compositional Generators

In practice it is of interest to defer the actual execution of model composition to a later
phase of the development or respectively compilation process. This means that while
the semantic composition is well known during the creation of the models, the actual
composition takes place in a later phase. This deferring of the composition is a major
achievement of modern programming languages. Taking the GPL Java as an example, it
is well known how classes are combined together, but the actual technical composition
- namely the linking - is conducted later on (i.e., there is no source code being copied
into a single monolithic source artifact). Instead each source artifact containing a class
definition is being compiled independently and only when starting the program these
compiled classes are then linked together.

Transferring this idea to the field of compositional modeling and in particular code
generators, this means that models are not composed together directly, but the individ-
ually generated code will later be linked together. Especially in the case of heteroge-
neous modeling languages, it is an obvious consequence that a compiler infrastructure is
needed which provides a modular compilation unit for each of the individual languages.

Proceedings of MPM 2013 3

Towards Compositional Domain Specific Languages

The implementation of such compilation units should be independent of other genera-
tors, because only then the composition of DSLs and their paradigms can be carried out
in a rather flexible way with respect to code generation.

As an example consider a generator for JPA compatible Java implementations of a
class diagram. A second generator creates a graphical web information system out of
class diagrams which enables users to explore data structures. A third generator adds
state to the objects described by Statecharts. All generators should be usable indepen-
dently but also easily be composable. Now consider that for example the JPA generator
creates Java classes with a specific constructor with parameters while hiding the default
constructor. If all three generators are to be used together the two other generators have
to take the JPA generator’s behavior into account in order to produce valid Java code;
i.e., they need to use the JPA classes with the correct constructor and in particular can-
not assume the availability of the default constructor. Ideally this dependency is handled
in a transparent way not obstructing the independence of each generator individually.

Although partially solved for certain instances, a general solution for the problem of
a flexible composition of generators is an ongoing research task. It is to be examined in
which way generators can be combined using a suitable interface. In the example above,
it would be desirable to have the JPA generator provide the information necessary to
use the generated domain model classes which in turn can then be correctly used by the
Statecharts and the web information system generators (i.e., by the code generated by
these generators).

Of course when composing generators, it is not only necessary to have composable
interfaces on the generator level, but also to ensure that the generated results are seman-
tically consistent and thus compositional too. Therefore it absolutely makes sense to
first solve composition of multi-paradigm models respectively their languages semanti-
cally, before this is implemented in generator tools.

References

1. Bezivin, J., Bouzitouna, S., Fabro, M.D.D., Gervais, M.P., Jouault, F., Kolovos, D.S., Kurtev,
I., Paige, R.F.: A Canonical Scheme for Model Composition. In: Verlag, S. (ed.) Proceedings
of the Second European Conference on Model-Driven Architecture (EC-MDA) 2006. Bilbao,
Spain (July 2006)

2. Bosch, J.: Delegating Compiler Objects: Modularity and Reusability in Language Engineer-
ing. Nordic J. of Computing 4, 66–92 (1997)

3. Bravenboer, M., de Groot, R., Visser, E.: MetaBorg in Action: Examples of Domain-specific
Language Embedding and Assimilation using Stratego/XT. In: Summer School on Genera-
tive and Transformational Techniques in Software Engineering (GTTSE’05). Braga, Portugal
(July 2005), http://www.cs.uu.nl/˜visser/ftp/BGV05.pdf

4. Bravenboer, M., Visser, E.: Designing Syntax Embeddings and Assimilations for Language
Libraries. In: 4th International Workshop on Software Language Engineering (2007)

5. Dukaczewski, M., Reiss, D., Rumpe, B., Stein, M.: MontiWeb - Modular Development of
Web Information Systems. In: Rossi, M., Sprinkle, J., Gray, J., Tolvanen, J.P. (eds.) Proceed-
ings of the 9th OOPSLA Workshop on Domain-Specific Modeling (DSM’09) (2009)

6. Grönniger, H., Rumpe, B.: Modeling Language Variability. In: Calinescu, R., Jackson, E.
(eds.) Foundations of Computer Software. No. 6662 in LNCS, Springer, Redmond, Microsoft
Research, Mar. 31- Apr. 2 (2011)

Proceedings of MPM 2013 4

Towards Compositional Domain Specific Languages

7. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: MontiCore 1.0 - Ein
Framework zur Erstellung und Verarbeitung domänenspezifischer Sprachen. Tech. Rep.
Informatik-Bericht 2006-04, Software Systems Engineering Institute, Braunschweig Uni-
versity of Technology (2006)

8. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: MontiCore: a Framework for
the Development of Textual Domain Specific Languages. In: 30th International Conference
on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, Companion
Volume. pp. 925–926 (2008)

9. Kats, L.C.L., Kalleberg, K.T., Visser, E.: Domain-Specific Languages for Composable Ed-
itor Plugins. In: Proceedings of the Ninth Workshop on Language Descriptions, Tools, and
Applications (LDTA 2009) (April 2009)

10. Krahn, H.: MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im Software-
Engineering. Ph.D. thesis, RWTH Aachen University (2010)

11. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a Framework for Compositional Develop-
ment of Domain Specific Languages. International Journal on Software Tools for Technology
Transfer (STTT) 12(5), 353–372 (September 2010)

12. Völkel, S.: Kompositionale Entwicklung domänenspezifischer Sprachen. Ph.D. thesis, TU
Braunschweig (2011)

Proceedings of MPM 2013 5

Towards Compositional Domain Specific Languages

6

A Domain-Specific Language for Dependency
Management in Model-Based Systems

Engineering

Ahsan Qamar1, Sebastian Herzig2, and Christiaan J. J. Paredis2

1 KTH-Royal Institute of Technology, Stockholm, Sweden
{ahsanq}@kth.se

2 Georgia Institute of Technology, Atlanta, Georgia, USA
{sebastian.herzig,chris.paredis}@me.gatech.edu

Abstract. The varying stakeholder concerns in product development
today introduces a number of design challenges. From the perspective
of Model-Based Systems Engineering (MBSE), a particular challenge is
that multiple views established to address the stakeholder concerns are
overlapping with many dependencies in between. The important question
is how to adequately manage such dependencies. The primary hypothesis
of this paper is that modeling dependencies explicitly adds value to the
design process and in addition supports consistency management. We
propose a domain-specific language called as the Dependency Modeling
Language (DML) to capture the dependencies between multiple views at
the appropriate level of abstraction, and utilize this knowledge to support
a dependency management process. The approach is illustrated through
a dependency model between three views of a robot design example. In
addition, we discuss how to analyze dependency graphs for consistency
checking, change management, traceability and workflow management.

Keywords: Dependency Modeling Language, Domain Specific Model-
ing Language, Model Based Systems Engineering, Consistency Manage-
ment, Change Management.

1 Introduction

Contemporary product development is a complex process. Primarily, this is the
case due to a large number of stakeholders being involved, all of which have
varying and overlapping concerns. Therefore, adequate methods to manage the
consequential conflicts are required. In this sense, the design of mechatronics
is a particularly interesting case, since stakeholders from a very diverse set of
disciplines are involved. This makes good decision making very challenging. To
support a model-based mechatronic design process, different viewpoints are de-
fined, each supported by one or more modeling views. Naturally, multiple view-
points are supported through multiple modeling languages, where the overlap-
ping stakeholder concerns lead to dependencies between the established views.
Traditionally, the dependencies are managed in an ad-hoc fashion by mainly

Proceedings of MPM 2013 7

relying on the communication between the stakeholders. However, ad-hoc de-
pendency management can prove to be ineffective, especially for complex and
large scale systems where there could be a large number of such dependencies.

In earlier work, consistency management was explored in the context of en-
gineering design, and a classification of several distinct type of inconsistencies
was identified [1]. It was concluded that no consistency check can ever be com-
plete and that only some inconsistencies can be identified, that too only in the
information captured explicitly and formally. Dependencies are interesting be-
cause they could be the cause of the arising inconsistency, and hence explicit
knowledge of dependencies is vital for consistency management. However, this is
not a trivial task since adequate support in terms of a modeling language and a
supporting tool for dependency management is currently lacking. In this paper,
we present a modeling language to help build a model of dependencies.

The fundamental question to answer is whether it is valuable to model depen-
dencies in contrast to current approaches where dependencies are not captured
formally. The work reported in this paper builds on the hypothesis that model-
ing dependencies adds value to the design process. The value can be measured
in terms of support for consistency management, change management, ensuring
traceability and managing the design process workflow, each of which can be
supported by the dependency modeling approach presented in this paper.

The remainder of this paper is organized as follows: Section 2 builds a no-
tion of dependency. An example use case is described in Section 3. Section 4
introduces a Domain-Specific Modeling Language (DSML) for capturing depen-
dencies, which is illustrated through the example use case in Section 5 and
Section 6. Section 7 presents the related work and is followed by a discussion in
Section 8. Section 9 presents conclusions and possible future work.

2 Notion of Dependency

Rational Design Theory (RDT) [2] establishes a theoretical foundation for Ar-
tifacts, Properties, Concept Selection and Concept Evaluation. Based on RDT
and on Hazelrigg’s decision-based design framework [3], we argue that two types
of properties are prevalent in design: one is used to describe constraints (speci-
fication), whereas the other is used to communicate the designer’s belief regard-
ing the value of the property (a prediction based on a given specification). We
call specification properties Synthesis Properties (SP) and prediction properties
Analysis Properties (AP).

To describe an artifact, there could potentially be an infinite number of
properties spread across multiple views. In this paper, the term dependency
refers to a type of model capturing the relationship between the values of input
and output properties (regardless of the view they belong to). This is somewhat
different to how dependencies are defined in UML [4], where they represent a
relation and express the need for a particular element to exist. For example,
if an element A depends on element B, and B no longer exists, A is no longer
specifiable. In our case, removing a dependency does not invalidate the inputs

Proceedings of MPM 2013 8

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

or the outputs - the dependency is just no longer captured. Causality naturally
arises from the fact that a dependency has well defined inputs and outputs.

A dependency is considered to be a model; it is possible that this model is
unknown at a given design stage; in this case a dependency can still be specified
(along with its input and output properties) in a dependency model. Once the
model that specifies a particular dependency is known, references can be cre-
ated between this model and the dependency model. A natural question to ask
is why not utilize currently available languages to model dependencies. In the
work reported in [5], different modeling languages were analyzed for dependency
modeling (e.g. OMG SysMLTM[6]). However none were found to be suitable for
capturing dependencies adequately without having to modify them (e.g., profile
extension of SysML). In addition, the size of meta-model extensions (when us-
ing a general purpose language for many different purposes) adds to the intrinsic
complexity of the underlying system [7] and introduces accidental complexity [8].

In contrast to a general purpose modeling language (such as SysML), a DSML
is restrictive and has a specific purpose, in particular as per the demands of a
specific viewpoint [7], and it captures the object of interest at the appropriate
level of abstraction and formalism to help minimize the complexity [9]. Based on
this motivation, we will - in the following section - introduce a DSML to model
dependencies called the Dependency Modeling Language (DML).

3 Example Use Case

In order to illustrate the proposals of this paper to the reader, an example use
case is considered: a simple two degree of freedom robot. The design problem is
formulated as follows: Design a pick and place robot with Work Space (WS) cov-
erage of 4m2, with Close loop Position Accuracy (CPA) of at least 5mm, and with
the End-to-End Response Time (EERT) of the robot should not be more than
0.5 seconds. Three viewpoints (one for each stakeholder) are considered for this
example: mechanical design, control design, and Hardware/Software (Hw/Sw)
design. The three stakeholders - based on the design specifications for each view-
point - develop disparate models focusing on different aspects of the robot by
utilizing different design and analysis tools, such as a CAD tool for mechanical
design, a control design tool and a software design tool. The semantic overlaps
between the views results in dependencies, which will be the focus of the illus-
tration in section 5. It is worthwhile to mention that gaining knowledge about
properties CPA and EERT requires the combined work of the three stakeholders,
making it essential to manage dependencies.

4 A Modeling Language for Capturing Dependencies

This section describes the DML which is currently supported in Eclipse Modeling
Framework (EMF) [10]. Figure 1 illustrates the abstract syntax of the DML using
a class diagram. Any model that conforms to this meta-model is referred to as

Proceedings of MPM 2013 9

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

a Dependency Model. In the following, the semantics of the language constructs
of the DML are discussed.

A Concept is a description of an artifact and can refer to the actual prod-
uct to be developed, or to any of its sub-components. We say that concepts are
formed by constraining some of the properties associated with it. With the pas-
sage of time, more constraints are put on properties, hence leading to further
refined concepts. For instance, by constraining the number of arms of a robot
to two, a two arm robot Concept is created. A concept Contains zero to many
subordinate concepts - by way of example, here are a few that can be considered
for the two arm robot: Arm1, Arm2, Controller, Motor1, Motor 2, Sensor1, and
Sensor2. All these Concepts are contained under the main concept two arm robot.
Concepts are related to each other through an isPartOf relationship, which cre-
ates the semantic context around each concept. Each Concept can be looked at
from many Viewpoints, and is characterized by a number of Properties, which
are captured in a Model.

Fig. 1. Abstract syntax (meta-model) of the DML.

A Viewpoint refers to the guidelines and conventions used to establish a
View, where a View corresponds to a Model or a composition of disparate models:
for example, mechanical design viewpoint encompassing a Solid Edge model or
the dynamic analysis viewpoint encompassing a Modelica model.

A Model is an abstraction of a real-world artifact (described by a Con-
cept). Multiple Viewpoints may be required to address the stakeholder concerns
with respect to an artifact (Concept), which can be supported through multiple
modeling Views. A Model contains many Properties with multiple Dependencies
between them.

A Property is any descriptor of an artifact. Its value could be numerical,
logical, stochastic or an enumeration. In design, two types of properties are used:

Proceedings of MPM 2013 10

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

properties which are selected or chosen by the designer (Synthesis Properties
(SP)) and ones which are predicted through an analysis model or an equation
(Analysis Properties (AP)). In order for a property to have an unambiguous
meaning, the semantic context around each property should be specified, which
is done through isPropertyOf relationships to a Concept. For example, EERT
isPropertyOf a Concept ControlSystem (see Figure 2), which, in turn, isPartOf
a Robot. A Property can influence other properties via a Dependency, which is
captured through the relatedDependency relationship: e.g., SD4, SD5 and SD13

are related dependencies for the property EERT (see Figure 2).

A Synthesis Property (SP) describes the value that a designer has se-
lected for a particular property. SPs are usually defined through a range of
values (RangeValue); but they can also be defined through a FixedValue or a
BooleanValue. For example, a load profile could be used as an SP to select the
corresponding actuator power.

An Analysis Property (AP) describes the value predicted as a result of
performing an analysis captured in a model, e.g. solving an equation or a con-
straint. APs are predictions and hence uncertain by definition. Therefore, APs
should be specified using a Probability value (ProbabilityDensityFunctionValue).

A Dependency describes the nature of the relationship between two or
more properties. The relationship is assumed to be causal, thereby assuming that
some properties are inputs while others are outputs. The nature of a particular
dependency could be known or unknown at a given design stage, and its specifics
are described in a number of ways. As per [5], dependencies can be expressed in
two forms - a heuristic between two or more properties (Synthesis Dependency
(SD)), or a constraint, an equation or an analysis model (Analysis Dependency
(AD)). One particular case is that of an equality binding between two or more
properties (e.g., same properties belonging to multiple views). There could be
many dependencies within a Model, hence a particular Dependency can be a part
of (i.e. contained within) a particular Model (i.e., a model within a model, such
as a constraint within a CAD model), or, in other cases, represents a distinct
Model (e.g., a Simulink model). Bindings between properties are captured in the
Dependency Model.

A Synthesis Dependency (SD) refers to the heuristics used in selection
of a SP. It is also possible that a modeler uses their experience in making this
selection, and overrides the heuristic completely. An SD could have one or more
SPs as its output, e.g. SD4 in Figure 2.

An Analysis Dependency (AD) refers to the analysis (present in a model),
an equation, or a constraint used to predict the value of an AP. An AD could
have one or more APs as its output.

While the dependency models are causal in nature, in many practical sce-
narios, cycles will be present. For example, an algebraic loop could exist, where
a property is both chosen and predicted. From the perspective of structural se-
mantics, cyclic models are valid. However, from the perspective of operational
semantics (which are outside the scope of this paper), such loops must be broken
during execution - for example, by using the well known tearing algorithm.

Proceedings of MPM 2013 11

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

5 Illustration: Dependency modeling through the DML

EMF was used to support the DML which we used to construct the dependency
model for the example use case. In the following, we will illustrate the equality
binding between properties that are part of different views of the robot. Other
possible illustrations include (but are not limited to): top-level view of the robot
showing the involved Viewpoints and Concepts, and binding of a Property to
multiple dependencies. The reader should note that the illustrations we provide
are models generated based on the abstract syntax and no concrete syntax was
developed at this stage, although graph-based visualizations of the dependency
models were built (see Section 6).

Consider the Synthesis Dependency SD4 in the CAD View. Figure 2 shows
the dependency SD4 where Motor A Torque (MA) is determined based on the
information about Inertia of Arm-A (IA), the requirement for End-to-End Re-
sponse Time (EERT), and the control system structure (CS).

Fig. 2. Contents of the dependency SD4 (within the CAD View) showing equality
binding to the property EERT, which is a property of the Simulink View.

It can be seen that property EERT isPropertyOf ControlSystem Concept
and is partOfModel Simulink, which is a supporting View in the ControlDesign
Viewpoint. The resulting property binding relationship is contained under the
property EERT, and maintained inside the dependency model. The meta-models
of Matlab/Simulink, and MagicDraw SysML (as UML2.1) are available in our
Eclipse implementation (Cameo Workbench [11]), and we added the Solid Edge
(CAD tool) meta-model to it, hence the models created in these tools can be
read as Ecore models and transformations between them can be built.

Proceedings of MPM 2013 12

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

6 Visualizing dependencies as graphs

The information captured in the dependency model can be visualized by a depen-
dency graph. As opposed to a tree-based representation, a graph-based represen-
tation is better suited for discussions between different stakeholders (see Figure 2
and Figure 3). We used the tool Graphviz [12], which supports the DOT lan-
guage [13], to build graphs. Figure 3 shows a directed dependency graph between
the three views of the robot. As an example, consider SD9 which refers to the
dependency between inertia of first and second arm of the robot (IA and IB in
mechanical design view) and the transfer function (G(s)) attributes (in the con-
trol design view). The figure illustrates that even for a fairly simple robot design
example, there are many dependencies between the considered viewpoints, and
manual management of such dependencies is either very challenging or often not
possible due to a lack of information.

Robot Mechanical Design

Robot Control design

Robot HwSw Design

PE

SD1 SD8

WS

LA

SD2

AD1

AD3

WA

LB

SD3

AD2

WBρ

O

MA

SD10

MB

SA

AD4

SB

CPA

SD6

SD13

EERT

SD4 SD5

G(s)

SD7

CG

SD12

CS

CostCPM

SD14

CodeI/O

AD5AD7

CPU

fsmin - fsmax

SD16

CodeC

ResA/D ResD/A

ΔA/DΔD/A

Modes

h

IA

SD9

IB

EP

CPA EERT WCETC

SD15AD9

WCET i

AD8

T i

TResponse

I

Fig. 3. Dependency graph between three robot views. SPs are shown in Blue, APs in
Green, SDs in Orange and ADs in Yellow.

7 Related Work

One popular method of modeling dependencies is the Design Structure Ma-
trix (DSM) [14], which allows relations among properties to be represented in
a matrix. DSMs are used in a variety of disciplines - for example, in software
engineering [15]. Compared to the DML, DSMs are limited in terms of their

Proceedings of MPM 2013 13

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

expressiveness. For one, it is not possible to differentiate between synthesis and
analysis properties, nor between synthesis and analysis dependencies. As dis-
cussed in [5], this differentiation is important to keep analysis results separate
from selections made by the designer. In addition, this differentiation adds to the
semantic richness of a dependency model thereby supporting the change man-
agement and inconsistency management scenarios. Furthermore, the semantic
context around a property can be shown in a DSM only to a limited degree.

In terms of tools, Product Data Management (PDM) systems are probably
among the most widely used systems to manage product-related data. One of
the core capabilities of modern PDM systems is allowing users to establish rela-
tions between elements that are stored in the repository: for instance, reference
and correspondence relationships can be created. Such relationships can typi-
cally only be created among files. However, some contemporary PDM systems
integrate tool adapters, allowing for certain properties of supported models to
be exposed (for example: the part hierarchy in CAD models). While PDM sys-
tems implement some of the desired functionality, they are still limited in terms
of their capabilities of capturing dependencies. In particular, PDM systems re-
quire dependent models to already exist, therefore not enabling one to create a
dependency model independently from the corresponding design artifacts.

