
Organic Synthesis as Artificial Intelligence Planning

Arman Masoumi1, Mikhail Soutchanski1, and Andrea Marrella2

1 Ryerson University, Toronto, Ontario, Canada
arman.masoumi@ryerson.ca, mes@scs.ryerson.ca

2 Sapienza Università di Roma, Rome, Italy
marrella@dis.uniroma1.it

Abstract. We explore advantages that can be gained from using expressive logic
languages for semantic modelling of chemical reactions. First, we present a novel
approach for logical representation of notions in organic chemistry, as well as for
reasoning about generic chemical reactions. Subsequently, using this new seman-
tic modeling of reactions, we explore what reasoning problems can be solved.
We focus on solving organic chemistry synthesis problems, where the goal is to
synthesize the target molecule from a set of starting stage molecules. We argue
that this problem can be reduced to a planning problem in Artificial Intelligence.
We conduct experimental study including empirical assessment of a PROLOG
planner and two state-of-the-art planners. We investigate if they are capable of
solving a set of instances of the organic synthesis problem. We report numerical
data from our study and do comparative analysis of the planners. The novelty of
our work is in using state-of-the art planners for solving the organic synthesis
problem. The significance of our work is in methodology that we developed and
in showing that expressive logical language can be useful for semantic modeling.

Keywords: Organic Chemistry, Computer-Assisted Organic Synthesis, Situation
Calculus, Planning, PDDL, Knowledge Representation and Reasoning, Datalog.

1 Introduction

Recently, there is a growing interest in using semantic technologies for the purposes of
unambiguous representation of chemical knowledge about small molecules [43,11,41].
A number of ontologies are being developed to facilitate annotation, sharing of chemi-
cal data about molecules and to guarantee interoperability of tools processing chemical
data and knowledge [12,13,33,35]. For example, the CHEBI ontology aims to represent
all Chemical Entities of Biological Interest [19,34]. In a similar vein, there is inter-
est in bioinformatics [3,20] towards standardized representation (e.g., in BioPAX) of
biological pathways, which include sequences of bio-chemical reactions in metabolic
pathways. However, it becomes increasingly evident that further progress of research
on developing useful ontologies in cheminformatics and bioinformatics is limited by
expressiveness of the logical languages, such as OWL2 [40,30], which are commonly
employed to formulate the ontologies. For example, the current version of CHEBI in-
corporates only isA relations between molecular entities and a bit of mereology to show
parthood relations between molecules and the constituent functional groups, but there
is no complete representation of structure of the molecules. As argued in [35,49,50,53],
there is a growing need in considering more expressive logical languages, because they
are needed to formulate complex concepts, such as molecules with rings, that cannot
be correctly represented in OWL2 alone. Modeling and reasoning about biochemical
reactions and pathways in OWL2 is also limited [22].

In the area of formal ontologies, it is recognized that actions, events and other dy-
namic entities are better understood as independent entities, e.g., see Basic Formal On-
tology (BFO) [59,60,5], Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE) [26] and General Formal Ontology (GFO) [39,4]. In a somewhat similar vein,

2 A. Masoumi, M.Soutchanski, A. Marrella

[54] argues that actions should be reified into first class entities that can be quantified
over. In addition, in philosophy of action, Donald Davidson [18] argued that the logical
form of sentences in which actions (or events) are adverbially modified can be stated
only when the adverbs are transformed into predicates about an event, and the form
is understood as an implicit quantification over the event applied to the conjunction
of these predicates that have the event as an argument. Moreover, Barry Smith coined
the term “fantology” to criticize a belief that the ontological structure of reality can be
captured exclusively using unary and binary predicates [59,60].

In the long-term perspective, we would like to investigate what can be gained
from using expressive logics and from integrating static ontologies (e.g., formulated in
OWL2) with a more traditional Artificial Intelligence (AI) approach to reasoning about
actions. It is important to design a hybrid logical representation that balances expres-
sivity with computational tractability of reasoning and that allows to solve a variety of
problems including both classification of static entities and goal-directed planning over
actions. Some initial steps in this research direction are taken in [31,67,7,56,55]. In this
paper, we concentrate on exploring advantages that can be obtained from using expres-
sive logical languages for representing biochemical reactions. It remains to be seen how
our representation of reactions can be integrated with existing chemical ontologies of
static chemical entities (e.g., ontologies mentioned above). More specifically, in this
paper, we show that by using an expressive logical language, one can easily formulate
and solve the planning (synthesis) problems in the area of organic chemistry.