Modeling dependencies is also supported (at least to some extent) in the Pro-
cess Integration Design Optimization (PIDO) approach, which is implemented
in tools such as ModelCenter [16]. The underlying principle is the integration of
disparate models. ModelCenter, for instance, provides several tool connectors,
which enable data exchange among disparate models and allow for properties of
compatible models to be exposed. As a result, dependencies between properties
can be modeled. However, current PIDO tools only provide a black box view for
each model and hide most of the semantic context of properties. Furthermore,
not all possible properties can be exposed.

To the best of knowledge of the authors, modeling languages intended specif-
ically for the purpose of modeling dependencies have, to the date of writing this
paper, not been publicized. While there are some promising methods and tools
available, none implement all of the envisioned capabilities. For one, none allow
for the definition of a dependency model independent of other domain specific
models. Furthermore, of the approaches surveyed, none provided the desired
level of depth and access to properties in models.

8 Discussion

The order in which the different views are developed in relation to the depen-
dency model is an important consideration. There are two possibilities here: a
bottom-up scenario where the initial design and analysis of design concepts is al-
ready captured in multiple views (e.g. a CAD model and a Simulink model), and
then the dependency model is built. In this case, the knowledge already present
in disparate views can be used to automatically build parts of the dependency
model. The other possibility is a top-down scenario where the dependency model

Proceedings of MPM 2013 14

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

is manually created after the requirements and the system architecture are iden-
tified, and based on the dependencies captured in the dependency model, other
views such as CAD and Simulink models are developed. For the example de-
scribed in Section 5, we have followed the former approach, where the views
supporting mechanical, control and Hw/Sw design of the robot already existed.

Dependency models can be used for more than just one purpose. Given the
causal nature, a dependency model can be used for change propagation and
consistency management. For example, in Figure 3, a change to the predicted
value of TResponse triggers the necessity for AD4 to be refreshed automatically.
It can also support traceability in that it is possible to reason about both the
existence and nature of certain relationships among models. For example, one
useful application is requirements traceability. Dependency models are also useful
for the purpose of managing workflow. Given a (causal) network of dependencies,
tasks can be parallelized and merge points identified. A dependency model can
also be used for the purpose of avoiding certain inconsistencies. Not only can
changes be propagated through such a model, but a single source of truth for
properties is established. Such is the case because properties in the dependency
model are unique, even though these may refer to elements in disparate models.

Modeling dependencies requires additional effort and, hence, additional re-
sources to be allocated. However, any commitment of resources needs to be
justified. It is entirely conceivable that in some cases (e.g. very simple or well
understood systems) the risk associated with not explicitly capturing dependen-
cies is negligibly low. Similar arguments can be made about the completeness of
the dependency model: to what level of detail should dependencies be modeled?
As per [5], dependencies can be defined at six levels of detail starting with the
level-0 where the dependencies are completely unknown to level-5 where both
the dependencies and the transformation models that lead to them are explic-
itly known. Behind building such transformation models are dependency patterns
which gather and illustrate known dependencies between specific types of prop-
erties under a design context. The use of such patterns would decrease the cost
associated with modeling dependencies. Patterns are currently not supported by
the introduced DML and their discussion is beyond the scope of this paper.

9 Conclusions

This paper presents a DSML for modeling dependencies between properties.
Properties are typically referenced in multiple views on a system. A dependency
modeling language allows for the dependencies between these properties to be
captured in a single model, as illustrated for a robot example in Section 5.

Future work should includes the provision of additional features, such as
supporting modeling at multiple levels of detail and allowing for a variety of
stakeholder-specific views to be generated automatically. Furthermore, the op-
erational semantics of the DML should be defined formally. This is particularly
important for the purpose of supporting the accompanying dependency manage-
ment process. For example, an essential task is analyzing how changes propagate.

Proceedings of MPM 2013 15

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

Since most analysis activities involve some sort of token flow, we suggest to in-
vestigate the mapping to the semantic domain of petri-nets as future work.

Acknowledgments. This work was supported in-part by Boeing Research &
Technology. The authors would like to thank Michael Christian (Boeing) and
Axel Reichwein (Koneksys LLC) for the many valuable discussions.

References

1. Herzig, S.J.I., Qamar, A., Reichwein, A., Paredis, C.J.J.: A Conceptual Framework
for Consistency Management in Model-Based Systems Engineering. In: ASME
2011 Design Engineering Technical Conferences & Computers and Information in
Engineering Conference IDETC/CIE 2011, Washington, DC, USA, ASME (2011)
1329–1339

2. Thompson, S.C.: Rational Design Theory: A Decision-Based Foundation for Study-
ing Design Methods. Phd. thesis, Georgia Institute of Technology, Atlanta, Geor-
gia, USA. (2011)

3. Hazelrigg, G.A.: A Framework for Decision Based Engineering Design. Journal of
Mechanical Design 120(4) (1998) 653–658

4. Object Management Group: OMG Unified Modeling Language (UML) Specifica-
tion V2.4.1 (2011)

5. Qamar, A., Paredis, C.J., Wikander, J., During, C.: Dependency Modeling and
Model Management in Mechatronic Design. Journal of Computing and Information
Science in Engineering 12(4) (December 2012) 041009

6. Object Management Group: OMG Systems Modeling Language Specification V1.3
(2012)

7. Vallecillo, A.: On the Combination of Domain Specific Modeling Languages. In:
Modeling Foundations and Applications, Lecture Notes in Computer Science. Vol-
ume 6138. (2010) 305–320

8. Brooks, F.P.: No Silver Bullet Essence and Accident in Software Engineering.
IEEE Computer 20(4) (1987) 10–19

9. Mosterman, P.J., Vangheluwe, H.: Computer Automated Multi-Paradigm Model-
ing: An Introduction. Simulation: Transactions of The Society for Modeling and
Simulation International 80(9) (September 2004) 433–450

10. Eclipse Foundation: Eclipse Modeling Framework (EMF) (2009)
11. No Magic: Cameo Work Bench (2011)
12. Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz

and Dynagraph - Static and Dynamic Graph Drawing Tools. In: Graph Drawing
Software, Springer-Verlag (2003) 127–148

13. Gansner, E.R., Koutsofios, E., North, S.: Drawing Graphs With Dot. Technical
report (2009)

14. Eppinger, S.D., Browning, T.R.: Design Structure Matrix Methods and Applica-
tions. Engineering Systems. MIT Press (2012)

15. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using Dependency Models to Man-
age Complex Software Architecture. In: Object Oriented Programming, Systems,
Languages & Applications (OOPSLA), San Diego, CA, USA, ACM Press (2005)
167–176

16. Phoenix Integration: ModelCenter (2012)

Proceedings of MPM 2013 16

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

Integrating Prose as First-Class Citizens
with Models and Code

Markus Voelter

independent/itemis, voelter@acm.org

Abstract. In programming and modeling we strive to express structures
and behaviors as formally as possible to support tool-based processing.
However, some aspects of systems cannot be described in a way that
is suitable for tool-based consistency checking and analysis. Examples
include code comments, requirements and software design documents.
Because they can only be analyzed manually, they are often out-of-sync
with the code and do not reflect the current state of the system. This
paper demonstrates how language engineering based on language work-
benches can help solve this problem by seamlessly mixing prose and pro-
gram nodes. These program nodes can range from simple references to
other elements over variables and formulas to embedded program frag-
ments. The paper briefly explains the language engineering technology
behind the approach as well as a number of prose-code integrated lan-
guages that are part of mbeddr, an integrated language and tool stack
for embedded software engineering.

1 Introduction

Even though developers and systems engineers would love to get rid of prose
as part of the development process and represent everything with machine-
processable languages and formalisms, prose plays an important role.

In requirements engineering, prose is the starting point for all subsequent for-
malizations. Classical requirements engineering uses prose in Word documents or
Doors databases, together with tables, figures and the occasional formula. Since
these requirements are not versioned together with the code, it is hard to branch
and tag them together with the implementation. In safety-critical domains, re-
quirements tracing is used to connect the requirements to implementation arti-
facts. Traceability across tools is challenging in terms of tool integration.

During the implementation phase, developers add comments to the code.
These comments must be associated with program elements expressed in various
languages. For example, an architecture description language, a state machine
modeling language or a business rule language are considered as part of the
implementation. Comments also refer to code (for example, a comment that
documents a function typically refers to the arguments of that function), and it
is hard to keep these code references in sync with the actual code as it evolves.

Depending on the process, various design documents must be created during
or after the implementation. These are different from code comments in that

Proceedings of MPM 2013 17

they look at the bigger picture and ”tell a story”; they are not inlined into the
code, they are separate documents. Nonetheless they are tightly integrated with
the code, for example, by referring to program elements or by embedding code
fragments. Today, such documents are usually written in Latex, Docbook or
Word – and synchronized manually with the implementation code.

Problem Prose is is often badly integrated with the artifacts it relates to. It
cannot be checked for consistency with implementation artifacts. Mixing prose
and code or models is hard: either they reside in separate files, or, if pseudo-code
is embedded into a requirements document, it is not checked with regards to
syntax and type system rules. No IDE support for the programming or modeling
language is available. This leads to a lot of tedious and error-prone manual
synchronization work.

Contribution This paper proposes a highly integrated approach for handling
prose in the context of model-driven engineering tools that solves the challenges
outlined above. The implementation behind the approach relies on language en-
gineering and language workbenches, and an implementation has been developed
as part of the mbeddr platform.

2 mbeddr and MPS

mbeddr1 is an open source project supporting embedded software development
based on incremental, modular domain-specific extension of C [7,8]. It also sup-
ports languages that address other aspects of software engineering such as re-
quirements or documentation (which is what is discussed in this paper).

mbeddr Overview mbeddr builds on the JetBrains MPS language work-
bench2, a tool that supports the definition, composition and use of general pur-
pose or domain-specific languages. MPS uses a projectional editor, which means
that, although a syntax may look textual, it is not represented as a sequence of
characters which are transformed into an abstract syntax tree (AST) by a parser.
Instead, a user’s editing actions lead directly to changes in the AST. Projection
rules render a concrete syntax from the AST. Consequently, MPS supports non-
textual notations such as tables, and it also supports unconstrained language
composition and extension – no parser ambiguities can ever result from combin-
ing languages (see [6] for details).

The next layer in mbeddr is an extensible implementation of the C99 pro-
gramming language in MPS. On top of that, mbeddr ships with a library of
reusable extensions relevant to embedded software. As a user writes a program,
he can import language extensions from the library into his program. The main
extensions include test cases, interfaces and components, state machines, deci-
sion tables and data types with physical units3. For many of these extensions,
mbeddr provides an integration with static verification tools (model checking

1 http://mbeddr.com
2 http://jetbrains.com/mps
3 I do not distinguish between models and code. While C99 artifacts would proba-

bly be called code, state machines would likely be called models. Since both are

Proceedings of MPM 2013 18

Integrating Prose as First-Class Citizens with Models and Code

state machines, verifying interface contracts or checking decision tables for con-
sistency and completeness; see also [5]).

Finally, mbeddr supports three important aspects of the software engineering
process: requirements engineering and tracing [9], product line variability and
documentation. All are implemented in a generic way that makes them reusable
with any mbeddr-based language. We discuss the prose aspect of requirements,
documentation and code comments in the rest of this paper.

Multiline Text Editing The projectional nature of the MPS editor has
important advantages with regards to extensibility of languages. However, it also
means that the editor is a bit more rigid than a regular text editor. In particular,
until recently, MPS did not support multiline strings with the familiar editing
experience where pressing Enter creates a line break, pressing ↑ moves the cursor
to the line above the current one, or deleting a few words on a line ”pulls up” the
text from the next line. However, the mps-multiline4 MPS plugin, developed
by Sascha Lisson, has enabled this behavior. In addition, an additional plugin5

supports embedding program nodes into this multiline prose. At any location
in the multiline text, a user can press Ctrl-Space and select from the code
completion menu a language concept. An instance of this concept is then inserted
at the current location. The program node ”flows”with the rest of the text during
edit operations. Other editing gestures can also be used to insert nodes. For
example, an existing regular text word can be selected, and, using a quick fix, it
can wrapped with an emph(...) node, to mark the word as emphasized.

The set of language concepts that can be embedded in prose text this way
is extensible; the concept simply has to implement the IWord interface. For
a developer who is familiar with MPS, the implementation takes only a few
minutes.

Implementing an Embeddable Word In MPS, language elements (called
concepts) have children, references and properties. They can also inherit from
other concepts and implement concept interfaces such as IWord. The multiline
prose editor widget works with instances of IWord, and by implementing this
interface we can ”plug in” new language concepts into the multiline editor. An
example is ArgRefWord which can be embedded into function comments to ref-
erence an argument of that function:

concept ArgRefWord implements IWord
references: concept properties:
Argument arg 1 transformKey = @arg

It states that the concept implements IWord, that it references one Argument
(by the role name arg) and it uses the @arg transformation key: typing @arg in
a comment, followed by Ctrl-Space, instantiates an ArgRefWord.

tightly integrated in mbeddr, the distinction makes no sense and I use the two terms
interchangeably.

4 http://github.com/slisson/mps-multiline
5 http://github.com/slisson/mps-richtext

Proceedings of MPM 2013 19

Integrating Prose as First-Class Citizens with Models and Code

A reference to an argument should be rendered as @arg(argName), so we
have to define an appropriate editor:

[- @arg (%arg%->{name}) -]

The editor defines a list of cells [- -] inside which we define the constant @arg,
followed by the name property of the referenced Argument, enclosed in parenthe-
ses. To restrict this IWord to comments of functions, a constraint is used:

can be child constraint for ArgRefWord {
(node, parent, operationContext)->boolean {
node<> comment = parent.ancestor<DocumentationComment>;
node<> owner = comment.parent;
return owner.isInstanceOf(Function) }

We also define the scope for the arg reference, since only those arguments owned
by the function under which the documentation comment lives are valid targets:

link {arg} scope: (refNode, enclosingNode)->sequence<node<Argument>>) {
enclosingNode.ancestor<Function>.arguments; }

Finally, a generator has to be defined that is used when HTML or LATEXoutput
is generated. In this case we simply override a behavior method that returns the
text string that should be used:

public string toTextString() overrides IWord.toTextString {
"@arg(" + this.arg.name + ")"; }

This completes the implementation. All in all, only 10 lines of code have to be
written (the remaining ones shown above are IDE scaffolding)

3 Integrating Prose with Models

In this section we look at various examples of integrating prose with code, ad-
dressing the challenges discussed in Section 1.

3.1 Requirements Engineering

As discussed in [9], mbeddr’s requirements engineering support builds on the
following three pillars. First, requirements can be collected as part of mbeddr
models and they are persisted along with any other code artifact. A requirement
has an ID, a prose description, relationships to other requirements (refines,
conflicts with) as well as child requirements. Second, the requirements lan-
guage is extensible in the sense that arbitrary additional attributes (described
with arbitrary DSLs) can be added to a requirement. Examples include business
rules or use cases, actors and scenarios. The third pillar is traceability: trace
links can be attached to any program element in any language.

In the context of this paper, the interesting aspect is that the prose descrip-
tion can contain additional nodes, such as references to other requirements (the
§req nodes in Fig. 1). References to actors, use cases and scenarios are also
supported. Since these are real references, they are automatically renamed if the
target element is renamed. If the target element is deleted, the reference breaks
and leads to an error. Referential integrity can easily be maintained.

Proceedings of MPM 2013 20

Integrating Prose as First-Class Citizens with Models and Code

Fig. 1. Requirements descriptions can contain references to other requirements (the
§req node in the text above), as well as references to actors, use cases and scenarios.

Fig. 2. A state machine with a comment attached to it. Inside the comment, we refer-
ence two of the states of the state machine.

Note that the mainstream requirements management tool, DOORS, cannot
embed references in the requirements description, they can only be added as
a separate attribute, which is awkward in terms of the semantic connection
between the text and the reference.

3.2 Code Comments

In classical tools, a comment is just specially marked text in the program code.
As part of this text, program elements (such as module names or function argu-
ments) are mentioned. We observe two problems with this approach. First, the
association of the comment with the commented element is only by proximity
and convention – usually, a comment is located above the commented element
(this is true only in textual editors, graphical modeling tools usually do not have
this problem). Second, references to other program elements are by name only –
if the name changes, the reference is invalid. mbeddr improves on both counts.

First, a comment is not just associated by proximity with the commented
program node, it is actually attached to it. Structurally the comment is a child
of the commented node, even though the editor shows it on top (Fig. 2). If the
element is moved, copied, cut, pasted or deleted, the comment always goes along
with the commented element.

Second, comments can contain IWords that refer to other program elements.
For example, the comment on the state machine in Fig. 2 references two of the
states in the state machine. Some of the words that can be used in comments
can be used in any comment (such as those that reference other modules or func-
tions), whereas others are restricted to comments for certain language concepts
(references to states can only be used in comments on or under a state machine).

Note that some IDEs support real references in comments for a specific lan-
guage (for example, Eclipse JDT renames argument names in JavaDoc comments

Proceedings of MPM 2013 21

Integrating Prose as First-Class Citizens with Models and Code

Fig. 3. This piece of document code uses \code tags to format parts of the text in code
font. It also references C program elements (using the cm and cc tags). The references
are actual, refactoring-safe references. In the generated output, these references are also
formatted in code font.

for functions if an argument is renamed). mbeddr’s support is more generic in
that it automatically works for any kind of reference inside an IWord. This is
important, since a cornerstone of mbeddr is the ability to extend all languages
used in it (C, the state machine language or the requirements language). The
commenting facility must be similarly generic.

3.3 Design Documents

mbeddr supports a documentation language. Like other languages for writing
documents (such as LATEX or Docbook), it supports nested sections, text para-
graphs and images. We use special IWords to mark parts of texts as emphasized,
code-formatted or bold. Documents expressed in this language live inside MPS
models, which means that they can be versioned together with any other mbeddr
artifact. The language comes with generators to LATEX and HTML, new ones (for
example, to Docbook) can be added.

Referencing Code Importantly, the documentation language also supports
tight integration with mbeddr languages, i.e. C, exiting C extensions or any other
language developed on top of MPS. The simplest case is a reference to a program
element. Fig. 3 shows an example.

Embedding Code Code can also be embedded into documents. In the docu-
ment source, the to-be-embedded piece of code is referenced. When the document
is generated to LATEX or HTML, the actual source code is embedded either as
text or as a screenshot of the notation in MPS (since MPS supports non-textual
notations such as tables, not every program element can be sensibly embedded
as text). Since the code is only embedded when the document is generated, the
code is always automatically consistent with the actual implementation.

Visualizations A language concept that implements the IVisualizable in-
terface can contribute visualizations, the context menu for instances of the ele-
ment has a Visualize item that users can select to render a diagram in the IDE.
The documentation language supports embedding these visualizations. As with
embedding code, the document source references a visualizable element. During
output generation, the diagram is rendered and embedded in the output.

4 Extensibility

A hallmark of mbeddr is that everything can be extended by end users (with-
out invasively changing the extended languages), and the prose-oriented lan-

Proceedings of MPM 2013 22

Integrating Prose as First-Class Citizens with Models and Code

Fig. 4. A modular extension of the documentation language that supports the definition
of glossary terms and the relationships between them. Terms can be referenced from
any other prose, for example from comments or requirements.

Fig. 5. An example where variable declarations and equations are integrated directly
with prose. Since the expressions are real C expressions, they are type checked. To
make this possible, the variables have types; these are specified in the properties view,
which is not shown in the figure. To provoke the type error shown above, boolean has
been defined as the type of the N variable.

guages can be extended as well. The extension mechanism that uses new lan-
guage concepts that implement the IWord interface has already been discussed.
This section discusses a few example of further extensions, particularly of the
documentation language (Section 3.3).

Glossaries An obvious extension is support for glossaries. A glossary defines
terms which can be referenced from other term definitions or from regular text
paragraphs or even requirements or code comments. Such term definitions are
subconcepts of AbstractParagraph, so they can be plugged into regular docu-
ments. Fig. 4 shows an example of a term definition.

The term in Fig. 4 also shows how other terms are referenced using the
[Term|Text] notation (such references, like others, are generated to hyperlinks
when outputting HTML). The first argument is a (refactoring-safe) reference to
the target term. The optional second argument is the text that should be used
when generating the output code; by default, it is the name of the referenced
term. Terms can also express relationships to other terms using the ->(...)
notation, which creates a dependency graph between the terms in the glossary.
A visualization is available that renders this graph as a diagram.

Formulas Another extension adds variable definitions and formulas to prose
paragraphs (Fig. 5) which are exported to the math mode of the respective
target formalism. However, the variables are actual referenceable symbols and
the equations are C expressions. Because of this, the C type checker performs
type checks for the equations (see the red underline under N in Fig. 5). mbeddr’
interpreter for C expressions can be plugged in to evaluate the formulas. This
way, live test cases could be integrated directly with prose.

Going Meta Section 3.3 has demonstrated how programs written in arbitrary
languages can be integrated (by reference or by embedding) with documents
written in the documents language. However, sometimes the language defini-
tions themselves need to be documented, to explain how to develop languages in
MPS/mbeddr. To make this possible, a modular extension of the documentation

Proceedings of MPM 2013 23

Integrating Prose as First-Class Citizens with Models and Code

language can be used to reference or embed language implementation artifacts.
Similarly, documentation language documents can be embedded as well, to write
documents that explain how to use the documentation language. The user guide
for the documentation language6 has been created this way.

Cross-Cutting Concerns mbeddr supports two cross-cutting concerns that
can be applied to any language. Since the documentation language is just an-
other language, it can be used together with these cross-cutting languages. In
particular, the following two facilities are supported. First, requirements traces
can be attached to parts of documents such as sections, figures or paragraphs.
This way, requirements traceability can extend into, for example, software de-
sign documents. This is an important feature in safety-critical contexts. Second,
mbeddr supports product line variability. In particular, static negative variability
is supported generically. Using this facility, documents such as user guides, con-
figuration handbooks or software design documents can be made variant-aware
in the same way as any other product line implementation artifact.

Generating Documents Documents cannot just be written manually, they
can also be generated from other artifacts. For example, mbeddr’s requirements
language supports generating reports, which contain the requirements them-
selves, the custom attributes (via specific transformations) and trace informa-
tion. This feature is implemented by transforming requirements collections to
documents, and then using the generators that come with the documentation
language to generate the PDFs.

5 Related Work

The idea of more closely integrating code and text is not new. The most promi-
nent example is probably Knuth’s literate programming approach [4], where code
fragments are embedded directly into documents; the code can be compiled and
executed. While we have built a prototype with mbeddr that supports this ap-
proach, we have found referencing the code from documents (and generating it
into the final PDF) more scalable and useful.

The closest related work is Racket’s Scribble [2]. Following their paradigm
of documentation as code, Scribble supports writing structured documentation
(with Latex-style syntax) as part of Racket. Racket is an syntax-extensible ver-
sion of Scheme, and this extensibility is exploited for Scribble. Scribble supports
referencing program elements from prose, embedding scheme expressions (which
are evaluated during document generation) and embedding prose into code (for
JavaDoc-like comments). The obligatory literate programming example has also
been implemented. The main differences between mbeddr’s approach and Racket
Scribble is that Scribble is implemented as Racket macros, whereas mbeddr’s fa-
cility are based on projectional editing. Consequently, the range of document
styles and syntactic extensions is wider in mbeddr. Also, mbeddr directly sup-
ports embedding figures and visualizations.

6 http://bit.ly/10gUs0q

Proceedings of MPM 2013 24

Integrating Prose as First-Class Citizens with Models and Code

Essentially all mainstream tools (incl. modeling tools, requirements manage-
ment tools or other engineering tools) treat prose as an opaque sequence of
characters. None of the features discussed in this paper are supported. The only
exception are Wiki-based tools, such as the Fitnesse tool for acceptance testing7.
There, executable test cases are embedded in Wiki code. A big limitation is that
there is no IDE support for the (formal) test case description language embedded
into the Wiki markup. mbeddr provides this support for arbitrary languages.

One exception to the statement made above is Mathematica8, which supports
mixing prose with mathematical expressions. It even supports sophisticated type
setting and WYSIWYG. Complete books, such as the Mathematica book itself,
are written with Mathematica. mbeddr does not support WYSIWYG. However,
mbeddr documents support integration with arbitrary MPS-based languages,
whereas Mathematica has a fixed programming language.

One way of integrating program code and prose that is often used in book
publishing are custom tool chains, typically based on LATEX or Docbook. Program
files are referenced by name from within the documents, and custom scripts copy
in the program code as part of the generation of the output. mbeddr’s approach
is much more integrated and robust, since, for example, even the references to
program fragments are actual references and not just names.

mbeddr’s approach to integrating references (to, for example, text sections,
figures or program nodes) into documents relies on user-supplied mark up: a ref-
erence must be inserted explicitly, either when creating the document, or using
a refactoring later. mbeddr makes no attempt at automatically understanding,
parsing or checking natural language (in contrast to some approaches in re-
quirements engineering [1,3]). My experience is that such approaches are not
yet reliable enough to be used in everyday work. However, it would be possible
to add automatic text recognition to the system; an algorithm would examine
existing text-only documents and introduce the corresponding nodes. We have
built a prototype for the trivial case where a term is referenced from another
term in the glossaries extension: by running a quick fix on a glossary document,
plain-text references to terms are replaced by actual term references.

mbeddr relies on MPS, whose projectional editor is one of the core enablers for
modular language extension. This means that arbitrary language constructs with
arbitrary syntax can be embedded into prose blocks. I have seen a prototype of
embedding program nodes into comments in Rascal9. However, at this point I do
not understand in detail the limitations and trade-offs of this approach. However,
one limitation is that the syntax is limited to parseable textual notations.

6 Conclusion

mbeddr is a scalable and practically usable tool stack for embedded software de-
velopment. However, a secondary purpose of mbeddr is to serve as a convincing

7 http://fitnesse.org/
8 http://www.wolfram.com/mathematica/
9 http://www.rascal-mpl.org/

Proceedings of MPM 2013 25

Integrating Prose as First-Class Citizens with Models and Code

demonstrator for the generic tools, specific languages paradigm, which empha-
sizes language engineering over tool engineering: instead of adapting a tool for a
specific domain, this paradigm suggests to use generic language workbench tools
and then use language engineering for all domain-specific adaptations.

As this paper shows, this approach can be extended to prose. Through the
ability to embed program nodes into prose, prose can be checked for consistency
with other artifacts. Of course, this does not address all aspects of prose. For
example, consider a program element (such as a function) that is referenced
from a prose document that explains the semantics of this program element.
If the semantics changes (by, for example, changing the implementation of the
function), the explaining prose does not automatically change. However, Find
Usages can always be used to find all locations where in prose a program element
is referenced. This simplifies the subsequent manual adaptations significantly.

Since prose is now edited with an IDE, some of the IDE services can be used
when editing documents: go-to-definition, find usages, quick fixes, refactorings
(to split paragraphs or to introduce term references in prose) or visualizations.
Taken together with the direct integration with code artifacts, this leads to a very
productive environment for managing requirements or writing documentation.

Acknowledgements I thank the mbeddr and MPS development teams for
creating an incredibly powerful platform that can easily accommodate the fea-
tures described in this paper. We also thank Sascha Lisson for building develop-
ing the multiline and richtext plugins for MPS.

References

1. V. Ambriola and V. Gervasi. Processing natural language requirements. In Pro-
ceedings of the 12th IEEE Intl. Conf. on Automated Software Engineering, 1997.

2. M. Flatt, E. Barzilay, and R. B. Findler. Scribble: closing the book on ad hoc docu-
mentation tools. In Proceedings of the 14th ACM SIGPLAN international conference
on Functional programming, ICFP ’09, New York, NY, USA, 2009. ACM.

3. V. Gervasi and B. Nuseibeh. Lightweight validation of natural language require-
ments. Software: Practice and Experience, 32(2):113–133, 2002.

4. D. E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.
5. D. Ratiu, M. Voelter, B. Schaetz, and B. Kolb. Language Engineering as Enabler

for Incrementally Defined Formal Analyses. In FORMSERA’12, 2012.
6. M. Voelter. Language and IDE Development, Modularization and Composition

with MPS. In 4th Summer School on Generative and Transformational Techniques
in Software Engineering (GTTSE 2011), LNCS. Springer, 2011.

7. M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: Instantiating a language
workbench in the embedded software domain. Journal of Automated Software En-
gineering, 2013.

8. M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an extensible c-based
programming language and ide for embedded systems. In Proc. of the 3rd conf.
on Systems, programming, and applications: software for humanity, SPLASH ’12,
pages 121–140, New York, NY, USA, 2012. ACM.

9. M. Voelter and F. Tomassetti. Requirements as first-class citizens: Tight integration
between requirements and code. In Proc. of the 2013 Dagstuhl Workshop on Model-
Based Development of Embedded Software, 2013.

Proceedings of MPM 2013 26

Integrating Prose as First-Class Citizens with Models and Code

Towards a Multi-Domain Model-Driven
Traceability Approach

Masoumeh Taromirad, Nicholas Matragkas, and Richard F. Paige

Department of Computer Science, University of York, UK
[mt705,nicholas.matragkas,richard.paige]@york.ac.uk

Abstract. Traceability is an important concern in projects that span
different engineering domains. In such projects, traceability can be used
across the engineering lifecycle and therefore is multi-domain, involving
heterogeneous models. We introduce the concept and challenges of multi-
domain traceability and explain how it can be used to support traceability
scenarios. We describe how to build a multi-domain traceability frame-
work using Model-Driven Engineering. The approach is illustrated in the
context of the safety-critical systems engineering domain where multi-
domain traceability is required to underpin certification arguments.

1 Introduction

Traceability is a key element of any rigorous software development process, pro-
viding critical support for many development activities. In some cases, traceabil-
ity is mandated so as to comply with regulations, e.g., in civil aviation projects.
However, there are substantial challenges associated with its use in practice, in-
cluding identifying the most appropriate artefacts to trace. This makes it difficult
to define a generic and effective traceability framework – consisting of a Trace-
ability Information Model (TIM), traceability information, and analysis tools –
to be used to manage trace information for a specific project; such frameworks
are thus still rarely defined and used [1].

In many contexts, such as projects developing high-assurance software sys-
tems, different kinds of traceability are mandated [2]. Such projects address mul-
tiple engineering domains (e.g., software, mechanics and safety). Each domain
has its own stakeholders, artefacts, tools, and goals. Stakeholders of any single
domain may be concerned with both intra- and inter-domain traceability. For ex-
ample, a software developer will be interested in traces from system to software
requirements, while a safety engineer will want to trace relationships between
fault tree analysis, software requirements and verification artefacts. Considering
that traceability may be required throughout the project lifecycle, any trace-
ability framework needs to operate across the project’s different domains. In
this respect, traceability is a multi-domain concern.

The core element of any traceability framework is a traceability informa-
tion model (TIM) which provides guidance as to which artefacts to collect and
which relations to establish in order to support traceability goals [3]. Traceability

Proceedings of MPM 2013 27

Fig. 1. A traceability information model for a safety-critical system [2]

goals, e.g., ‘traceability of designs against requirements’ and ‘track the alloca-
tion of requirements to system components’, specify purposes for accumulating
traceability data. A TIM may refer to artefacts (documents, models, databases,
project activities context) from different domains or require relationships be-
tween multiple domains.

The main contribution of this research is a model-driven approach to support
multi-domain traceability. It introduces detailed steps that can be used to build
a multi-domain traceability framework. We express a TIM as a domain-specific
modelling language and use model-driven engineering (MDE) techniques to de-
rive traceability information from sources, record the information in a traceabil-
ity model (TM), and finally perform traceability analyses, based on traceability
goals. Section 3 describes the steps in more detail and gives potential ways in
which MDE can help support them.

2 Motivation

To introduce our approach, we give an example from the safety-critical systems
domain. We then highlight the open challenges for multi-domain traceability.

2.1 Example

Figure 1 depicts a basic TIM for a safety-critical system using a UML class
diagram [2]. The traceable entities include artefacts from two domains: software
development and safety engineering.

Proceedings of MPM 2013 28

Towards a Multi-Domain Model-Driven Traceability Approach

Typical software development artefacts are seen along the left side of the dia-
gram: for example, software requirements are derived from system requirements;
classes are designed according software requirements and implemented by code.
Meanwhile, safety engineering requires additional artefacts to be produced and
traced to the general software development artefacts; these are shown mainly on
the right hand side of the diagram. For example, the preliminary hazard artefact
documents hazards that could lead to system failure. Such hazards are modelled
in more detail in a fault tree which looks at events that could lead to the haz-
ards. System Requirements are specified to prevent hazards from occurring by
preventing the unwanted events documented in the Minimum Cut Sets. The
Software Requirements may also have to comply with Regulatory Codes.

Although the TIM captures all the traceable components in one metamodel
and ultimately will be instantiated in a single traceability model (TM), most
of the traceability information needed to build the TM is available in differ-
ent domains. For example, the relationship between ‘System Requirement’ and
‘Software Requirement’ is an elementary trace link specified in general software
development projects (regardless of the type of the project). The link between
‘Formal State-Based Model’ and ‘Assumption’ is a link type normally provided
in the safety engineering domain. Accordingly, each domain includes traceability
information related to that domain.

In this respect, to capture traceability information and generate a traceabil-
ity model (TM), we need to find ways that (re-)use existing information and
minimises rework.

2.2 Challenges

A review of the literature suggests several challenges for multi-domain traceabil-
ity not fully addressed by existing approaches.

Domain-specific Traceability Information Traceability information is cap-
tured and collected based on a TIM. As illustrated in the above example, each
domain includes traceability information specific to that domain. For a systems
engineering project, each domain (and hence each TIM) can provide part of the
information needed to generate a complete traceability model. In this respect,
local traceability information is essential to capture and record project-wide
traceability information, though there is no guarantee that it will be sufficient
to achieve traceability goals.

Heterogeneous Traceability Information Usually, available traceability in-
formation is provided in different formats, including documents (plain text or
structured languages), models (e.g. UML class diagrams), databases, tools, or
XML documents. To collect the traceability information using existing available
information, we need to find a systematic approach to extract the required in-
formation and integrate them as the ultimate traceability information. In this
context, integration of information from various domains which are expressed in
different and heterogeneous formats is an important concern.

Proceedings of MPM 2013 29

Towards a Multi-Domain Model-Driven Traceability Approach

Missing Inter-domain Traceability Information As mentioned earlier, we
cannot just rely on the available information as it normally does not cover
inter-domain information. Usually, the relationships between domains are de-
fined informally or incompletely which results in inconsistencies and redundan-
cies among domains. Specifying and recording the inter-domain relations are of
the essential needs to accumulate the traceability information.

Separation of Concern (SoC) People are interested in their own domain
and usually prefer to work with familiar tools or techniques; the existing tools,
models, and techniques for a specific domain which are specialised for that do-
main. Therefore, it is not reasonable to require all stakeholders to work with the
traceability model directly.

Tool Support Tool support for a traceability framework is essential to max-
imise the return on investment in building a TIM. However, practical guidance
on how to define and implement a TIM, and use it in practice, is still a poorly
understood issue [1]; the effort needed for specifying and managing a TIM and
the tools which let the user implement it are the main concerns of supporting
traceability.

3 Multi-Domain Traceability

This section introduces our approach to support multi-domain traceability. It
defines a traceability framework, and discusses how a model-driven approach to
traceability can help to effectively support the approach. Our approach con-
structs a modelling language to describe the traceability information model
(TIM). We identify and specify the relationships between TIM and existing
project information sources. Traceability information is captured and instanti-
ated in a single traceability model (TM) that conforms to the TIM and is used
to perform traceability analyses. Fig. 2 illustrates the proposed approach.

3.1 Traceability Information Model

The core element of any traceability framework is a TIM, which identifies the
information required to support traceability goals, such as which artefacts should
be traced, the level of detail of the traces, and how traceability links should be
classified regarding their usage, context or semantics [3]. So, the first step to
define a traceability framework is to define a suitable TIM that supports project
traceability goals.

In our approach, the TIM is described as a modelling language, and is there-
after used to generate traceability models. Fig. 1 shows an example TIM de-
scribed as a UML class diagram.

Proceedings of MPM 2013 30

Towards a Multi-Domain Model-Driven Traceability Approach

Fig. 2. The proposed model-driven approach to multi-domain traceability

3.2 Traceability Information

Once the TIM has been defined, traceability information is collected and recorded
in a traceability model. In our approach, the traceability model is built on top of
the other models, generated automatically (by a query), not containing any infor-
mation that cannot be regenerated automatically. We consider the TM as a view
similar to ’view’ in database context in which view is defined as a dependent
object over some tables and theoretically generated on-demand. A single TM
provides a coherent view of the traceability information; using a diverse set of
traceability information sources (usually represented in heterogeneous formats)
is one of the main problems in working with trace links [4]. The TM unifies the
way in which the traceability information can be used to perform traceability
analyses.

We propose the following steps and activities to build the traceability model:

Step 1: Identify the available information. Based on the TIM, available infor-
mation sources are gathered to find out how much of the required information
is provided and available, in which ways, and how it can be used. As a result,
the available information (models, trace link types both within and between
domains) and missing information (models, trace link types, . . .) is identified.

Step 2: Add the missing information. Based on the results of step 1, we com-
plete the information sources to provide the missing information. The missing
information can be divided into two parts: information limited to one domain
and that which relates to multiple domains, such as inter-domain trace link
types. We elaborate on this in more detail.

Step 2.1: Add the missing information from one domain. To complete the
missing information in one domain, the following options are available:

Proceedings of MPM 2013 31

Towards a Multi-Domain Model-Driven Traceability Approach

 Traceability Information Model (TIM)

Domain Y

PartialTIM YZ1-1

! !

Metamodel
MMY-1

Domain Z

Metamodel
MMZ-1

Domain'X'

Metamodel
MMX-1

PartialTIM YZ1-1

Fig. 3. Partial Traceability Information Models

– complete/extend existing metamodels in each domain by adding missing
objects, trace link types, and validation rules, and then update or regenerate
the models.

– define new metamodels and create new models within one domain, whenever
required.

Step 2.2: Add the inter-domain missing information. After completing the
required information for each domain, the inter-domain information are consid-
ered. One of the main missing information would be the trace link types defined
between domains which can not be easily captured and recorded. The available
trace link types are usually limited to one domain. To represent the inter-domain
traces, we propose building a traceability model between pairs of domains, wher-
ever required, to provide the missing trace links. To do this, we need to define a
traceability information model for each required traceability model. Each trace-
ability information model – a partial TIM – is a submodel of the main TIM.
Fig. 3 shows the relationship between partial TIMs and the main TIM.

Step 3: Define the mapping between TIM and the information sources. Once
all the source models for the traceability information are available, we define the
mapping between these models and the TIM. The mapping explicitly specifies
how each concept (object and trace link type) in the TIM is related to concepts in
the source models. The mapping is used to collect information and generate the
traceability model. The mapping is also used to interpret the result of traceability
analyses, performed on TM, in terms of source models in different domains. The
mapping is similar to a Correspondence Model (CM) in model composition [5].
A CM is a model that explicitly describes the relationships between elements of
different models, but is constructed specifically for model comparison or merging
processes.

Step 4: Generate the traceability information. Finally, based on the mapping,
the traceability model is generated (as depicted in Fig. 4) The traceability model
is created so as to minimise redundancy and inconsistency; it captures the min-

Proceedings of MPM 2013 32

Towards a Multi-Domain Model-Driven Traceability Approach

Metamodels*
(MMs,*PTIMs)*

Traceability*Information*Model*
(TIM)*Mapping'

Me
tam

od
el*
Le
ve
l*

Mo
de
l*L
ev
el*

Source*Models*
(Ms,*TMs)*

M1*

M2*

TM12* Automatic*Model*
Transformation*

Tr
ac
ea
bil
ity
*M
od
el*

(T
M)
*

In
pu
t* * Target*Model*

!
!

Model*Enhancement*
!

!

Fig. 4. Generating the traceability model (TM)

imum information needed. For example, it may just contains reference to the
source elements in the source models instead of redefining these elements.

As mentioned before, the required traceability information could be repre-
sented in various formats (e.g. plain text, XML files) with different underlying
structures and metamodels. To support analyses and an overall MDE approach
to developing tools, we need to provide a MDE view of the non-model informa-
tion (wherever it is possible and reasonable) as a prerequisite of building the
TM; this can be challenging. However, we focus on those models that are avail-
able and that information which can be automatically transformed to models:
there are several types of model in different domains (e.g., requirements mod-
els, safety analysis models) that provide substantial traceability information.
Our approach does not limit the types of model that can be considered in the
traceability framework.

3.3 Traceability Analysis

Traceability information is captured and recorded to support traceability goals.
Usually, traceability goals are explained in very abstract terms. For example,
they can be expressed ‘traceability of designs against requirements’ or ‘track the
allocation of requirements to system components’. To be able to support the
goals, we need to define concrete traceability analyses which can be applied on
the traceability information to determine whether traceability goals are satisfied.
In this way, each traceability goal may result in one or more traceability analyses
which are defined in terms of traceability and the TIM.

Proceedings of MPM 2013 33

Towards a Multi-Domain Model-Driven Traceability Approach

We can use generic query languages (e.g. SQL) and model management lan-
guages to express the traceability analyses, which require knowledge of the un-
derlying structures in which the traceability information is stored. As an alter-
native, we suggest defining a task-specific query language to express traceability
analyses precisely. A task-specific query language – bound to the TIM – would
hide the underlying complexity and diversity of the underlying information rep-
resentation.

3.4 Implementation

Typically, an implementation of a TIM will be in the form of a traceability
metamodel, which will be used to create traceability models. It is these TMs
that model the trace links between concepts and artefacts in a project.