The organic synthesis problem can be understood as identifying a sequence of
chemical reactions that can transform a set of starting state molecules into the target
molecule. This problem is of great importance since it has pharmaceutical and industrial
applications. In an effort to facilitate discovery in life sciences, and more specifically
in organic chemistry, a novel way of representing and reasoning about chemical reac-
tions was introduced in [51]. The proposed approach can represent generic chemical
reactions and reason about them at the level of changing chemical bonds between the
atoms. The introduced approach is based on the Situation Calculus (SC), a well-known
logical AI formalism for representing and reasoning about dynamic domains. The SC
reasoning procedures have been extensively studied in the AI community, and thus it
provides a significant potential for modeling of dynamic phenomena in life and natural
sciences. Following the approach proposed in [51], we formulate the organic synthesis
problem as a planning problem in AI and explore whether existing planner systems are
capable of solving the problem. We investigate two different computational approaches
to solving this kind of planning problems and do an empirical assessment of these ap-
proaches on a set of benchmark problems. We start with encoding instances of the or-
ganic synthesis in two different languages. One of the planners (that we have developed
ourselves) solves the planning problems directly in SC and accepts PROLOG encoded
input. This planner can take advantage of domain specific declarative heuristics built
ad-hoc for helping the system in synthesizing a goal molecule. The other planners that
we used in our experimental study are the state-of-the-art planners that solve the plan-
ning problems using a different methodology. They are the winners of the International
Planning Competitions. These state-of-the-art planners support a standard input lan-
guage called the Planning Domain Definition Language (PDDL). The PDDL planners
use domain-independent heuristics. To facilitate evaluation, we translated manually our
small library of generic reactions from PROLOG to PDDL.

We collect run-time data from each of these planners and compare their perfor-
mances. Our experimental study is preliminary and more broad assessment is required
on a much greater variety of instances of the organic synthesis problem. However, the
main novelty of our paper is that studies of this kind can be proposed and conducted. To
the best of our knowledge, the PDDL state-of-the-art planners have not been previously
used to solve organic synthesis problems. The significance of our empirical assessment
is that it indicates what new research directions should be taken following this work.

Organic Synthesis as AI Planning 3

2 Background

In what follows, all free variables (typically starting with lower case letters such as
object variables x, situation variable s, and a variable of sort action a) are implicitly
universally (∀) quantified at front. Read the symbol ∧ as ‘and’, ∨ as ‘or’, ∃ as ‘exists’,
¬ as ‘not’. We use notation −→x to denote a tuple of object arguments. A number of
examples are used in this section to clarify the concepts being introduced. The exam-
ples are inspired by an application domain that was used in the International Planning
Competition (IPC) in 2005, namely the Pathways domain [28]. Later, when we explain
our approach to representing chemical reactions, we will point out the differences and
benefits of our approach over the Pathways domain.

The situation calculus (SC) is a logic formalism designed for representing and
reasoning about dynamical domains. Basic ingredients of SC are actions a, situa-
tions s and fluents [58]. In SC, actions are used to represent changes occurring in
an application domain. For example, if the domain is molecular biology, the ac-
tion associate(m1,m2,m3) can represent a biochemical association reaction where
molecules m1 and m2 react (and are consumed) to form the new complex molecule
m3. There are usually a number of objects in a domain as well. For example, in the
area of molecular biology, the objects (constants) of the domain would be specific
molecules or proteins, such as protein PCAF . Performing actions results in chang-
ing the situation. A situation is a first-order term denoting a sequence of actions. The
special constant S0 denotes the initial situation, namely the empty action sequence.
The function do(a, s) denotes the new situation that results from performing action a
in situation s. For example the situation where proteins PCAF and P300 reacted to
produce protein PCAF -P300 (and nothing else has happened) can be represented by
do(associate(PCAF,P300, PCAF -P300), S0). Fluents are predicates whose values
may vary from situation to situation, and therefore are predicates with the last argu-
ment s being a situation. They generally describe those features of the application do-
main that may change when actions are executed. As an example, consider the fluent
Available(m1, s) that holds in situation s if the molecule m1 is available in s.