In our approach, the TIM is defined as a modelling language; this can be
done with any metamodelling technology. Model management tools can then
be used to query and manipulate traceability models. For example, the Ecore
metamodelling language [6] and Epsilon [7] can be used to describe the trace-
ability metamodel and work with models, respectively. We implemented a basic
TIM (for a safety case study) using Ecore, and used Epsilon (specifically EOL,
ETL, EVL) to build a TM, query the traceability model, execute constraints on
models, and generate analysis reports.

3.5 Discussion

The model-driven approach to TIM definition and implementation enables us to
work with arbitrary engineering models and effectively use them. The approach
uses the domain-specific traceability information, extract the required informa-
tion from them regarding the TIM, and generate a TM for the project. The TM
is a view built automatically through model management operations over the
available models in different domains. Throughout the process to generate the
TM, missing traceability information, mainly inter-domain traces, is identified
and added to the existing information.

The TIM and TM will allow the traceability users to ignore the underlying
information complexity, data structures, and information representation format
of artefacts, instead allowing them to focus on achieving traceability goals. The
proposed approach also supports separation of concerns: different artefacts from
different domains that are being traced do not need to be combined (possibly
artificially) in one overall description, and can be managed separately while
traceability information is defined.

One of the main concerns with traceability implementations and tools is man-
aging change, for example, changes in the TIM. The traceability framework that
we have developed is also subject to change and evolution. Based on an analysis
of the artefacts involved in the traceability framework, and the types of change
we can encounter in MDE, we focus on the following changes to the traceability
framework: change in TIM, change in domain metamodels, change in domain
models. Change in the TIM is the most expensive change as it requires updating

Proceedings of MPM 2013 34

Towards a Multi-Domain Model-Driven Traceability Approach

most of the involved artefacts (e.g. models, metamodels, and mapping). Change
in the metamodels in each domain results in change in the intermediate mod-
els and the mapping. Finally for the change in domain models, the traceability
model is regenerated automatically based on the mapping and new models.

4 Related Work

There are challenges associated with defining a TIM, such as finding the ap-
propriate level of granularity; as such, TIMs are often considered to be project
specific. Researchers agree on the value of a project-level definition of a TIM
as it facilitates a consistent and ready-to-analyse set of traceability relations for
a project [4]. As discussed in [8], project characteristics are critical in finding
the necessary and sufficient amount of required information which should be
recorded to support the traceability goals.

[9] highlights the importance of a project-specific TIM and suggests a UML-
based approach to define, implement, and use it. [2] proposes a usage-centred
traceability process which uses UML class diagrams to define traceability strate-
gies for a project. [2, 10–12] each focus on traceability in the safety domain and
propose traceability metamodels and queries for that domain.

Another strand of traceability research is on reducing the effort associated
with managing traceability. Egyed et al. [8] introduce value-based requirements
traceability to balance cost and benefits related to capturing and maintaining
traceability. [13] proposes dynamic requirements traceability to minimize the
need for creating and maintaining explicit links and reduce the effort required to
perform manual trace. In this context, some studies take different approaches,
such as improving tools in order to decrease the cost of providing traceability. [14]
provides a tool-based approach for agile requirements capture and traceability.

5 Conclusion and Future Work

This paper introduced multi-domain traceability and highlighted its fundamen-
tal concerns. Traceability is multi-domain as it is often required to capture the
artefacts and trace links either within one or across many domains. We pre-
sented a model-driven approach to constructing and managing a framework to
support traceability activities. We showed how to define a TIM and express it
as a traceability metamodel, to be used later to capture and record traceability
information.

We observed that there are several available information sources (mainly
models) which provide a considerable amount of required traceability informa-
tion. A traceability model is generated as a view over all the other project
models, providing a coherent view of traceability, and unifying the way in which
information is used (e.g. traceability analyses). The mapping between the TM
and the other models is specified and used to generate the traceability model.

We identified that change is an important concern and we need to provide
more detailed and precise support. Existing model migration and co-evolution

Proceedings of MPM 2013 35

Towards a Multi-Domain Model-Driven Traceability Approach

techniques could be helpful to cope with change effectively. It may also be fruitful
to create TIMs using the traceability metamodelling language approach in [15].

Improved tool support for TIMs and TMs is needed. Currently, the TIM can
be implemented as a metamodel in an arbitrary technology, and then existing
model management languages can be used. But, as discussed in Section 3.4,
providing traceability-specific tools and technical support would improve the
traceability framework. A Traceability Query Language (TQL) to describe the
traceability analyses, a DSL to specify the mapping between the main TIM
and the other metamodels, and automatic generation of transformation rules
based on the mapping are examples of potential improved support. We plan to
work on this next while rolling out detailed case studies in domains that require
traceability (particularly safety, health informatics, and security).

References

1. Mäder, P., Gotel, O., Philippow, I.: Motivation Matters in the Traceability
Trenches. In: Proc. RE’09. (2009) 143–148

2. Cleland-Huang, J., Heimdahl, M., Hayes, J.H., Lutz, R., Maeder, P.: Trace Queries
for Safety Requirements in High Assurance Systems. In: Proc. REFSQ’12. (2012)
179–193

3. Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability.
IEEE Transactions on Software Engineering 27 (2001) 58–93

4. Mäder, P., Cleland-Huang, J.: A Visual Traceability Modeling Language. In: Proc.
MoDELS’10. (2010) 226–240

5. Bézivin, J., Bouzitouna, S., Fabro, M.D.D., Gervais, M.P., Jouault, F., Kolovos,
D., Kurtev, I., Paige, R.F.: A canonical scheme for model composition. In: Proc.
ECMDA-FA’06. (2006) 346–360

6. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. 2. edn. Addison-Wesley, Boston, MA (2009)

7. Kolovos, D., Rose, L., Paige, R.: The Epsilon Book. (2010)
8. Egyed, A., Grunbacher, P., Heindl, M., Biffl, S.: Value-Based Requirements Trace-

ability: Lessons Learned. In: Proc. RE’07. (2007) 240–257
9. Mäder, P., Gotel, O., Philippow, I.: Getting Back to Basics: Promoting the Use of a

Traceability Information Model in Practice. In: Proc. TEFSE’09, IEEE Computer
Society (2009) 21–25

10. Peraldi-Frati, M.A., Albinet, A.: Requirement Traceability in Safety Critical Sys-
tems. In: Proc. CARS’10, ACM (2010) 11–14

11. Sanchez, P., Alonso, D., Rosique, F., Alvarez, B., Pastor, J.: Introducing Safety
Requirements Traceability Support in Model-Driven Development of Robotic Ap-
plications. IEEE Transactions on Computers 60(8) (2011) 1059 –1071

12. Katta, V., Stlhane, T.: A Conceptual Model of Traceability for Safety Systems.
Technical report, Laboratory of Algorithmics, Complexity and Logic (2012)

13. Cleland-Huang, J., Settimi, R., Duan, C., Zou, X.: Utilizing Supporting Evidence
to Improve Dynamic Requirements Traceability. In: Proc. RE’05, IEEE Computer
Society (2005) 135–144

14. Lee, C., Guadagno, L.: FLUID: Echo Agile Requirements Authoring and Trace-
ability. In: Proc. MWSEC’03. (2003) 50–61

15. Matragkas, N.: Establishing and Maintaining Semantically Rich Traceability: A
Metamodelling Approach. PhD thesis, University of York (2011)

Proceedings of MPM 2013 36

Towards a Multi-Domain Model-Driven Traceability Approach

A Hyperdense Semantic Domain for
Discontinuous Behavior in Physical System

Models

Pieter J. Mosterman, Gabor Simko, Justyna Zander

MathWorks, Vanderbilt University, HumanoidWay

Abstract. Multiple time models have been proposed for the formaliza-
tion of hybrid dynamic system behavior. The superdense notion of time
is a well-known time model for describing event-based systems where sev-
eral events can occur simultaneously. Hyperreals provide a domain for
defining the semantics of hybrid models that is elegantly aligned with
first principles in physics. This paper discusses the value of both time
models and shows how approximating different physical effects is best
expressed over different domains. Finally, the formalization and interac-
tion of two types of discontinuities observed in hybrid systems, mythical
modes and pinnacles, are explored. This analysis helps specify seman-
tics that combine continuous-time behavior with discontinuities in the
computational system.

1 Introduction

In recent history, the complexity of engineered systems has grown by leaps and
bounds, largely because of embedded computation. While embedded systems
are well understood and supported by Model-Based Design [14], Cyber-Physical
Systems (CPS) build on a general paradigm of ’openness’ [18] that challenges
the current paradigm of system design. This openness manifests, for example, by
an application that may execute on different platforms or feature functionality
that may be provided by distinctly separate systems. Because it is open, such a
CPS cannot rely on integration testing (e.g., [20]) as it is part of the traditional
paradigm for embedded system design.

Given the delicate interaction between various component and subsystem
behaviors in their implementation, addressing system integration challenges with
models is not straightforward. In particular, it is essential to create ‘good’ models
of the physics, that is, models that embody correctly the pertinent physical
effects while not giving rise to behaviors that have no physical manifestation. The
desiderata for a formalism to model physical systems thus require domain-specific
models that inherently reflect the laws of physics. Moreover, the models of the
physics must be employable in concert with models of various paradigms such
as those for computational and networking functionality in the overall system.

For system-level studies, physics models are generally well described by conti-
nuous-time behavior (e.g., based on the foundations of thermodynamics [3, 6]).

Proceedings of MPM 2013 37

At this level, however, physical phenomena that are often part of actuators on the
interface with the information technology domain (e.g., electrical switches, hy-
draulic valves, clutches) typically operate at a time scale too fast to be captured
in continuous detail. Instead, such fast behavior is modeled as discontinuous
change.

The formalization of behaviors in physical system models builds on a seman-
tic domain that combines evolution in a continuous domain, extended with an
integer domain for sequences of mode changes [5, 13]. The resulting R×N domain,
so-called superdense time [11], however, is not sufficiently rich to allow a precise
mathematical description of the intricate behavior in physical system models
around discontinuities.1 Specifically, an ontology of behavior in hybrid dynamic
system models of physical systems developed in previous work [15] includes a
class of behaviors called mythical modes [16] that maps well onto superdense
time. However, another class of behaviors called pinnacles requires physical time
to advance during discontinuous change, and, therefore, is not amenable to em-
ploying superdense time as a semantic domain.

Related work [1, 2, 9] has turned to hyperreals from nonstandard analysis [10]
to define semantics of hybrid dynamic systems. In this paper, the hyperreals
are considered as a semantic domain that supports pinnacles. In combination
with an integer domain for mythical modes, this leads to a hyperdense time
domain that supports the various classes of behavior found in hybrid dynamic
system models of physical systems. The mathematical formalization is mapped
onto a computational implementation that allows for generation of consistent
and physically meaningful behavior of interactions between various classes of
discontinuities.

Section 2 presents the notion of continuous-time interacting with discontinu-
ities in physical system models. Bond graphs are the formalism to represent these
phenomena. Further, pinnacles and mythical modes are introduced in detail and
related to the notions of superdense and hyperreal time. Section 3 discusses the
interactions among the different modes. Semantics of discontinuous change is ex-
plained based on Newton’s cradle modeled as bond graphs. Section 4 concludes.

2 Discontinuities in Physical System Models

At a macroscopic level, physical systems are well modeled as continuous-time
systems [7]. Continuous phenomena that occur at a time scale much faster than
the behavior of interest can be approximated by discontinuities. This section first
introduces bond graphs [17] as a formalism to model the continuous-time behavior
of physical systems. Next, an ideal switching element is added to represent the
discontinuity and form hybrid bond graphs [12].

1 Note that superdense time is typical in a computational approximation of the math-
ematical representation. However, floating point numbers then represent the contin-
uous domain and the approximation of the continuous domain is in fact not dense.

Proceedings of MPM 2013 38

A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models

2.1 Bond Graphs

Across physics domains (e.g., electrical, hydraulic, thermal, chemical, etc.) ther-
modynamics identifies two types of variables subject to dynamic behavior repre-
senting either: (i) extensive quantities or (ii) intensive quantities. The dynamics
of extensities and intensities are related by conduction, that is, when there is a
difference in intensities, a change in extensity follows. For example, a difference
in velocities between two bodies results in a force acting between them that
causes a change in momentum (F = mdv

dt = dp
dt). The change of energy, power,

as the product of the intensity difference, effort, and its corresponding change
in extensity flow then provides a general notion of dynamics across physics do-
mains. For example, v · F equates power much like in the electrical domain the
product of the intensity difference (voltage, v) and change of extensity (current i)
equates power. Consequently, any change in dynamic variable values is the result
of an effort, e, and a flow, f , acting. Moreover, there are two basic energy-based
phenomena: (i) storage of either effort (C) or flow (I) and (ii) dissipation (R).
Finally, ideal sources of effort (Se) and of flow (Sf) define the model context.

Behavior of the connections then relates the efforts and the flows of all in-
teracting phenomena such that the sum of their product equates 0 (so there is
neither dissipation nor storage),

∑
i ei · fi = 0. The two orthogonal implementa-

tions of this are that either all efforts are the same while the flows sum to zero,
or the converse. In the electrical domain, this corresponds to either Kirchhoff’s
current law or Kirchhoff’s voltage law. In bond graph terminology these connec-
tions are represented by junctions, the former by a 0 junction (∀i 6=jei = ej and∑

i fi = 0) and the latter by a 1 junction (∀i6=jfi = fj and
∑

i ei = 0).

Introducing discontinuities into bond graphs requires an idealized form of dis-
continuous change in dynamic behavior, which is well represented by a reconfigu-
ration of the junction structure because this structure is ideal. This idealized re-
configuration amounts to a junction between phenomena being active or not [19].
In other words, a 0 junction can be active (∀i6=jei = ej and

∑
i fi = 0) or not

(∀iei = 0) and a 1 junction exhibits the dual behavior when active (∀i6=jfi = fj
and

∑
i ei = 0) or not (∀ifi = 0). Note that when a junction is not active, indeed

no power flows across it. These junctions that can change their mode from active
(on) to inactive (off) are called controlled junctions.

2.2 The Logic of Discontinuities in Physics Models

A controlled junction is equipped with a finite state machine (FSM) that deter-
mines the junction on or off mode, which involves capturing: (i) how the state of
the FSM maps onto the on and off mode of the junction and (ii) how the phys-
ical quantities map onto transition conditions of the FSM. Continuity of power
implies that discontinuities in physical quantities result from a lack of detail in
modeled phenomena, which come in two classes: (i) storage and (ii) dissipation.
The discontinuous behavior that emerges in turn for each of these is discussed
next.

Proceedings of MPM 2013 39

A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models

Pinnacles Multibody collisions are often modeled by discontinuous velocity
changes. In a hybrid bond graph model, a collision between two bodies, m1 and
m2, can be modeled as depicted in Fig. 1. The two bodies are modeled as inertias,
I, connected to a common velocity, 1, junction. These junctions represent the
respective velocities, v1 and v2, which are connected via a common force, 0,
junction. This 0 junction is controlled and when off it exerts force 0 on both
bodies. Upon collision, the 0 junction turns on and it now enforces a velocity
balance such that v1−v2+∆v = 0, where ∆v is computed by an ideal flow source,
Sf , as ∆v = v−1 − v−2 , with the ‘-’ superscript referring to signals immediately
preceding the collision.

Fig. 1. Ideally plastic collision

The FSM controlling the on/off mode of the 0 junction switches from off to
on when the bodies make contact (∆x > 0) and when they are moving toward
one another (∆v > 0). Here the ∆v > 0 is essential to model that there is a
collision as opposed to the bodies only being in contact. As soon as the bodies
move away from one another (∆v < 0), the 0 junction switches to off, irrespective
of whether the bodies are touching.

During behavior generation, when ∆x > 0 && ∆v > 0 holds, a collision
occurs and the flow source enforcing the velocity difference ∆v− becomes active.
Based on this velocity difference and conservation of momentum (

∑
imiv

−
i =∑

imivi), the velocities upon collision can be computed. The state of the velocity
of the bodies is then reinitialized and this leads to the condition ∆v < 0 being
satisfied. Thus, a consecutive mode change occurs where the FSM moves to the
off mode again. In the off mode the bodies behave as independent masses, and,
therefore, no further changes in the physical state occur. Since the discrete mode
changes have thus converged, the system proceeds to evolve in continuous time.

The end result is that the bodies m1 and m2 evolve according to a mode of
continuous evolution. With a point in time at which two mode changes occur:
(i) first, a collision mode occurs that necessitates a reinitialization (discontinu-
ous change) and (ii) second, the system changes back to a mode of continuous
evolution. The collision mode that is active only as a reinitialization of physical
state is referred to as a pinnacle [13].

Mythical Mode Change Now, consider two bodies m1 and m2 with m2 at rest
on top of m1. When at a point in time a large enough external force is exerted
on m1, m1 will start moving with a corresponding velocity. However, if the force

Proceedings of MPM 2013 40

A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models

is sufficiently large that the breakaway friction force Fbreakaway between m1 and
m2 is exceeded, m2 may remain at rest.

A hybrid bond graph model of such a system is depicted in Fig. 2. An ideal
source of effort exerts a force on m1 because connected to the common velocity
1 junction that represents the velocity of m1. When on, a controlled 0 junction
connects the 1 junction that represents the velocity of m2, which forces m1 and
m2 to move with the same velocity. The FSM for the controlled 0 junction shows
that the junction changes to its off mode when the force between m1 and m2

exceeds the breakaway force, F > Fbreakaway. In the off mode, the 0 junction
exerts 0 force on bothm1 andm2, and so they move independently. The FSM also
shows that if the velocity difference between m1 and m2 falls below a threshold
velocity (∆v < vth) the two bodies ‘stick’ to each other again.

Fig. 2. Two bodies with a breakaway force

During behavior generation, initially the 0 junction is in its on mode because
the bodies are at rest with one atop the other and the system evolves in con-
tinuous time. Now, at the point in time where Fin changes discontinuously new
velocities for both m1 and m2 are computed. These velocities, however, may
require a force to be exerted on m2 that causes the condition F > Fbreakaway to
be satisfied and the 0 junction changes to its off mode. In the off mode, if the
velocity difference is sufficiently large, no further mode changes occur and the
system proceeds to evolve in continuous time.

At the point in time at which a discontinuous force is exerted the corre-
sponding velocities and forces are computed and based on the newly computed
values the connection between the two bodies changes mode such that they are
dynamically independent. Since there is no effect of the external force on the
velocity of m2, in order to arrive at the proper values for reinitialization of v1
and v2 the mode where the external force becomes active while m1 and m2 are
still connected is considered to have no effect on the physical state, which is
referred to as a mythical mode [13].

2.3 Introduction to Superdense Time

Time-event sequence is a semantic domain for describing event-based models.
Intuitively, time-event sequences are instanteneous events separated by non-
negative real numbers that describe time durations between the events. Events

Proceedings of MPM 2013 41

A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models

separated by zero duration are simultaneous, but have a well-defined causal or-
dering.

Superdense time was introduced to represent time-event sequences as func-
tions of time [11]. Superdense time is a totally ordered subset of R+ ×N, where
the non-negative real number represents the real time and the natural number
represents the causal ordering. Simultaneous events at time t are mapped to
(t, 0), (t, 1), . . . superdense time instants such that the ordering of the events is
preserved.

The (total) ordering of superdense time is given by the following definitions:
(t, n) = (t′, n′) ⇔ t = t′ ∧ n = n′, and (t, n) < (t′, n′) ⇔ t < t′ ∨ (t = t′ ∧ n <
n′). Therefore, superdense time is a time model that can be used to describe
simultaneous events as functions of time, while retaining the causality of events.

Mythical modes emerge as an artifact of logical inference to determine a new
mode in which physical state can change. As such, mythical modes do not affect
the dynamic state of a physical system. Moreover, different logic formulations
may traverse different mythical modes yet still arrive at the same resulting mode
where physical state changes can occur. Consequently, the logical evaluation
has no corresponding manifestation in the dynamic state of a physical system
and occurs at a single point in time along a logical inferencing dimension. This
behavior corresponds to the superdense semantic domain.

2.4 Introduction to Hyperreal Time

Calculus comprises two different approaches to capturing infinitely small values:
either through the use of limits, or by the extension of the field of reals with
infinitesimals. An infinitesimal ε is any number, such that |ε| < 1

n , for any n ∈ N.
Intuitively, the idea behind hyperreals is to extend the dense field of R with

infinitely many points around each real number such that any real sentence
that holds for one or more real functions also holds for the hyperreal natural
extensions of these functions [10] (transfer principle).

In the ultrapower construction [8], hyperreals are represented as sequences
of real numbers u1, u2, . . . un ∈ Rn with real numbers embedded as constant se-
quences (i.e., a real number r is the sequence of r, r, . . . r ∈ Rn). These sequences,
together with elementwise addition and multiplication operations, form a com-
mutative ring but not a field (since the multiplication of two non-zero numbers
could result in zero: 0, 1, 0, . . .× 1, 0, 1, . . . = 0, 0, . . .). This issue is remedied by
considering equivalence classes of Rn defined by a free ultrafilter U of N.

Let J be a non-empty set. An ultrafilter on J is a nonempty collection U of
subsets of J having the following properties: ∅ /∈ U ; A ∈ U and B ∈ U implies
A ∩ B ∈ U ; A ∈ U and A ⊆ B ⊆ J implies B ∈ U ; for all A ⊆ J , either A ∈ U
or J \ A ∈ U . For any x ∈ J there is a principal ultrafilter {A ⊆ J | x ∈ A}.
Finally, any non-principal ultrafilter is called a free ultrafilter.

Given an ultrafilter U , an equivalence relation =U can be defined over Rn:
u =U v holds for sequences u = u1, . . . , un and v = v1, . . . , vn if and only if
{i | ui < vi} ∈ U . The hyperreals are then defined as the quotient of Rn by U ,
∗R = Rn/U . Now, ∗R is an ordered field for which the transfer principle holds.

Proceedings of MPM 2013 42

A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models

As a semantic domain, hyperreals have the advantage that between any real
time instant there are many ordered time instants. Such extension of time greatly
simplifies the semantic specification of discontinuities, in particular, the descrip-
tion of pinnacles that represent fast physical behaviors where the dynamic state
changes discontinuously. As a result, a pinnacle corresponds to a distinct state
of physical behavior. In physics, such a distinct state corresponds to a distinct
point in time. Because the continuous behavior represented by a pinnacle is con-
sidered to occur infinitely fast, time is considered to advance by an infinitesimal
amount for a pinnacle to implement the physical state change. This behavior
corresponds to the hyperreal domain.

It is a straightforward extension to introduce a hyperdense time model as
a “combination” of the super-dense and hyperreal time models. We define the
hyperdense time ∗R+×N as the product of the non-negative hyperreals and nat-
ural numbers. Such a time model can be used for representing both infinitesimal
time advancements, as well as establishing a causal ordering at any hyperreal
time instant.

3 Semantics of Discontinuity Behavior

The formalized models of time provide the ingredients for a semantic domain
that is sufficiently rich to formalize the pinnacle and mythical mode behavior at
discontinuities as well as combinations.

3.1 Interacting Pinnacles and Mythical Modes

With superdense time as a semantic domain for mythical modes and hyperreals
for pinnacles, models that engender both build on a combined hyperdense se-
mantic domain. The particular value of such a precise semantic description lies in
the ability to develop consistent computational behavior generation algorithms.
Because of the discreteness of computational values, the semantic domain of
values in computational models can represent neither superdense nor hyperreal
domains. Therefore, the behavior generation algorithms must include sophistica-
tion that addresses the differences between superdense and hyperreal semantic
domains. The computational implementation of each of the semantic domains
and their interaction is described based on an illustrative example.

In Fig. 3(a), a variant of Newton’s Cradle is shown. One of the bodies, m3,
has another body, m2, positioned on top of it. Stiction effects between m2 and m3

cause them to behave as one body with combined mass as long as the breakaway
force between them, Fbreakaway, is not exceeded. A body, m1, may collide with
m3 according to a perfectly elastic collision, ∆v32 = −ε∆v−32, where ∆v is the
difference in velocities (v3 − v2) after the collision and ∆v−32 is the difference in
velocities before the collision.

The bond graph model in Fig. 3(b) shows the three masses each connected
to a common velocity junction, 1, with the velocity of the directly connected
mass on all ports. Common force junctions, 0, connect the 1 junctions and are

Proceedings of MPM 2013 43

A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models

(a) Picture model (b) Bond graph model

Fig. 3. Newton’s Cradle for advanced maneuvers

controlled junctions such that a finite state machine determines their on or off
state. A modulated flow source MSf models the collision with restitution ε = 0.8.
If the controlled junction 01 is in its on state, this flow source enforces a difference
in velocities of m1 and m3, possibly accounting for the rigidly connected mass
m2. If the controlled junction 01 is in its off state, a 0 force is exerted on both
m1 and m3 (possibly accounting for m2). In its off state, the controlled junction
02 exerts a 0 force as well, which is when the force at the contact point between
m2 and m3 exceeds the breakaway force. Note that for the case when m2 and
m3 move independently in continuous time no viscous friction is modeled for
clarity purposes. If the difference in velocities between m2 and m3 falls below a
threshold level, the stiction effect becomes active, modeled by 02 changing to its
on state. In the on state, a difference in velocities of m2 and m3 of 0 is enforced.

Upon collision of m1 and m3, if the difference in velocities v2 and v3, ∆v23, is
less than the threshold velocity vth, stiction is active and m2 and m3 behave as
one body with massm2+m3. Whenm2+m3 > m1,m1 will have a return velocity
and start moving in the opposite direction compared to the velocity before the
collision. However, the momentum of m1 may be such that an impulsive force [4]
arises between m2 and m3 that triggers the Fbreakaway transition, causing the
two bodies to move independently. In this case, if m1 = m3, there is no return
velocity of m1 but instead it acts as in the case of Newton’s Cradle where m3

assumes all of the momentum of m1 while m1 comes to rest. In this case the
velocity of m2 is not affected by the collision.

The importance of semantic domain that combines both superdense as well
as hyperreals is clearly illustrated by this example. While the condition for 02
to switch from on to off occurs in 0 time, the condition for 01 to switch from on
to off occurs in infinitesimal, ε, time. A critical consequence of this phenomenon
is that, although in reasoning about the system, 01 first changes its state to on,
after which the change of state in 02 to off is determined, the change of state in
01 back to off is not effected until after the change of state in 02 to off.

In Table 1 and in Table 2, 0F13 and 0F23 are the junctions at a select force
impact, while pm1, pm2, and pm3 are the momenta for each of the masses. The
sequences of mode changes are depicted in Table 2, which shows clearly the
difference in effects as the model evolves in superdense and in hyperreal time.
The ability to differentiate between t = 〈tcollide, 1〉 and t = 〈tcollide + ε, 0〉 makes
it possible to distinguish the pinnacle effect of 01 from the mythical mode effect of
02. Otherwise, 01 would have switched back off simultaneously with 02 switching

Proceedings of MPM 2013 44

A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models

time 0F13 0F23 pm1 pm2 pm3

t = 〈tcollide − ε, 0〉 off on 1 0 0

t = 〈tcollide, 0〉 on on -0.2 0.6 0.6

t = 〈tcollide + ε, 0〉 off on -0.2 0.6 0.6

Table 1. Mode changes for v2th = 0.1 and Fth = 0.95

time 0F13 0F23 pm1 pm2 pm3

t = 〈tcollide − ε, 0〉 off on 1 0 0

t = 〈tcollide, 0〉 on on -0.2 0.6 0.6

t = 〈tcollide, 1〉 on off 0.1 0.9 0.0

t = 〈tcollide + ε, 0〉 off off 0.1 0.9 0.0

Table 2. Mode changes for v2th = 0.1 and Fth = 0.5

off. This would either: (i) not allow modeling of inferencing (mythical) modes or
(ii) have the collision effect (incorrectly) computed for m2 and m3 comprising a
combined mass of m2 +m3.

4 Conclusions

Superdense and hyperreal time notions provide a comprehensive basis for formal-
izing a computational semantics. The interplay between them enables the design
of models that include continuous-time behavior interacting with discontinuities
of physical system models. Such formalization is of great value, in particular
in simulation technologies, because of the benefits in a consistent projection of
behavior according to the laws of physics into a computational representation.

Based on the bond graph modeling formalism, a formalization is developed
for combining continuous-time with discontinuities. The combination provides a
theoretical reference for the computational integration of different effects of dis-
continuities observed across multiple domains. Moreover, the work allows for a
consistent mapping onto corresponding algorithms that lack hyperreals as execu-
tion domain. Most prominently, the research addresses how to combine behavior
because of logical switching with physics-based switching behavior.

Formalization in this domain often foregoes the collision mode by reinitial-
izing velocities as a transition action in a state machine. Though there is no
fundamental difference in behavior generation, such a representation makes it
exceedingly complicated to attribute a sound theory of physics to discontinuous
behavior. Instead, this paper relates pinnacles and mythical modes to different
notions of time so as to formalize their interaction in a computational sense.

Proceedings of MPM 2013 45

A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models

References

1. Albert Benveniste, Timothy Bourke, Benôit Caillaud, and Marc Pouzet. Non-
standard semantics of hybrid systems modelers. Journal of Computer and System
Sciences, 78(3):877–910, May 2012.

2. Simon Bliudze and Daniel Krob. Modelling of complex systems: Systems as
dataflow machines. Fundamenta Informaticae, 91:1–24, 2009.

3. Peter C. Breedveld. Physical Systems Theory in Terms of Bond Graphs. PhD
dissertation, University of Twente, Enschede, Netherlands, 1984.

4. Bernard Brogliato. Nonsmooth Mechanics. Springer-Verlag, London, 1999. ISBN
1-85233-143-7.

5. Krister Edström. Switched Bond Graphs: Simulation and Analysis. PhD disserta-
tion, Linköping University, Sweden, 1999.

6. Gottfried Falk and Wolfgang Ruppel. Energie und Entropie: Eine Einführung in
die Thermodynamik. Springer-Verlag, Berlin, 1976. ISBN 3-540-07814-2.

7. Oliver Heaviside. On the forces, stresses, and fluxes of energy in the electromagnetic
field. Proceedings of the Royal Society of London, 50:126–129, 1891.

8. Albert E Hurd and Peter A Loeb. An introduction to nonstandard real analysis.
Academic Press, 1985.

9. Yumi Iwasaki, Adam Farquhar, Vijay Saraswat, Daniel Bobrow, and Vineet Gupta.
Modeling time in hybrid systems: How fast is “instantaneous”? In Intl. Conf. on
Qualitative Reasoning, pp. 94–103, Amsterdam, May 1995.

10. H. Jerome Keisler. Elementary Calculus: An Infinitesimal Approach. Prindle,
Weber and Schmidt, Dover, 3 edition, 2012.

11. Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems. In
Real-Time: Theory in Practice, LNCS, pp. 447–484. Springer, 1992.

12. Pieter J. Mosterman and Gautam Biswas. Behavior generation using model switch-
ing a hybrid bond graph modeling technique. In Intl. Conf. on Bond Graph Mod-
eling and Simulation (ICBGM ’95), pp. 177–182, Las Vegas, January 1995.

13. Pieter J. Mosterman and Gautam Biswas. A theory of discontinuities in dynamic
physical systems. Journal of the Franklin Institute, 335B(3):401–439, January 1998.

14. Pieter J. Mosterman, Sameer Prabhu, and Tom Erkkinen. An industrial embedded
control system design process. In Proceedings of The Inaugural CDEN Design
Conference (CDEN’04), Montreal, Canada, July 2004. CD-ROM: 02B6.

15. Pieter J. Mosterman, Feng Zhao, and Gautam Biswas. An ontology for transitions
in physical dynamic systems. In AAAI98, pp. 219–224, July 1998.

16. T. Nishida and S. Doshita. Reasoning about discontinuous change. In Proceedings
AAAI-87, pp. 643–648, Seattle, Washington, 1987.

17. Henry M. Paynter. Analysis and Design of Engineering Systems. The M.I.T. Press,
Cambridge, Massachusetts, 1961.

18. Steering Committee. Foundations for Innovation: Strategic Opportunities for the
21st Century Cyber-Physical Systems—Connecting computer and information sys-
tems with the physical world. Technical report, NIST, March 2013.

19. Jan-Erik Strömberg, Jan Top, and Ulf Söderman. Variable causality in bond graphs
caused by discrete effects. In Proc. of the Intl. Conf. on Bond Graph Modeling
(ICBGM’93), pp. 115–119, San Diego, California, 1993.

20. Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman, editors. Model-
Based Testing for Embedded Systems. CRC Press, Boca Raton, FL, 2011. ISBN:
9781439818459.

Proceedings of MPM 2013 46

A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models

A DSL for Explicit Semantic Adaptation ?

Bart Meyers1, Joachim Denil3, Frédéric Boulanger2,
Cécile Hardebolle2, Christophe Jacquet2, and Hans Vangheluwe1,3

1 MSDL, Department of Mathematics and Computer Science
University of Antwerp, Belgium

2 Supélec E3S, Department of Computer Science, France
3 MSDL, School of Computer Science, McGill University, Canada

Abstract. In the domain of heterogeneous model composition, semantic
adaptation is the “glue” that is necessary to assemble heterogeneous
models so that the resulting composed model has well-defined semantics.
In this paper, we present an execution model for a semantic adaptation
interface between heterogeneous models. We introduce a Domain-Specific
Language (DSL) for specifying such an interface explicitly using rules,
and a transformation toward the ModHel’X framework. The DSL enables
the modeller to easily customise interfaces that fit the heterogeneous
model at hand in a modular way, as involved models are left untouched.
We illustrate the use of our DSL on a power window case study and
demonstrate the importance of defining semantic adaptation explicitly
by comparing with the results obtained with Ptolemy II.

1 Introduction

The growing power of modelling tools allows the design and verification of com-
plex systems. This complexity leads to Multi-Paradigm Modelling [1], because
different parts of the system belong to different technical domains, but also be-
cause different abstraction levels, different aspects of the system, and different
phases in the design require different modelling techniques and tools. It is there-
fore necessary to be able to cope with multi-paradigm, heterogeneous models,
and to give them a semantics which is precise enough for simulating the be-
haviour and validating properties of the system, and to generate as much as
possible of the realisation of the system from the model.

A major challenge in model composition is to obtain a meaningful result
from models with heterogeneous semantics. Tackling this issue requires that the
semantics of the modelling languages used in the composed models is described
in a way such that it can be processed and, more importantly, such that it can be
composed. In this article, we focus on the definition of the “composition laws”
for heterogeneous parts of a model, which have to be explicitly described. A key
point of our approach is modularity: we should be able to compose heterogeneous
models without modifying them.

To illustrate what these composition laws, which we call semantic adapta-
tion, have to deal with, we first introduce the example of a power window and

? Thanks to Dr. Thomas Feng for giving us insights into Ptolemy II’s discrete events
semantics

Proceedings of MPM 2013 47

show how it can be modelled and simulated using existing tools for heteroge-
neous modelling. We introduce a meta-model for modelling semantic adaptation,
founded on an execution model. We then present a Domain-Specific Language
(DSL) that we designed to specify semantic adaptation in an abstract and com-
pact way. We then discuss the advantages and drawbacks of this approach and
conclude, giving some perspective for future work.

2 The Power Window Case Study

The system we model to illustrate our work is a car power window, composed of
a switch, a controller board and an electromechanical part. These components
communicate through the car’s bus. The controller receives commands from the
switch and information from the end stops of the electromechanical part, and
sends commands to switch the motor off, up or down. If the user presses the
switch for a short time (less than 500 ms), the controller fully closes or opens
the window until it reaches an end stop.

For simplicity, we don’t model the bus as a component of the system, and we
consider that the components of the model communicate through discrete events
(DE). The controller is modelled as a state machine, with timed transitions
to distinguish between short and long presses on the switch. The dynamics of
the electromechanical part could be modelled using differential equations, but
for making the example easier to understand, we discretise its behaviour and
represent it using difference equations, for which a synchronous dataflow model
(SDF) is suitable. As a result, the global model of the power window system is
a heterogeneous model involving three different modelling paradigms: discrete
events, timed finite state machines and synchronous dataflow.

In the following, we show how this system is modelled using different tools
for heterogeneous modelling and we illustrate how these different tools deal with
the necessary semantic adaptation among the heterogeneous parts of this model.

3 Related Work and Semantic Adaptation

We chose to focus our study of the state of the art on three different tools for het-
erogeneous modelling and simulation: Ptolemy II [2], Simulink/Stateflow4 and
ModHel’X [3]. All of them support the joint use of different modelling paradigms
in a model and they all use hierarchy as a mechanism for composing the hetero-
geneous parts of a model. Other types of approaches are described in [4].

In Simulink/Stateflow, the power window system has been studied at different
levels of detail and the resulting models are available as demos in the tool5. We
have modelled the power window system using Ptolemy II and ModHel’X, and
the resulting models are available online6.

4 http://www.mathworks.fr/products/simulink/
5 See the online documentation at http://www.mathworks.fr/fr/help/simulink/

examples/simulink-power-window-controller-specification.html.
6 Ptolemy II model: http://wwwdi.supelec.fr/software/downloads/ModHelX/

power_window_fulladapt.moml

ModHel’X model: http://wwwdi.supelec.fr/software/ModHelX/PowerWindow

Proceedings of MPM 2013 48

A DSL for Explicit Semantic Adaptation

Fig. 1. Ptolemy II model of the power window

Using Ptolemy II for modelling the power window system, we obtain the
model shown on Figure 1. In this model, the DE Director box tells that this model
is built according to the Discrete Events model of computation, or MoC. A MoC
defines the execution rules obeyed by the components of a model. The DE MoC
considers each component as a process triggered by input events and producing
events on the output. The Input scenario block models a simulation scenario for
the output of the switch. The controller is modelled as a state machine (FSM
MoC), and the window as a data-flow block diagram (Synchronous Data Flow
MoC). Due to space constraints, these models are not shown in the paper.

Ptolemy II does not provide a default semantic adaptation between heteroge-
neous parts of a model. For instance, the Window component, which is modelled
using SDF, is considered as a DE component by the DE director. It is therefore
activated each time it receives an input event, and each data sample it produces
is considered as a DE event on its outputs. This model corresponds to what is
shown in Figure 1 without the two large rounded boxes (which deal with seman-
tic adaptation and will be presented below). The result of the simulation without
semantic adaptation (i.e., without the two large rounded boxes) is shown just
below, in the middle part of the figure. The red line on top shows the position
of the window (from 0 to 5), the green line at the bottom shows the end-stop
signal (-1 is open, 1 is closed, 0 is in between), and the middle, blue line shows
the command played by the scenario (1 is for closing the window, -1 for opening
it, and 0 for stopping it). However, the behaviour is not as expected: the window
model (using difference equations) is not sampled periodically, meaning that the
window is not going up or down with a constant speed, and the model produces
consecutive events with the same value.

Proceedings of MPM 2013 49

A DSL for Explicit Semantic Adaptation

The problem is that the SDF nature of the model of the window makes it
behave inconsistently in a DE environment. Semantic adaptation is needed to
sample it periodically, to provide it with correct inputs (as achieved with the
left blue box) and to filter its outputs (as achieved with the right orange box).
The lowest graph in Figure 1 shows the result with the adaptations. In this case
the behaviour is as expected. The window model is sampled at a periodic rate
and does not produce duplicate events.

The two highlighted areas were added to the DE model to specify the seman-
tic adaptation with the SDF model of the behaviour of the window. However,
their contents depends on the internals of the window model, so the global model
is not modular. Moreover, without the highlighting we put on the figure, it is
not easy to make a difference between a block which is part of the model and a
block which is there for semantic adaptation. Semantic adaptation is therefore
diffuse and difficult to specify and understand.

In Simulink/Stateflow, which is a powerful and efficient simulation tool for
heterogeneous models, semantic adaptation is even more diffuse. The global se-
mantics of a heterogeneous model (for instance a Simulink model including a
Stateflow submodel) is given by one solver which is used to compute its execu-
tion. The solver uses parameters of the blocks and their ports, in particular a
parameter called “sample time”7, to determine when to compute the value of
the different signals. The resulting execution of the model depends on the value
of these parameters and on the type and parameters of the solver itself. Even if
default values for these parameters are determined by the simulation engine, to
adapt the resulting execution semantics to his needs, the user must have a deep
understanding of the solver’s mechanisms and fine tune different simulation pa-
rameters. A part of the semantic adaptation can also be performed using blocks
like in Ptolemy II or truth tables or functions, but with the same drawbacks.

ModHel’X is a framework for modelling and executing heterogeneous mod-
els [3] which we developed in previous works. ModHel’X allows for modular
semantic adaptation by explicitly defining an interface block between the parent
model and the embedded model. This block adapts the data, control and time
between the different models [5]. In the power window example, we saw examples
of the adaptation of data with the filtering of the output signals of the window
model, and of control with the periodic sampling. The adaptation of time is
necessary when two models use different time scales. Interface blocks are simi-
lar to tag conversion actors as presented in [9], but can perform more complex
operations. In ModHel’X, control and time adaptation rely on a model of time
which is inspired from the MARTE UML profile [6, 7], and can be considered
as a restriction of the Clock Constraints Specification Language [7], extended
with time tags [8]. An issue with ModHel’X is that the semantic adaptation is
specified using calls to a Java API in different methods of an interface block.
Therefore, constructing an interface block is a tedious and error prone process.
To aid developers in defining interface blocks, we propose a Domain Specific
Language for modelling explicitly the adaptation of data, time and control.