A basic action theory (BAT)D is a set of axioms in SC that is used to model actions,
their preconditions, their direct effects and initial values of the fluents.
Initial theory DS0 : a set of axioms representing the initial situation, before any action
was performed. In the initial theory, we might have also sentences with no situation ar-
gument in them; they may include external static ontologies or facts that do not change.
For example in the initial theory we might assert that there is a biochemical association
reaction in which the proteins PCAF and P300 react to produce PCAF -P300 using
the predicate Association-reaction(PCAF,P300, PCAF -P300). The initial theory
might be logically incomplete if not all the facts about an environment are known.
Action precondition axioms Dap: a set of axioms characterizing possibility of
executing an action. Precondition axioms (PAs) use the distinguished predicate
Poss(A(−→x), s) meaning that an action A(−→x) is possible in situation s. (Recall that
−→x represents a tuple of arguments.) There is one axiom for each action term A(−→x),
with syntax Poss(A(−→x), s) ↔ ΠA(

−→x , s). ΠA(
−→x , s) represents the preconditions of

action A: A is possible if and only if (use the bi-conditional ↔ for iff) the logical
condition ΠA(

−→x , s) holds in s. In the example that we have been following, a possible
precondition axiom could be:
Poss(associate(m1,m2,m3), s)↔

Available(m1, s) ∧Available(m2, s) ∧Association-reaction(m1,m2,m3).
This PA is stating that the biochemical association reaction between molecules m1 and
m2 to produce m3 is possible only if both m1 and m2 are available in situation s, and
there is a biochemical association reaction transforming m1 and m2 into m3.
Successor state axioms Dss: a set of axioms characterizing the effects of the action on
the fluents. The idea behind successor state axioms is that a fluent becomes true after

4 A. Masoumi, M.Soutchanski, A. Marrella

executing an action if the action causes it to become true, or the fluent remains true if
it was already true and the action taken did not cause it to become false. But otherwise,
the fluent becomes false, if the most recently executed action has a negative effect on
the fluent. More formally speaking, each SSA has the following generic form:
F (−→x , do(a, s))↔

∨
i a=PosActioni(

−→x) ∧ γ+i (−→x , s) ∨
F (−→x , s) ∧ ¬

(∨
j a=NegActionj(

−→x) ∧ γ−j (−→x , s)
)
,

where PosActioni is an action that makes the fluent F true and γ+i (−→x , s) is the formula
expressing a context in which this positive effect can occur; similarly, NegActionj is an
action that can make the fluent F false if the context formula γ−j (−→x , s) holds in s. If
the executed action a is none of these, then the truth value of F remains unchanged
(a has no effect). SSAs characterize the truth values of the fluent F in the next situ-
ation do(a, s) in terms of fluents in the situation s and they represent non-effects of
actions compactly (because of implicit universal quantifier ∀ over action variable a).
For example, the successor state axiom for the fluent Available is as follows:

Available(m, do(a, s)↔ ∃m1,m2(a=associate(m1,m2,m)) ∨
Available(m, s) ∧ ¬∃m1,m2(a=associate(m,m1,m2)∨

a=associate(m1,m,m2)).
This SSA is stating that a molecule m becomes available, if the most recently executed
action is associate with the last argument m (recall that last argument of associate
is the molecule that is produced as the result of the reaction), or the molecule m was
already available in s, and the last action did not consume it, i.e., the last action was not
associate with m appearing as either first or second arguments.

BATs might also be augmented with abbreviations, also known as derived predi-
cates [61]. Abbreviations look similar to fluents in the sense that they are also predicates
with their last argument a situation. Similar to fluents, their truth value can vary from
situation to situation. However, abbreviations differ from fluents in that the actions do
not directly affect them. Instead, the effects of the actions on abbreviations are implicit.
So, there are no SSAs for abbreviations. Sometimes, abbreviations can be eliminated,
but it is convenient to keep them to make other axioms more succinct. In addition, ax-
ioms defining abbreviations help to make a logical theory more modular. For example,
abbreviations can occur in the precondition axioms and can represent common terms
of an application domain. Syntactically, axioms defining abbreviations are formulas
uniform in s: these are formulas that have only occurrences of fluents and/or abbrevia-
tions with the situation argument s, may have also occurrences of static predicates, but
cannot mention any other situation variables, terms or quantifiers over situations. Ab-
breviations may have arbitrary many object arguments that usually represent key atoms
in the functional groups which are part of the molecules. As an example, consider the
hypothetical abbreviation that can be added to the Pathways domain:

Dangerous(m, s)←Molecule(m) ∧Available(m, s) ∧Available(PCAF, s).
Here, for the sake of an example, we are assuming that having any molecule m is dan-
gerous if protein PCAF is also available. Notice that there is no action that can make
the predicate Dangerous true directly. This is why the most intuitive way to have it
properly defined is through a state constraint. Since actions have direct effect on the flu-
entAvailable(m, s), they also have indirect effect on the propertyDangerous, e.g., as
soon as m becomes available, it is dangerous, but if m is no longer available, it ceases
to be dangerous.

Planning Domain Definition Language (PDDL) is the standard language with Lisp-
like syntax developed for expressing planning problems [52]. It is used as the input
language in bi-annual competitions: all instances of the planning problems must be
specified in PDDL. It is worth noting that SC provides declarative semantics for PDDL
[14], and it is not difficult to translate from one syntax to the other. In the remainder of
this paper, we use the SC syntax.

Organic Synthesis as AI Planning 5

3 Methodology

In this section we explain how chemical reactions can be represented in SC BATs.
This work was originally introduced in [51]. Previously, Fujita proposed a formalism to
model chemical reactions called Imaginary Transition Structure (ITS) [25]. A somewhat
similar approach was developed by G.E. Vladutz, who proposed “superimposed reac-
tion graphs ” and “superimposed reaction skeleton graph” [66,64]. In either case, the
approaches are based on graph-transformation modeling of chemical reactions, which
are in spirit similar to how SSAs are constructed. The main idea is that, as a result of
a reaction, a number of new bonds can be formed, a number of bonds can split, and all
remaining bonds will not change. This closely matches the main idea behind the SSAs,
where an action causes some fluents to become true, some fluents to become false, and
has no effect on others. Of course, SSAs [58] are more general in terms of applicability.

Representing molecules requires representing chemical atoms and the bonds be-
tween them. The chemical atoms form the objects in the SC formulas and their type is
determined by the situation independent predicates corresponding to the atom names
in Mendeleyev’s periodic table. For example, Carbon(C1) means the constant C1 rep-
resents a carbon atom and Hydrogen(H1) means H1 represents a hydrogen atom;
Atom(x) declares x is any atom in an initial theory. Similarly, the groups in the pe-
riodic table can be represented. For example, Halogen(x) is true if x belongs to the
Halogen group in the periodic table (e.g., x might be Fluorine or Chlorine). The chemi-
cal bonds between the atoms are represented by fluents describing the type of the bond.
For example, the fluentBond(x, y, s) is true iff atom x has a single bond with atom y in
situation s and the fluentDoubleBond(x, y, s) is true iff there is a double bond between
x and y in situation s; TripleBond(x, y, s), AromaticBond(x, y, s) are similar.

The molecules that are available in the initial situation S0 are described in the initial
theory DS0

by formulas introducing the atoms and the bonds between them. For exam-
ple, a water molecule H2O in the initial situation S0 can be represented as
Hydrogen(H ′) ∧Hydrogen(H ′′) ∧ H ′ 6=H ′′ ∧Oxygen(O)∧

∀x(Bond(x,O, S0)→ (x=H ′ ∨ x=H ′′))∧
∀y(Bond(H ′′, y, S0)→ y=O) ∧ ∀y(Bond(H ′, y, S0)→ y=O).

Representing generic chemical reactions requires representing and identifying
classes of molecules. Molecules within the same chemical class have similar chemical
characteristics. For example, alkanes, alcohols and esters are some of the well-known
chemical classes that display unique behaviors in reactions. Chemical classes owe their
chemical characteristics to the functional groups constituting them. Functional groups
are specific sub-molecules in a molecule. For example, alkyl, hydroxyl and ester, are
the main functional groups in alkanes, alcohols and esters, respectively. Alkyls, usu-
ally denoted by R, are chemical compounds that consist solely of acyclic single bonded
(univalent) carbon and hydrogen atoms with the generic formula CnH2n+1. For exam-
ple, methyl CH3- and ethyl CH3−CH2- are alkyls. A hydroxyl group OH- is an oxygen
atom O that is bound with a hydrogen atom H. The ester functional group has the form
COO−R, where R is an alkyl. Alkanes are compounds in which the alkyl functional
group bonds with a hydrogen atom. For example, methane CH4 is an alkane. An alco-
hol R−OH is a compound in which a hydroxyl functional group -OH is bound to a car-
bon atom in an alkyl R: for instance, methanol CH3−OH and ethanol CH3−CH2−OH
are alcohols. Esters are compounds of the form R−COO−R′, where both R and R′ are
alkyls, and an oxygen atom has a double bond with carbon.