7 http://www.mathworks.fr/fr/help/simulink/ug/types-of-sample-time.html

Proceedings of MPM 2013 50

A DSL for Explicit Semantic Adaptation

Rule

RuleSchedule OrSchedule

AndSchedule

InterfaceBlock

Clock

Model
1

parent
1

embedded

MoC

Block

Pin

Store

Relation

InputOutput

Token

source target TagRelation

SimpleDataRule
AggregateDataRule

SameTagRelation

AffineTagRelation

5

LHS: Condition
RHS: Expression

DataRule ControlRule
0..11

2 *

0..1

0..*

0..*

1 1
1

1
1

111

0..* 0..*

Period:String
Offset:String

PeriodicRule

LHS:Condition
StoreTriggeredRule
Clock:Clock
ImpliedByRule

Fig. 2. Partial meta-model of ModHel’X with a focus on the interface block

4 A DSL and Execution Semantics for Semantic Adaptation

The DSL for semantic adaptation provides the modeller with the concepts that
are necessary for specifying the glue between heterogeneous models. By insu-
lating the modeller from platform specific issues, it allows him to focus on the
problem at stake, and it also reduces the semantic gap between what should be
specified and how it is realised. However, the current implementation of the DSL
generates code for ModHel’X, so we have to give some background about it.

4.1 The Interface Block Meta-Model

Figure 2 shows a simplified, partial meta-model of ModHel’X with a focus on the
interface block. The structure of models in ModHel’X is similar to Ptolemy II’s:
Models contain Blocks with input and output Pins that can be connected. During
execution, values flow through models as Tokens on Pins. A Model has a model of
computation (MoC) which defines its execution semantics, similar to a director
in Ptolemy II. In ModHel’X a Block can be an InterfaceBlock, containing an
embedded Model with any MoC, thus allowing heterogeneous modelling. In an
InterfaceBlock, there can be adaptation Relations between input Pins of the
InterfaceBlock and input Pins of the embedded Model, and between output Pins
of the embedded Model and output Pins of the InterfaceBlock. An InterfaceBlock
and a MoC can have a Clock, with its own time scale. An InterfaceBlock has a
Store that can hold data, thus adding the concept of state.

Our DSL for describing the behaviour of an interface block is based on rules,
which are evaluated and return true when they match. DataRules and Control-
Rules are used to match conditions for the semantic adaptation of data and
control. The order in which rules are evaluated is controlled by a RuleSchedule.
Two different scheduling policies (which are hierarchical) are defined: the And-
Schedule evaluates the rules in order as long as they return true, and it returns
true if all rules returned true; the OrSchedule evaluates the rules in order until
one returns true, in which case true is returned.

Data rules are responsible for the adaptation of the data from the parent
model to the embedded model and vice versa. Data rules have a left-hand side
(LHS), denoting pre-condition for the applicability of the rule and a right-hand
side (RHS) providing the needed action when the LHS is matched. Data rules

Proceedings of MPM 2013 51

A DSL for Explicit Semantic Adaptation

InterfaceBlock::update

Data-In

Data-Update-In

Control-rules

Control?

Model::update

Data-Update-Out

Data-Out

no

yes

InterfaceBlock::Data-In

InterfaceBlock::Control-
Rules

Data-In::data-InRule

ControlRules::store
TriggeredRule

data-InRule
data-InRule2
...

ControlRules::
onPeriodicRule

storeTriggeredRule
onPeriodicRule
...

O
R

AN
D Condition

Condition Expr

Period
Offset

Fig. 3. Execution of an interface block

have access to pins and a store of the interface block which serves as a map of
variables (variable name - value pairs). Control rules are responsible for executing
the embedded model (also called giving control) at the current time instant.
Control rules have access to the store to create complex trigger events but they
also access the interface block clock to create an observation request in the future.
For the semantic adaptation of time, an interface block can contain TagRelations
between clocks, which allows to convert dates between their time scales.

4.2 Execution Semantics in Five Phases

As shown in Figure 3, the interface block adapts data and control in five different
phases. Each phase has its own schedule (containing a set of rules), and each
phase is provided with a set of pins as parameters so that, besides the store, token
values on pins become accessible in the rules. In case of the Data-in, Control-rules
and Data-update-in phases, parameter pins are the input pins of the interface
block. In case of the Data-update-out or Data-out phases the parameter pins
are the output pins of the embedded model. The phases are executed in the
following order when control has been given to the interface block:

Data-in: (data rules) when the interface block receives control, rules are exe-
cuted to update the store of the block according to the incoming data tokens.
Complex operations can transform the data for further processing;

Control: (control rules) Control rules decide if control should be passed to the
embedded model at the current instant according to the store of the block
and the data on the input pins. Control rules can also create new observation
request on the clock of the interface block so that it receives control later;

Data-update-in: (data rules) if the control rules give control to the embedded
model, the Data-update-in schedule is executed before control is passed to
the embedded model. These rules provide the internal model with correct
inputs according to the values in the store and the data on the input pins of
the interface block;

Proceedings of MPM 2013 52

A DSL for Explicit Semantic Adaptation

Data-update-out: (data rules) after the execution of the embedded model, the
Data-update-out rules are used to update the store with the data available
on the output pins of the embedded model;

Data-out: (data rules) finally, the Data-out rules are in charge of producing
the outputs of the interface block from the data available in the store. This
phase is executed even when control is not given to the embedded model
because the interface block may have to produce some outputs any way.

To ease the creation of rules, we identified some common rule patterns, shown
as subclasses of DataRule and ControlRule in Figure 2:
– SimpleDataRule: this data rule is evaluated for every parameter pin. If its

LHS evaluates to true, its RHS is executed;
– AggregateDataRule: this data rule allows for more complex patterns over

multiple parameter pins, and will only be evaluated once. If its LHS evaluates
to true, its RHS is executed;

– Periodic: this control rule periodically gives control to the interface block,
and variable names are given for period and offset so that they can be set
when the interface block is used in a model. The clock calculus in ModHel’X
will make sure that the interface block is updated at the specified moments;

– StoreTriggeredRule: this control rule gives control to the embedded model if
its LHS (with access to the store) evaluates to true;

– ImpliedByRule: this control rule gives control to the embedded model when-
ever a given clock is triggered.
A DSL implementing this meta-model, the presented semantics and a con-

crete textual syntax are defined in metaDepth [10]. The solution includes an
ANTLR-based parser, an EOL script for generating code for the rules, and an
EGL script [11] for generating Java code for ModHel’X. These steps ensure that
the transformation from DSL code to Java code is entirely automated. Due
to space constraints, the meta-model, models or scripts in metaDepth are not
shown.8 The concrete syntax of the DSL will be illustrated in the next section.

5 A Semantic Adaptation DSL in Practice

In this section, we reconstruct the two different semantic adaptations between
DE and SDF for the power window system presented in section 3, and of which
traces are shown in Figure 1. The models presented in this section are trans-
formed using the metaDepth framework into ModHel’X models in Java code.

Listing 1 and 2 show interface blocks for both behaviours as a DSL model.
The first 8 lines state the structural properties of the interface block and are
the same for both behaviours. Line 1 presents the model name. On line 2-3, the
Java class and package are specified for the code generator. Line 4 presents the
clock of the interface. In this case the interface has a timed clock, meaning that
events occur at specific dates on a time scale (as opposed to an untimed clock,
where events have no date). Line 5-6 and 7-8 respectively present the external
(parent) model and internal (embedded) model. The parent model is called de

8 The fully operational solution presented in this paper can however be downloaded
from http://msdl.cs.mcgill.ca/people/bart/PowerWindow.zip

Proceedings of MPM 2013 53

A DSL for Explicit Semantic Adaptation

and adheres the ModHel’X AbstractDEMoC with a timed clock named deClock.
Similarly, the embedded model uses SDF, which is by nature untimed.

Listing 1. Model of the default
Ptolemy II behaviour

1 InterfaceBlock {
2 IMPLEMENTS "DE_SDF_InterfaceBlock"
3 IN "tests.powerwindow"
4 TIMED CLOCK ibClock
5 EXTERNAL MODEL de (
6 "AbstractDEMoC" WITH TIMED CLOCK deClock)
7 INTERNAL MODEL sdf (
8 "SDFMoC" WITH UNTIMED CLOCK sdfClock)
9 RULES:

10 IN
11 CONTROL
12 UPDATEIN
13 FORALLPINS ALWAYS ->
14 FORWARD VALUE TO SUCCESSORS;
15 UPDATEOUT
16 FORALLPINS ALWAYS ->
17 FORWARD VALUE TO SUCCESSORS;
18 OUT
19 }

Listing 2. Model of the interface
block with semantic adaptation

1 InterfaceBlock {
2 IMPLEMENTS "DE_SDF_InterfaceBlock"
3 IN "tests.powerwindow"
4 TIMED CLOCK ibClock
5 EXTERNAL MODEL de (
6 "AbstractDEMoC" WITH TIMED CLOCK deClock)
7 INTERNAL MODEL sdf (
8 "SDFMoC" WITH UNTIMED CLOCK sdfClock)
9 RULES:

10 IN
11 FORALLPINS ON DATA: ALWAYS -> TOSTORE(VALUE);
12 CONTROL
13 PERIODIC AT "init_time" EVERY "period"
14 UPDATEIN
15 FORALLPINS ALWAYS ->
16 FORWARD FROMSTORE TO SUCCESSORS;
17 UPDATEOUT
18 FORALLPINS ON DATA:
19 VALUE != FROMSTORE ->
20 TOSTORE(VALUE);
21 FORWARD VALUE TO SUCCESSORS;
22 OUT
23 TAG RELATION deClock = ibClock
24 }

From line 9 onward, the rules that model the execution semantics are speci-
fied. These differ in both models. The five rule phases, in their execution order,
can be recognised from line 10 onward.

The default Ptolemy II behaviour that results in the upper trace of Figure 1
does little semantic adaptation. This behaviour is defined in Listing 1. No par-
ticular Data-in rules are given, since the store is not used. There is no Control
rule, because whenever the interface block receives control, it will immediately
give control to the embedded model. On Data-update-in, the tokens on the input
ports are forwarded with no adaptation to the embedded model. This is mod-
elled as the data rule on line 13-14, which should be read as LHS → RHS. As
a SimpleDataRule (denoted by FORALLPINS), it is executed for every input pin
of the interface block. The LHS is ALWAYS, as there are no restrictions on when
to forward data. The RHS specifies that the current token value (VALUE) should
be forwarded to the embedded model’s input pins to which the interface input
pins are connected to (SUCCESSORS). In the Data-update-out phase on line 16-17,
the tokens generated by the embedded model are similarly forwarded in another
SimpleDataRule. As mentioned before, in this phase VALUE and SUCCESSORS –
which depend on the parameter pins – refer to the token values and the suc-
cessors of the embedded model’s output pins. In summary, the basic Ptolemy
model forwards all data instantaneously.

The intended behaviour of the power window’s interface that results in the
bottom trace of Figure 1 is shown in Listing 2. The interface block periodically
samples the SDF model. Data is provided to the embedded model by applying
zero-order hold (ZOH) from the input pins of the parent model to the input

Proceedings of MPM 2013 54

A DSL for Explicit Semantic Adaptation

pins of the embedded model, meaning that the last known value should be used.
The Data-in rule on line 11 saves the data from the input pins in the store, each
time a token is received (ON DATA). The Periodic Control rule on line 13 specifies
the periodic sampling of the embedded model, starting at time “init time”, with
a step of “period”, which can be set in the instance model. The Data-update-
in rule on line 15-16 implements the ZOH functionality by providing the input
pins of the embedded model with data from the store. Note that first-order hold
(linear extrapolation) could also be modelled by calculating new values based on
the previous ones (stored the store) every time the interface block is updated.
A Data-update-out rule (line 18-21) checks for every pin whether the embedded
model’s output value changed, by comparing it to the previous one, which was
stored. Initially the value in the store is null making sure the LHS evaluates
to true. So only when the output of the embedded model changes, tokens are
forwarded to the parent model. No event is consequently produced when the
window is inactive, as seen in the trace. Finally a SameTagRelation on line 23
specifies that time is measured the same way in the interface block and in the
embedding model. Note that in both models we never had to explicitly schedule
rules, as every phase contained at most a single rule.

6 Discussion

Our DSL for semantic adaptation allows one to explicitly specify the adaptation
behaviour intended at the boundary between two heterogeneous parts of a model.
This is an improvement in two respects. First, compared to the implicit adap-
tation mechanisms embedded in Ptolemy or Simulink, the semantics is clearly
stated. Second, compared to the solution introduced in Section 3 that relies on
the modification of the models to introduce new blocks devoted to adaptation,
our approach leaves the models unchanged. This improves modularity, as a given
model may be embedded as is in different contexts; what needs to be changed
each time is just the adaptation layer defined using our DSL.

When embedding a timed finite state machine (TFSM) into a DE model in
Ptolemy, one has to weave adaptation mechanisms in the guards and actions of
the state machine in order to translate between TFSM events and DE values.
Even if this does not introduce new blocks, this is indeed a variant of the second
issue outlined above: one has to modify the model to include adaptation, which
hinders modularity. We used the proposed DSL to model the adaptation of the
DE model to the TFSM model of the power window system. The DSL is able to
model all the needed constructs for the interface block and generate Java code.
Due to space constraints, the model is not included in the paper. Still, some
constructs necessary for the adaptation of a wide variety of MoCs may not be
available in the DSL yet. Future enhancements of our DSL will remedy this.

The improvements mentioned here (specifying adaptation between models
explicitly while keeping the modularity of models) have been available in Mod-
Hel’X for a few years. However in ModHel’X adaptation is coded in Java, so
there is a semantic gap between high-level adaptation mechanisms and the way
it is actually written as low-level code that makes minute manipulations of data
structures. Moreover, an adapter in ModHel’X is scattered in several methods,

Proceedings of MPM 2013 55

A DSL for Explicit Semantic Adaptation

which makes its behavior hard to follow. The five phased execution semantics
and the DSL are focused and concise: they bridge this semantic gap. More than
300 lines of Java code are reduced to less than 25 lines of DSL code.

7 Conclusion
In the domain of Multi-Paradigm Modelling, semantic adaptation is the “glue”
that gives well-defined semantics to the composition of heterogeneous models. In
this paper we proposed a DSL with execution semantics to bridge the cognitive
gap between the implementation and specification of a semantic interface block.
The model of an interface block explicitly specifies the adaptation of data, con-
trol and time using a set of rules. Furthermore, a model-to-text transformation
is defined to generate the interface block code for the ModHel’X framework.
The DSL enables the modeller to easily customise interface blocks that fit the
heterogeneous models in a modular way, as involved models are left untouched.

The approach was illustrated on the power window case study by recon-
structing in ModHel’X both the implicit Ptolemy II adaptation and the specific
one needed between DE and SDF to obtain the expected behaviour. We be-
lieve that the DSL and the execution semantics are, as a principle, expressive
enough to model different semantic adaptations of heterogeneous models, though
additional constructs might be needed for additional behaviours.

References
1. P. J. Mosterman and H. Vangheluwe. Computer Automated Multi-Paradigm Mod-

eling: An Introduction. SIMULATION, 80(9):433–450, 2004.
2. J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer,

S. Sachs, and Yuhong Xiong. Taming Heterogeneity - The Ptolemy Approach.
Proceedings of the IEEE, 91(1):127–144, Jan 2003.

3. Frédéric Boulanger and Cécile Hardebolle. Simulation of Multi-Formalism Models
with ModHel’X. In ICST 2008, pages 318–327, 2008.

4. Cécile Hardebolle and Frédéric Boulanger. Exploring multi-paradigm modeling
techniques. SIMULATION , 85(11/12):688–708, 2009.

5. F. Boulanger, C. Hardebolle, C. Jacquet, and D. Marcadet. Semantic Adaptation
for Models of Computation. In ACSD’11, pages 153–162, 2011.

6. Charles André, Frédéric Mallet, and Robert De Simone. Modeling Time(s). In
MoDELS’07, volume LNCS 4735, pages pp. 559–573. Springer, 2007.

7. R. Gascon, F. Mallet, and J. Deantoni. Logical time and temporal logics: comparing
UML MARTE/CCSL and PSL. In TIME’11, pages 141–148, Lubeck, Germany,
2011.

8. F. Boulanger, C. Hardebolle, C. Jacquet, and I. Prodan. Modeling time for the
execution of heterogeneous models. Technical report 2013-09-03-DI-FBO, Supélec
E3S, 2012.

9. P. Caspi, A. Benveniste, R. Lublinerman, and S. Tripakis. Actors without directors:
A kahnian view of heterogeneous systems. In R. Majumdar and P. Tabuada,
editors, Hybrid Systems: Computation and Control, volume 5469 of LNCS, pages
46–60. Springer Berlin Heidelberg, 2009.

10. Juan de Lara and Esther Guerra. Deep meta-modelling with metadepth. In TOOLS
(48), volume 6141 of LNCS. Springer Berlin Heidelberg, 2010.

11. Juan de Lara and Esther Guerra. Domain-specific textual meta-modelling lan-
guages for model driven engineering. In ECMFA’12, pages 259–274, 2012.

Proceedings of MPM 2013 56

A DSL for Explicit Semantic Adaptation

A Multiparadigm Approach to Integrate
Gestures and Sound in the Modeling Framework

Vasco Amaral1, Antonio Cicchetti2, Romuald Deshayes3

1 Universidade Nova de Lisboa, Portugal vasco.amaral@fct.unl.pt
2 Malardalen Research and Technology Centre (MRTC), Vasteras, Sweden

antonio.cicchetti@mdh.se
3 Software Engineering Lab, Université de Mons-Hainaut, Belgium

romuald.deshayes@umons.ac.be

Abstract. One of the essential means of supporting Human-Machine
Interaction is a (software) language, exploited to input commands and
receive corresponding outputs in a well-defined manner. In the past,
language creation and customization used to be accessible to software
developers only. But today, as software applications gain more ubiquity,
these features tend to be more accessible to application users themselves.
However, current language development techniques are still based on tra-
ditional concepts of human-machine interaction, i.e. manipulating text
and/or diagrams by means of more or less sophisticated keypads (e.g.
mouse and keyboard).
In this paper we propose to enhance the typical approach for dealing with
language intensive applications by widening available human-machine in-
teractions to multiple modalities, including sounds, gestures, and their
combination. In particular, we adopt a Multi-Paradigm Modelling ap-
proach in which the forms of interaction can be specified by means of
appropriate modelling techniques. The aim is to provide a more advanced
human-machine interaction support for language intensive applications.

1 Introduction

The mean of supporting Human-Machine interaction are languages: a well-
defined set of concepts that can be exploited by the user to compose more or less
complex commands to be input to the computing device. Given the dramatic
growth of software applications and their utilization in more and more complex
scenarios, there has been a contemporary need to improve the form of interaction
in order to reduce users’ effort. Notably, in software development, it has been in-
troduced different programming language generations, programming paradigms,
and modelling techniques aiming at raising the level of abstraction at which the
problem is faced. In other words, abstraction layers have been added to close
the gap between machine language and domain-specific concepts, keeping them
interconnected through automated mechanisms.

While the level of abstraction of domain concepts has remarkably evolved,
the forms of interaction with the language itself indubitably did not. In partic-
ular, language expressions are mainly text-based or a combination of text and

Proceedings of MPM 2013 57

diagrams. The underlying motivation is that, historically, keyboard and mouse
have been exploited as standard input devices. In this respect, other forms of
interaction like gestures and sound have been scarcely considered. In this paper
we discuss the motivations underlying the need of enhanced forms of interaction
and propose a solution to integrate gestures and sound in modeling frameworks.
In particular, we define language intensive applicative domains the cases where
either the language evolves rapidly, or language customizations are part of the
core features of the application itself.

In order to better grasp the previously mentioned problem, we consider a
sample case study in the Home Automation Domain, where a language has to be
provided as supporting different automation facilities for a house, ranging from
everyday life operations to maintenance and security. This is a typical language
intensive scenario since there is a need to customize the language depending on
the customer’s building characteristics. Even more important, the language has
to provide setting features enabling a customer to create users’ profiles: notably,
children may command TV and lights but they shall not access kitchen equip-
ment. Likewise, the cleaning operator might have access to a limited amount of
rooms and/or shall not be able to deactivate the alarm.

In the previous and other language intensive applicative domains it is incon-
ceivable to force users to exploit the “usual” forms of interaction for at least two
reasons: i) if they have to digit a command to switch on the lights they could
use the light switch instead and hence would not invest money in these type
of systems. Moreover, some users could be unable to exploit such interaction
techniques, notably disabled, children, and so forth; ii) the home automation
language should be easily customizable, without requiring programming skills.
It is worth noting that language customization becomes a user’s feature in our
application domain, rather than a pure developer’s facility. If we widen our rea-
soning to the general case, the arguments mentioned so far can be referred to
as the need of facing accidental complexity. Whenever a new technology is pro-
posed, it is of paramount importance to ensure that it introduces new features
and/or enhances existing ones, without making it more complex to use, otherwise
it would not be worth to be exploited.

Our solution is based on Multi-Paradigm Modelling (MPM) principles, i.e.
every aspect of the system has to be appropriately modeled and specified, com-
bining different points of view of the system being then possible to derive the
concrete application. In this respect, we propose to precisely specify both the
actions and the forms of language interactions, in particular gestures and sound,
by means of models. In this way, flexible interaction modes with a language are
possible as well as languages accepting new input modalities such as sounds and
gestures.

The remaining of the paper is organized as follows: sec. 2 discusses the state-
of-the-art; sec. 3 presents the communication between a human and a machine
through a case study related to home automation; sec. 4 introduces an interaction
metamodel and discusses how it can be used to generate advanced concrete
syntaxes relying on multiple modalities; finally, sec. 5 concludes.

Proceedings of MPM 2013 58

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework

2 State of the Art

This section describes basic concepts and state-of-the-art techniques typically
exploited in sound/speech and gesture recognition together with their combina-
tions created to provide advanced forms of interaction. Our aim is to illustrate
the set of concepts usually faced in this domain and hence to elicit the require-
ments for the interaction language we will introduce in Section 4.

Sound and speech recognition

Sound recognition is usually used for command-like actions; a word has to be
recognized before the corresponding action can be triggered. With the Vocal
Joystick [1] it is possible to use acoustic phonetic parameters to continuously
control tasks. For example, in a WIMP (Windows, Icons, Menus, Pointing device)
application, the type of vowel can be used to give a direction to the mouse cursor,
and the loudness can be used to control its velocity.

In the context of environmental sounds, [2, 3] proposed different techniques
based on Support Vector Machines and Hidden Markov Models to detect and
classify acoustic events such as foot steps, a moving chair or human cough. De-
tecting these different events help to better understand the human and social ac-
tivities in smart-room environments. Moreover, an early detection of non-speech
sounds can help to improve the robustness of automatic speech recognition al-
gorithms.

Gesture recognition

Typically, gesture recognition systems resort to various hardware devices such
as data glove or markers [4], but more recent hardware such as the Kinect or
other 3D sensors enable unconstrained gestural interaction [5]. According to a
survey of gestural interaction [6], gestures can be of 3 types :

– hand and arm gestures: recognition of hand poses or signs (such as recogni-
tion of sign language);

– head and face gestures: shaking head, direction of eye gaze, opening the
mouth to speak, happiness, fear, etc;

– body gestures: tracking movements of two people interacting, analyzing
movement of a dancer, or body poses for athletic training.

The most widely used techniques for dynamic gestural recognition usually involve
hidden Markov models [7], particle filtering [8] or finite state machines [9].

Multimodal systems

The ”Put-that-there” [10] system, developed in the 80’s, is considered to be
the origin of human-computer interaction regarding the use of voice and sound.
Vocal commands such as ”delete this elements” while pointing at one object

Proceedings of MPM 2013 59

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework

displayed on the screen can be correctly processed by the system. According to
[11], using multiple modalities, such as sound and gestures, helps to make the
system more robust and maintainable. They also proposed to split audio sounds
in two categories: human speech and environmental sounds.

Multimodal interfaces involving speech and gestures have been widely used
for text input, where gestures are usually used to choose between multiple possi-
ble utterances or correct recognition errors [12, 13]. Some other techniques pro-
pose to use gestures on a touchscreen device in addition to speech recognition
to correct recognition errors [14]. Both modalities can also be used in an asyn-
chronous way to disambiguate between the possible utterances [15].

More recently, the SpeeG system [16] has been proposed. It is a multimodal
interface for text input and is based on the Kinect sensor, a speech recognizer and
the Dasher [17] user interface. The contribution lies in the fact that, unlike the
aforementioned techniques, the user can perform speech correction in real-time,
while speaking, instead of doing it in a post processing fashion.

Human-computer interaction modeling

In the literature, many modeling techniques have been used to represent interac-
tion with traditional WIMP user interfaces. For example, statecharts have been
dedicated to the specification and design of new interaction objects or widgets
[18].

Targetting virtual reality environment, Flownets [19] is a modeling tool, re-
lying on high-level Petri nets, based on a combination of discrete and continuous
behavior to specify the interaction with virtual environments. Also based on
high-level Petri nets for dynamic aspects and an object oriented framework, the
Interactive Cooperative Objects (ICO) formalism [20] has been used to model
WIMP interfaces as well as multimodal interactions in virtual environments. In
[4], a virtual chess game was developed in which the user can use a data glove to
manipulate virtual chess pieces. In [21], ICO has been used to create a framework
for describing gestural interaction with 3D objects has been proposed.

Providing a UML based generic framework for modeling interaction modal-
ities such as speech or gestures enables software engineers to easily integrate
multimodal HCI in their applications. That’s the point defended by [22]. In
their work, the authors propose a metamodel which focuses on the aspects of
an abstract modality. They distinguish between simple and complex modalities.
The first one represents a primitive form of interaction while the second inte-
grates other modalities and uses them simultaneously. With the reference point
being the computer, input and output modalities are defined as a specification of
simple modality. Input modalities can be event-based (e.g. performing a gesture
or sending a vocal command) or streaming based (e.g. drawing a circle or in-
putting text using speech recognition) and output modalities are used to provide
static (e.g. a picture) or dynamic (e.g. speech) information to the user.

Proceedings of MPM 2013 60

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework

Fig. 1. A more advanced support of Human-Machine Interaction

3 Human-Machine Communication

As discussed so far, different techniques supporting more advanced forms of inter-
action between humans and machines have already been proposed. Nonetheless,
their exploitation in current software languages has been noticeably limited.
This work proposes to widen the modalities of human-machine interaction as
depicted in Fig. 1. In general, a human could input information by means of
speech, gestures, texts, drawings, and so forth. The admitted ways of interac-
tion are defined in an interaction model, which also maps human inputs into
corresponding machine readable formats. Once the machine has completed its
work, it outputs the results to the user through sounds, diagrams, texts, etc.;
also in this case the interaction model prescribes how performed computations
should be rendered to a human comprehensible format.

A software language supports the communication between humans and ma-
chines by providing a set of well-defined concepts that typically abstract real-life
concepts. Hence, software language engineering involves the definition of three
main aspects: i) the internal representation of the selected concepts, understand-
able by the machine and typically referred to as abstract syntax ; ii) how the
concepts are rendered to the users in order to close the gap with the applica-
tive domain, called concrete syntax ; iii) how the concepts can be interpreted to
get/provide domain-specific information, referred to as semantics. Practically, a
metamodel serves as a base for defining the structural arrangement of concepts
and their relationships (abstract syntax), the concrete syntax is “hooked” on
appropriate groups of its elements, and the semantics is generically defined as
computations over elements.

In order to better understand the role of these three aspects, Fig. 2 and 1
illustrate excerpts of the abstract and concrete syntaxes, respectively, of a sample
Home Automation DSL. In particular, a home automation system manages a
House (see Fig. 2 right-hand side) that can have several rooms under domotic
control (i.e. Room and DomoticControl elements in the metamodel, respectively).

Proceedings of MPM 2013 61

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework

Fig. 2. Metamodel (abstract syntax) of a simple illustration DSL for Home Automation

The control is composed by several devices and actions that can be performed
with them. Notably, a Light can be turned on and off, while a Shutter can be
opened and closed.

It is easy to notice that the abstract syntax representation would not be
user-friendly in general, hence a corresponding concrete syntax can be defined
in order to provide the user with easy ways of interaction. In particular, Prog.
1 shows an excerpt of the concrete syntax definition for the home automation
DSL using the Eugenia tool4. The script prescribes to depict a House element as
a graph node showing the rooms defined for the house taken into account.

Prog. 1 Concrete Syntax mapping of the DSL for Home Automation with Eu-
genia

@gmf.node(label="HouseName", color="255,150,150", style="dash")

class House {

@gmf.compartment(foo="bar")

val Room[*] hasRooms;

attr String HouseName;

}

Despite the remarkable improvements in language usability thanks to the ad-
dition of a concrete syntax, the malleability of interaction modalities provided by
Eugenia and other tools (e.g. GMF5) is limited to the standard typing and/or

4 http://www.eclipse.org/epsilon/doc/eugenia/
5 http://www.eclipse.org/modeling/gmp/

Proceedings of MPM 2013 62

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework

Fig. 3. A possible language to define enhanced concrete syntaxes for DSL

drawing graphs. Such a limitation becomes evident when needing to provide
users with extended ways of interaction, notably defining concrete syntaxes as
sounds and/or gestures. For instance, a desirable concrete syntax for the home
automation metamodel depicted in Fig. 2 would define voice commands for turn-
ing lights on and off, or alternatively prescribe certain gestures to do the same
operations.

By embracing the MPM vision, which prescribes to define any aspect of the
modeling activity as a model, next Section introduces a language for defining ad-
vanced human-machine interactions. In turn, such a language can be combined
with abstract syntax specifications to provide DSLs with enhanced concrete syn-
taxes.

4 Interaction Modeling

The proposed language tailored to enhanced human-machine interaction con-
crete syntax definition is shown in Fig. 3. In particular, it depicts the meta-
model to define advanced concrete syntaxes, encompassing sound and gestures,
while the usual texts writing and diagrams drawing are treated as particular
forms of gestures. Going deeper, elements of the abstract syntax can be linked
to (sequences of) activities (see Activity on the bottom-left part of Fig. 3). An
activity, in turn, can be classified as a Gesture or a Sound.

Proceedings of MPM 2013 63

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework

Fig. 4. A possible instance model defining the Concrete Syntax of a concept

Regarding gestures, the language supports the definition of different types
of primitive actions typically exploited in gesture recognition applications. A
Gesture is linked to the BodyPart that is expected to perform the gesture. This
way we can distinguish between performed actions, for example, by a hand or a
head. Move is the simplest action a body part can perform, it is triggered for each
displacement of the body part. Dragging (Drag) can only be triggered by a hand
a represents a displacement of a closed hand. ColinearDrag and NonColinearDrag

represent a movement of both hands going in either the same or opposite di-
rections while being colinear or not colinear, respectively. Open and Close are
triggered when the user opens or closes the hand.

Sounds can be separated in two categories: i) Voice represents human speech,
which is composed of Sentences and/or Words. ii) Audio that relates to all non
speech sounds that can be encountered, such as knocking on a door, a guitar
chord or even someone screaming. As it is very generic, it is characterized by
fundamental aspects as tone, pitch, and intensity.

Complex activities can be created by combining multiple utterances of sound
and gestures. For example one could define an activity to close a shutter by
closing the left hand and dragging it from top to bottom while pointing at the
shutter and saying “close shutters”.

In order to better understand the usage of the proposed language, Fig. 4
shows a simple example defining the available concrete syntaxes for specifying
the turning the lights on command. In particular, it is possible to wave the right
hand, first left and then right to switch on light 1 (see the upper part of the
picture). Alternatively, it is possible to give a voice command made up of the
sound sequence “Turn Light 1 On”, as depicted in the bottom part of the figure.

It is worth noting that, given the purpose of the provided interaction forms,
the system can be taught to recognize particular patterns as sounds, speeches,

Proceedings of MPM 2013 64

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework

gestures, or their combinations. In this respect, the technical problems related
to recognition can be alleviated. Even more important, the teaching process
discloses the possibility to extend the concrete syntax of the language itself,
since additional multimodal commands can be introduced as alternative ways of
interaction.

5 Conclusions

The ubiquity of software applications is widening the modeling possibilities of
end users who may need to define their own languages. In this paper, we defined
these contexts as language-intensive applications given the evolutionary pressure
the languages are subject to. In this respect, we illustrated the needs of having en-
hanced ways of supporting human-machine interactions and demonstrated them
by means of a small home automation example. We noticed that in general con-
crete syntaxes usually refer to traditional texts writing and diagrams drawing,
while more complex forms of interaction are largely neglected. Therefore, we
proposed to extend the current concrete syntax definition approaches by adding
sounds and gestures, but also possibilities to compose them with traditional in-
teraction modalities. In this respect, by adhering to the MPM methodology we
defined an appropriate modeling language for illustrating concrete syntaxes that
can be exploited later on to generate corresponding support for implementing
the specified interaction modalities.

As next steps we plan to extend the Eugenia concrete syntax engine in or-
der to be able to automatically generate the support for the extended human-
machine interactions declared through the proposed language. This phase will
also help in the validation of the proposed concrete syntax metamodel shown in
Fig. 3. In particular, we aim at verifying the adequacy of the expressive power
provided by the language and extend it with additional interaction means.

This work constitutes the base to build-up advanced modeling tools relying
on enhanced forms of interaction. Such improvements could be remarkably im-
portant to widen tools accessibility to disabled developers as well as to reduce
the accidental complexity of dealing with big models.

References

1. J. Bilmes, X. Li, J. Malkin, K. Kilanski, R. Wright, K. Kirchhoff, A. Subra-
manya, S. Harada, J. Landay, P. Dowden, and H. Chizeck, “The vocal joystick: A
voice-based human-computer interface for individuals with motor impairments,”
in HLT/EMNLP. The Association for Computational Linguistics, 2005.

2. A. Temko, R. Malkin, C. Zieger, D. Macho, and C. Nadeu, “Acoustic event de-
tection and classification in smart-room environments: Evaluation of chil project
systems,” Cough, vol. 65, p. 6, 2006.

3. S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Yamada, “Acoustical sound
database in real environments for sound scene understanding and hands-free speech
recognition,” in LREC. European Language Resources Association, 2000.

Proceedings of MPM 2013 65

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework

4. D. Navarre, P. Palanque, R. Bastide, A. Schyn, M. Winckler, L. Nedel, and C. Fre-
itas, “A formal description of multimodal interaction techniques for immersive vir-
tual reality applications,” in INTERACT, ser. Lecture Notes in Computer Science,
M. F. Costabile and F. Paternò, Eds., vol. 3585. Springer, 2005, pp. 170–183.

5. Z. Ren, J. Meng, J. Yuan, and Z. Zhang, “Robust hand gesture recognition with
kinect sensor,” in ACM Multimedia, 2011, pp. 759–760.

6. S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Trans. on Sys-
tems, Man and Cybernetics - part C, vol. 37, no. 3, pp. 311–324, 2007.

7. J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-sequential
images using hidden Markov model,” in Proceed. IEEE Conf. Computer Vision
and Pattern Recognition, 1992, pp. 379–385.

8. M. Isard and A. Blake, “Condensation - conditional density propagation for visual
tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp. 5–28, 1998.

9. P. Hong, T. S. Huang, and M. Turk, “Gesture modeling and recognition using
finite state machines,” in FG. IEEE Computer Society, 2000, pp. 410–415.

10. R. Bolt, “Put-that-there: Voice and gesture at the graphics interface,” in Pro-
ceed. 7th annual conference on Computer graphics and interactive techniques, ser.
SIGGRAPH ’80. New York, NY, USA: ACM, 1980, pp. 262–270.

11. B. Demiroz, I. Ar, A. Ronzhin, A. Coban, H. Yalcn, A. Karpov, and L. Akarun,
“Multimodal assisted living environment,” in eNTERFACE 2011, The Summer
Workshop on Multimodal Interfaces, 2011.

12. N. Osawa and Y. Y. Sugimoto, “Multimodal text input in an immersive envi-
ronment,” in ICAT 2002, 12th International Conference on Articial Reality and
Telexistence, 2002, pp. 85–92.

13. K. Vertanen, “Efficient computer interfaces using continuous gestures, lan-
guage models, and speech,” http://www.cl.cam.ac.uk/TechReports/UCAM-CL-
TR-627.pdf, Computer Laboratory, University of Cambridge, Tech. Rep. UCAM-
CL-TR-627, 2005.

14. D. Huggins-Daines and A. I. Rudnicky, “Interactive asr error correction for touch-
screen devices,” in ACL (Demo Papers). The Association for Computer Linguis-
tics, 2008, pp. 17–19.

15. P. O. Kristensson and K. Vertanen, “Asynchronous multimodal text entry using
speech and gesture keyboards,” in INTERSPEECH. ISCA, 2011, pp. 581–584.

16. L. Hoste, B. Dumas, and B. Signer, “Speeg: a multimodal speech- and gesture-
based text input solution,” in AVI, G. Tortora, S. Levialdi, and M. Tucci, Eds.
ACM, 2012, pp. 156–163.

17. D. J. Ward, A. F. Blackwell, and D. J. C. MacKay, “Dasher - a data entry interface
using continuous gestures and language models,” in UIST, 2000, pp. 129–137.

18. D. A. Carr, “Specification of interface interaction objects,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI
’94. New York, NY, USA: ACM, 1994, pp. 372–378. [Online]. Available:
http://doi.acm.org/10.1145/191666.191793

19. S. Smith and D. Duke, “Virtual environments as hybrid systems,” in Proceedings
of Eurographics UK 17th Annual Conference (EG-UK99), E. U. K. Chapter, Ed.,
United Kingdom, 1999.

20. P. A. Palanque and R. Bastide, “Petri net based design of user-driven interfaces
using the interactive cooperative objects formalism,” in DSV-IS, 1994, pp. 383–400.

21. R. Deshayes, T. Mens, and P. Palanque, “A generic framework for executable
gestural interaction models,” in Proc. VL/HCC, 2013.

22. Z. Obrenovic and D. Starcevic, “Modeling multimodal human-computer interac-
tion,” IEEE Computer, vol. 37, no. 9, pp. 65–72, 2004.

Proceedings of MPM 2013 66

A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework

Towards Bidirectional Engineering of Satellite Control
Procedures Using Triple Graph Grammars

Susann Gottmann1, Frank Hermann1, Claudia Ermel2, Thomas Engel1, and Gianluigi
Morelli3

1 Interdisciplinary Centre for Security, Reliability and Trust,
Université du Luxembourg, Luxembourg
firstname.lastname@uni.lu

2 Technische Universität Berlin, Germany
firstname.lastname@tu-berlin.de

3 SES, Luxembourg
firstname.lastname@ses.com

Abstract. The development and maintenance of satellite control software are
very complex, mission-critical and cost-intensive tasks that require expertise from
different domains. In order to adequately address these challenges, we propose to
use visual views of the software to provide concise abstractions of the system
from different perspectives.
This paper introduces a visual language for process flow models of satellite con-
trol procedures that we developed in cooperation with the industrial partner SES
for the satellite control language SPELL. Furthermore, we present a general and
formal bidirectional engineering approach for automatically translating satellite
control procedures into corresponding process flow visualisations. The bidirec-
tional engineering framework is supported by a visual editor based on Eclipse
GMF, the transformation tool HenshinTGG, and additional extensions to meet
requirements set up by the specific application area of satellite control languages.

Keywords: model transformation, model synchronisation, triple graph gram-
mars, bidirectional engineering, Eclipse Modeling Framework (EMF)

1 Introduction

Development and maintenance of satellite control software are very complex, mission-
critical and cost-intensive tasks demanding expertise from different domains. We ad-
dress these challenges by a general approach we developed in a joint research project
with the industrial partner SES (Société Européenne des Satellites, http://www.
ses.com/). SES is a world-leading satellite operator currently operating a fleet of
53 satellites of different vendors. The satellite control programming language SPELL
(Satellite Procedure Execution Language & Library) [23] was initiated by SES to be-
come a new standard. It is an open-source package based on Python for the development
and operation of satellite control procedures.

The main goal of the research project is to develop the visual modelling language
SPELLFlow, which represents the control flow of SPELL procedures. Satellite engi-
neers and operators at SES are currently working with the SPELL source code. In the

Proceedings of MPM 2013 67

development of SPELL source code, engineers already work with a visual representa-
tion of the desired source code (as printout), but it is completely uncoupled from the
SPELL development and execution environment. In order to enhance the daily work
and reduce cost-intensive errors, a visualisation, related to the one used by satellite en-
gineers, is desired with further improvements: It abstracts from the source code and
highlights important commands for providing a more intuitive way of input. However,
it shall not lose detailed information, which will be hidden at the beginning and can be
shown, if the user desires. So, we developed a layered concept (c.f. Sec. 3). SPELLFlow
is adapted to the following domain specific requirements set up by SES: (1) Provide a
hierarchical visual model defining different layers of abstraction for highlighting more
important information, but without losing detailed information. (2) Emphasise certain
SPELL statements, e.g., commands for sending and receiving telemetry data. (3) The
bidirectional engineered model will be used as a concise visual view on the source code.
Hence, the engineering process between SPELL and SPELLFlow has to yield correct
visual models and has to retain functional behaviour, i.e., the translation terminates and
yields the same result for identical inputs.

For the translation we use triple graph grammars (TGGs) [21,22], a bidirectional
formal technique in the field of graph transformation. Several correctness properties are
ensured due to the usage of TGGs (syntactical correctness of translation results, func-
tional behaviour, completeness of translation, i.e., every input graph can be translated).

In the former successful joint research project PIL2SPELL [16] with SES, we de-
veloped an automated translation based on TGGs from satellite procedures written in
the proprietary satellite operation language PIL of the satellite manufacturer ASTRIUM
into SPELL. In the current project, we will reuse results, like the SPELL grammar for
the conversion from concrete syntax of SPELL into the abstract syntax graph. At a
later stage, we will provide an extension to a model synchronisation framework based
on [15], which will be integrated at SES into the daily work of satellite developers and
controllers. The bidirectional engineering framework is supported by the transformation
tool HenshinTGG [8,13]. A visual editor SPELLFlowEditor based on Eclipse GMF [2]
was generated and extended to the specific requirements of SES.

Sec. 2 introduces the running example. Sec. 3 presents the visual language
SPELLFlow and the approach for the translation. Sec. 4 summarises the applied for-
mal techniques. In Sec. 5 we discuss related work and conclude in Sec. 6.

2 Running Example

1 def fib(n):
2 a = 0
3 b = 1
4 for i in range(n):
5 sum = a + b
6 b = a
7 a = sum
8 #ENDFOR
9 Prompt(’Result: ’ + a, OK)

10 return
11 #ENDDEF
12
13 Step(’1’, ’User Input’)
14 nr = Prompt(’Number: ’, NUM)
15 fib(nr)
16 if(Prompt(’Restart?’,YES_NO) == YES):
17 Goto(’1’)
18 #ENDIF

Fig. 1. Example Procedure in SPELL syntax

Proceedings of MPM 2013 68

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

Throughout the paper, we use the SPELL source code in Fig. 1 as running example.
It is not satellite-specific but well-known and complex enough to explain all details of
the approach. The program prints the Fibonacci number of a given user input. Lines
1 - 11 depict the subroutine fib(n), which determines the Fibonacci number for the
given parameter n and outputs the result. In line 13, the main program starts with the
SPELL-specific command Step. This command indicates a label (first parameter) used
for jumps and provides a description (second parameter). Line 14 asks for user input to
be given as parameter to the subroutine in line 15. Afterwards, the user is able to decide,
whether she wants to restart the procedure. If the user answers the prompt with YES,
then the application jumps back to line 13 using the Goto command.

3 Methodology

This section describes the general approach for the bidirectional engineering of satel-
lite control procedures written in SPELL into its flow visualisation and vice versa, We
introduce the desired visualisation, which is developed in cooperation with SES and
present the approach for implementing the bidirectional translation.

Desired Visualisation

In Sec. 1, we introduced requirements for the visualisation. To fulfil requirement 1 (hier-
archical visual model), we developed a layered model containing different abstractions.
In practice, it represents the call-hierarchy of a diagram out of another diagram, i.e., we
provide the possibility to go from one more abstract layer to an underlying one which
contains more fine-grained details. The first layer shows only relevant control structure
parts of the main procedure - with the industrial partner SES, we elaborated special
rules for defining the first layer out of the source code: the first branch of if, for,
while or try statements, function calls, Goto and Step commands shall be situated
on the first layer. The second layer will contain more detailed information, e.g., further
branches, body of functions called on the previous layer. In general, the richness of
detail is increasing with a growing layer depth. In the visual representation, shapes for
statements of the same type which directly follow each other, are merged (see Ex. 1).

Requirement 2 (focus on telemetry data) is realised by specific shapes for very im-
portant SPELL statements (e.g., send and receive telemetry commands, steps, prompts).

Example 1 (SPELLFlow - concrete syntax). Fig. 2 illustrates the visualisation of the
SPELL procedure (Fig. 1). Note, that we use the diagram number on the right top of
each box in the following description. The first layer (diagram 1) contains the main pro-
cedure according to the rules mentioned before. The box following Step 1 : User
Input belongs to the Step command and links to another diagram (number 2) on
second layer, which contains a statement (assignment) that is allocated to this step but
should not occur on first layer. If there are further statements, which should not occur
on the first layer, boxes with + icons are shown signalling links to further layers. The
Goto is visualised by a pentagon shape which links to the target statement - the step
statement. In diagram 1, the box Call fib(nr) indicates a function call. It links to

Proceedings of MPM 2013 69

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

First Layer (Main)

Call fib(nr)

if Prompt

false

1
true

1 Second Layer (Step 1) 2

nr = Prompt

Second Layer (fib(n)) 3

Third Layer (EXPR) 4

a = 0, b = 1

b = a, a = sum

 sum = EXPRfor i in range(n)
do

return

end

Step 1 : User Input

a + b
fst snd

...

Result a

Number

Restart?

Fig. 2. Desired visualisation for the example procedure in SPELL

diagram 3, which is situated on second layer. The content of the function is represented
by diagram 3. The shapes of statements of the same type are merged, e.g., in box b =
a, a = sum. The Prompt statement gets a special shape (rhomboid), and expres-
sions (hexagon), that are at least binary. Expressions are depicted explicitly in separate
diagrams on the next layer. Consequently, hexagon a + b links to diagram 4, which
shows the expression in full detail on third layer.

General Bidirectional Engineering Approach

SPELL

concrete syntax

SPELLFlow

concrete syntax

SPELLFlow

abstract syntax

graph (ASG)

TGG

X
te

xt

E
M

F

SPELL

abstract syntax

graph (ASG)

SPELL GUI / SPELL development

environment (tool support)

ed
it

ap
p

ly

ed
it

ap
p

ly

Fig. 3. Bidirectional engineering from
SPELL to SPELLFlow and vice versa

The approach for bidirectional engineering of
SPELL (Fig. 3) from source code to its visualisa-
tion and vice versa will be integrated in two SES
applications: the SPELL execution environment
, which is used for operating satellites and the
SPELL development environment, in which the
SPELL programmer gets the possibility to imple-
ment SPELL procedures in the source code view
and also in using the visualisation of SPELLFlow
models for creating a skeleton as a way of code
generation. Both SPELL environments are repre-
sented by the rounded rectangle on top of Fig. 3.
Currently, SES uses SPELL source code - the con-
crete syntax of SPELL. For the bidirectional engi-
neering process from SPELL source code to visual SPELL models (SPELLFlow), we
use the Eclipse tool HenshinTGG, which is based on EMF [3]. The concrete syntax of
SPELL will be imported in HenshinTGG using Xtext [4] which results in an abstract
syntax graph (ASG) of the SPELL source code. We use HenshinTGG to define triple
rules and generate forward translation rules (for the translation from SPELL ASG to
SPELLFlow ASG) and generate backward translation rules (for the translation from
the SPELLFlow ASG to the SPELL ASG). Using EMF, the abstract syntax graph of
SPELLFlow is transferred to the concrete syntax, an XMI file, which can be imported
into the SPELLFlowEditor to visualise the flow diagram. The SPELLFlowEditor for

Proceedings of MPM 2013 70

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

Fig. 4. Abstract syntax graph of the running example

the visualisation currently exists as a prototype and will be integrated into both SPELL
environments.

Example 2. In Fig. 4 the abstract syntax graph (ASG) of the running example is illus-
trated. Due to the complexity, we highlight a detail of the ASG which represents parts
of source code lines 13 and 14 (step and assignment statements, see Fig. 1). The ASG
is a graph typed over the source part of the type graph. The types are indicated by ”‘:”’,
e.g., stmt LST elem is the type of the second node from top.

4 Formal Framework and Application

In the following section, we briefly introduce the main concepts for model transforma-
tions based on TGGs [5] on the basis of the running example and the synchronisation
framework [15] that we use in the project.

A triple graph is an integrated model, i.e., a model which is composed of a source
model, a target model and correspondences between these models. It consists of three
graphs: the source, correspondence, and target graphs, and two graph morphisms (map-
pings) specifying the correspondences between elements of the source and target model.
In Fig. 7 an excerpt of the triple graph for our running example is given. A triple graph
morphism defines mappings between triple graphs which preserve the correspondences.

L
m ��

� � tr // R
n��(PO)

G �
�

t
// H

Fig. 5. Tripe rule

Triple graphs are typed over a type triple graph TG via a triple
graph morphism. Triple graph morphisms between triple graphs have
to preserve the typing. TG can be seen as the meta-model. Triple
graphs can have attributes and node type inheritance. For this, we
use the formal notation presented in [5,6].

A triple rule tr as shown on the first row of Fig. 5 is an inclusion
of triple graphs L ↪→ R, i.e., all elements in L are uniquely mapped

Proceedings of MPM 2013 71

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

Fig. 6. Triple rule T Step assignment Expr-2-AssignmentActivity (left) and derived FT rule (right)

to elements in R. Consequently, triple rules are non-deleting. They specify, how a con-
sistent triple graph can be extended on all three parts simultaneously resulting again in
a consistent triple graph. The rule application is illustrated in Fig. 5. The triple rule tr
is applied to triple graph G via a graph morphism m called match. The result is triple
graph H, where L is replaced by R in G [6]. Triple rules can be extended by negative
application conditions (NACs) defining forbidden context in order to restrict the rule
application [5].

Example 3 (Triple Rule). In Fig. 6, a triple rule is illustrated. Elements marked with
<++> are created by this triple rule. Unmarked elements are called context elements.
This triple rule creates correspondences between an assignment expression following
a Step command in the SPELL ASG with an assignment activity in the SPELLFlow
ASG. The latter element is situated on a new layer in the target graph. The new layer
is indicated by containment edges, i.e., the assignment activity is contained by the step
activity.

A TGG is a tuple TGG = (TG, S ,TR) containing a type triple graph TG, a start
graph S , which is usually the empty triple graph, and a set of triple rules TR. A TGG
generates all consistent triple graphs. For TG = (TGS ← TGC → TGT), we use LTG,
LS , LT to denote the language, i.e., the classes of all graphs typed over TG,TGS , or
TGT , respectively.

For the translation from the source into the target model, we use a set of operational
forward translation rules (FT rules) that are generated automatically out of the set of
triple rules [14]. Each FT rule trFT differs only on the source part from the correspond-
ing triple rule tr: Each <++> is replaced by a Boolean valued marker <tr>. In order
to translate a source model to an integrated model, all elements in the source model
are initially marked with false. When applying an FT rule, the <tr>-marker is set to
true, so that the specific rule cannot be applied again on the same elements. So, the
source model will be translated stepwise into an integrated model, without modifying
the source model. Similar to the generation of FT rules, operational backward transla-
tion rules (BT rules) can be created in order to translate backward a target model into
the integrated model.

Proceedings of MPM 2013 72

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

Fig. 7. Excerpt from triple graph (integrated model)

Example 4 (FT/BT Rule and FT-Rule Application). We consider the triple rule in Fig. 6.
In the corresponding FT rule, each <++> marker is replaced by a <tr> in the source
part. In the corresponding BT rule, the marker is replaced in the target part.

In general, the translation from a source model into a target model needs the source
graph as a basis. In our example, the translation is performed from the SPELL ASG,
which is illustrated in Fig. 4. It will be translated stepwise into an integrated model
with the set of FT rules. In Fig. 7 we illustrate the application of the FT rule FT Step-
assignment Expr-2-AssignmentActivity generated out of the triple rule in Fig. 6. The
Step statement is already translated, so that the rule FT Step-assignment Expr-2-
AssignmentActivity can be applied. The elements marked with a fat border are required
context elements which are mapped by the FT rule. After applying the FT rule, the
elements marked with a dashed line are created by this FT rule.

∀ G′S ∈ LS :

GS oo r //

a
��
u:fPpg

GT

b
��

G′S oo
r′
// G′T

∀ G′T ∈ LT :

GS oo r //

a
��
w:bPpg

GT

b
��

G′S oo
r′
// G′T

Fig. 8. Synchronisation operations fPpg, bPpg

In future work, we will apply the
model synchronisation framework based
on TGGs [15]. The main idea is to prop-
agate changes from one domain to the
other by reusing the operational forward
and backward translation rules.

In Fig. 8, we illustrate the forward
propagation operation (fPpg) which ap-
plies the model update a performed in the source model to the integrated model. On the
left side of the figure, we illustrate the fPpg operation and on the right side, we illustrate
the symmetric backward propagation operation bPpg. The forward operation consists
of three steps: The forward alignment step constructs a new correspondence graph by
deleting all correspondence elements which became invalid by the source model update
a. The deletion operation creates a consistent integrated model in removing parts which
became inconsistent by update a. The forward addition operation executes the opera-
tional forward rules, until all untranslated elements are translated. Due to the definition

Proceedings of MPM 2013 73

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

SPELLFlow - concrete syntaxSPELL2SPELLFlow - triple graphSPELL - concrete syntax
First Level (Main) 1

Second Level (Step 1) 2

Step 1 : User Input

...

nr = PromptNumber

Fig. 9. Excerpt: Summary of bidirectional engineering process

of this operation, the resulting integrated model is consistent. The bPpg operation is
symmetric. In [15], we have shown for this model synchronisation framework that also
correctness and completeness properties hold.

However, translating all updates performed synchronously in the source and tar-
get model to the integrated model can cause conflicts. In [7], an appropriate conflict
resolution is discussed.

Due to the well-defined formal frameworks we use for defining the translation and
later synchronisation, requirement 3 (concise and correct visual models and functional
behaviour) is fulfilled. The model is concise, because we defined a hierarchical (multi-
layer) view on the SPELL source code, especially the main layer of SPELLFlow pro-
vides an abstract view on the SPELL source code. The correctness and completeness
w.r.t. correspondence patterns between SPELL and SPELLFlow is ensured by Theorem
8.2 in [15]. To show functional behaviour, we use the automatic critical pair analysis
provided by HenshinTGG [13,14].

In Fig. 9, we show an overview of the whole bidirectional engineering process for
an excerpt of our running example. The SPELL source code is parsed using Xtext
yielding the SPELL ASG (left). This ASG is translated into an integrated model (mid-
dle) represented by a triple graph in using the set of FT rules. The target part is the
SPELLFlow ASG, which is exported as an XMI file. This XMI file is imported into the
SPELLFlowEditor which displays the desired SPELLFlow digram (right) in concrete
syntax. To generate source code out of the visualisation, we will perform the same pro-
cess in the backward direction and apply the set of BT rules for the translation. At a
later stage, we will apply the presented synchronisation framework.

5 Related Work

TGGs were introduced in [21] and since then refined and extended by several
works [19,12,22]. Many works focus on defining and preserving correctness properties
and functional behaviour of TGGs [5,14]. Based on the delta-lenses framework [24],
TGGs were extended by bidirectional model synchronisation frameworks [10,15].
These results will be reused in the presented approach.

In [17,1], a new type of TGGs was introduced: view triple graph grammars
(VTGGs), in order to model domain-specific views of a source model. The authors
present different views, e.g., domain-specific views or views presenting different ab-
straction layers, and describe an appropriate model transformation technique satisfying

Proceedings of MPM 2013 74

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

every type of view. VTGGs are very promising for the approach presented in this paper,
though the definition of VTGGs as given in [1] is too restrictive for our approach and
needs to be relaxed.

The Atlas Transformation Language (ATL) [18] is a widely-used framework for
specifying model transformations in a declarative manner. However, the approach only
supports the specification of unidirectional transformations and requires to specify each
direction of bidirectional model transformations separately. Therefore, in contrast to
TGGs, the approach does not allow to generate operational translation rules for forward
and backward model transformations from one consistent specification.

Several works deal with model visualisation and visualisation languages. In [9],
a general approach for defining a visualisation language and its simulation is given
based on typed algebraic graph transformation. In [11], an overview of different soft-
ware visualisation approaches and important properties for an appropriate visualisation
are discussed. SPELLFlow matches most of these requirements. Koschke [20] presents
a tool suite for software visualisation in reverse engineering. There, different visualisa-
tions are provided as additional information. In contrast, it is planned that SPELLFlow
will replace the source code view completely. Both papers present surveys on software
visualisation where the majority of interviewees (more than 80% in each survey) agree
that software visualisation is at least important.

6 Conclusion

In this paper we introduced a new visual modelling language (SPELLFlow) for the vi-
sualisation of procedures written in the satellite control language SPELL. The require-
ments for the syntax and semantics of the visual language SPELLFlow were developed
in cooperation with the industrial partner SES. We presented an approach for the auto-
matic generation of SPELLFlow models from SPELL programs, and the generation of
SPELL source code from SPELLFlow models. This bidirectional engineering approach
is based on the formal framework of TGGs and supported by the tool HenshinTGG and
a visual editor based on Eclipse GMF which we developed for SPELLFlow.

According to the requirements set up by SES, we will apply the synchronisation
framework presented in [15] using HenshinTGG. Finally, we will evaluate our imple-
mentations regarding efficiency and usability in order to integrate the implementations
in the daily work of satellite controllers and developers at SES.

Acknowledgements. Supported by the Fonds National de
la Recherche, Luxembourg (3968135).

References

1. Anjorin, A., Rose, S., Deckwerth, F., Schürr, A.: Asymmetric delta lenses with view triple
graph grammars (to appear). ECEASST pp. 1–15 (2013)

2. Eclipse Consortium: Eclipse Graphical Modeling Framework (GMF) (2013), http://
www.eclipse.org/modeling/gmp/

Proceedings of MPM 2013 75

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

3. Eclipse Consortium: Eclipse Modeling Framework (EMF), Version 2.8.3 (2013), http:
//www.eclipse.org/emf

4. The Eclipse Foundation: Xtext, Version 2.3.1 (2013), http://www.eclipse.org/
Xtext/

5. Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-Fly Construction, Correctness and
Completeness of Model Transformations based on Triple Graph Grammars. In: Proc. MOD-
ELS’09. LNCS, vol. 5795, pp. 241–255. Springer (2009)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs in Theor. Comp. Science, Springer (2006)

7. Ehrig, H., Ermel, C., Taentzer, G.: A Formal Resolution Strategy for Operation-Based Con-
flicts in Model Versioning Using Graph Modifications. In: Proc. FASE’11. LNCS, vol. 6603,
pp. 202–216. Springer (2011)

8. Ermel, C., Hermann, F., Gall, J., Binanzer, D.: Visual Modeling and Analysis of EMF Model
Transformations Based on Triple Graph Grammars. ECEASST 54, 1–14 (2012)

9. Ermel, C.: Simulation and animation of visual languages based on typed algebraic graph
transformation. Ph.D. thesis, Technische Universität Berlin (2006)

10. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model syn-
chronization. SoSyM 8, 21–43 (2009)

11. Gracanin, D., Matkovic, K., Eltoweissy, M.: Software visualization. ISSE 1(2), 221–230
(2005)

12. Greenyer, J., Kindler, E.: Comparing relational model transformation technologies: imple-
menting Query/View/Transformation with Triple Graph Grammars. SoSyM 9, 21–46 (2010)

13. EMF Henshin, Version 0.9.6 (2013), http://www.eclipse.org/henshin/
14. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient Analysis and Execution of Correct

and Complete Model Transformations Based on Triple Graph Grammars. In: Proc. MDI’10.
pp. 22–31. MDI ’10, ACM (2010)

15. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann, S., Engel,
T.: Model synchronization based on triple graph grammars: correctness, completeness and
invertibility. SoSyM pp. 1–29 (2013)

16. Hermann, F., Gottmann, S., Nachtigall, N., Braatz, B., Morelli, G., Pierre, A., Engel, T.: On
an Automated Translation of Satellite Procedures Using Triple Graph Grammars. In: Proc.
ICMT’13, LNCS, vol. 7909, pp. 50–51. Springer (2013)

17. Jakob, J., Königs, A., Schürr, A.: Non-materialized Model View Specification with Triple
Graph Grammars. In: Graph Transformations, LNCS, vol. 4178, pp. 321–335. Springer
(2006)

18. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science
of Computer Programming 72, 31–39 (2008)

19. Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Extensions, Implementations,
and Application Scenarios. Tech. Rep. TR-ri-07-284, Department of Computer Science, Uni-
versity of Paderborn, Germany (2007)

20. Koschke, R.: Software Visualization for Reverse Engineering. In: Revised Lectures on Soft-
ware Visualization, International Seminar. pp. 138–150. Springer (2002)

21. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Tinhofer, G.
(ed.) Proc. WG’94. LNCS, vol. 903, pp. 151–163. Springer (1994)

22. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Proc. ICGT’08. pp. 411–425. No.
5214 in LNCS, Springer (2008)

23. SES Engineering: SPELL - Satellite Procedure Execution Language & Library, Version
2.3.13 (2013), http://code.google.com/p/spell-sat/

24. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting Parallel Updates with Bidirectional
Model Transformations. In: Proc. ICMT’09. pp. 213–228. Springer (2009)

Proceedings of MPM 2013 76

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

	Preface
	Towards Compositional Domain Specific Languages
	A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering
	Integrating Prose as First-Class Citizens with Models and Code
	Towards a Multi-Domain Model-Driven Traceability Approach
	A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models
	A DSL for Explicit Semantic Adaptation
	A Multiparadigm Approach to Integrate Gestures and Sound in the Modeling Framework
	Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