We use abbreviations to define different chemical classes, functional groups and
specific instances of molecules. Abbreviations correspond to derived predicates in
PDDL [61]. The arguments of the abbreviations are referred to as key atoms of the
abbreviation, which are chosen from the atoms at common reaction sites of a given
molecule/chemical class. For example, the abbreviation for alcohol R−OH could be:
Alcohol(o, h, s)← Hydroxyl(o, h, s) ∧ ∃c(Alkyl(c, s) ∧Bond(o, c, s)),

6 A. Masoumi, M.Soutchanski, A. Marrella

where Hydroxyl(o, h, s) is an abbreviation as follows:
Hydroxyl(o, h, s)← Oxygen(o) ∧Hydrogen(h) ∧Bond(o, h, s)∧
∃=2 x(Atom(x) ∧Bond(o, x, s)) ∧ ∃=1 x(Atom(x) ∧Bond(h, x, s)).

In the above formula, ∃=1 (∃=2, respectively) is a counting quantifier saying that there
exists exactly one (there are exactly two, respectively) entities for which quantified
formula holds. The counting quantifiers can be replaced with usual (but less readable)
first order logic syntax. For example, ∃=2 x(ϕ(x)) stands for ∃x1∃x2(ϕ(x1)∧ϕ(x2)∧
x1 6=x2 ∧ ∀y(ϕ(y) → (y=x1 ∨ y=x2))). Notice that in the abbreviation for alcohol
we use another abbreviation, namely Alkyl(c, s). The abbreviation for alkyl is written
recursively and its key atom is the carbon atom that is not saturated with hydrogen or
other carbon atoms, but can form a bond.

As another example, molecules that include chlorine and hydrogen somewhere in
their structure can be defined using the following abbreviation:

ChlAndHydr(cl, h, s)← Chlorine(cl)∧Hydrogen(h)∧Connected(cl, h, s).
where Connected(x, y, s) is the recursive transitive closure relation defined on bond
fluents. For the sake of simplicity, if there are single bonds only, it is defined as follows:
Connected(x, y, s)← Bond(x, y, s).
Connected(x, y, s)← ∃z(Bond(x, z, s) ∧ Connected(z, y, s)).

Furthermore, chemical concepts such as hydrocarbon, which are compounds con-
sisting entirely from carbon and hydrogen atoms, or inorganic molecules, i.e. molecules
that do not contain any carbon atoms can be defined as follows:

Hydrocarbon(c, h, s)← Carbon(c) ∧Hydrogen(h) ∧ Connected(c, h, s)∧
¬∃x(Atom(x) ∧ Connected(c, x, s) ∧ ¬Hydrogen(x) ∧ ¬Carbon(x)).

Inorganic(x, s)← Atom(x)∧¬Carbon(x)∧ ¬∃c(Carbon(c)∧Connected(c, x, s)).
We provided examples of how functional groups and chemical classes can be

represented as abbreviations above. However, we can also easily represent specific
molecules, including molecules with rings, e.g., Cyclobutane, which is a cyclic struc-
ture constructed from four carbon atoms with single bonds with each other, each of
which has two distinct hydrogen atoms attached to. Moreover, abbreviations are also
used for representing goal molecules of the planning instance. For example,

Goal(s)← (∃o, h)Alcohol(o, h, s) ∧ (∃cl, c)EthylChloride(cl, c, s).
This formula states that our goal is to reach a situation s in which there are atoms iden-
tifying an alcohol molecule, as well as a molecule of ethyl chloride CH3−CH2−Cl.

Formally, the bodies of abbreviations are constructed from fluents, abbreviations,
conjunctions, existential quantifiers and (restricted) negation. The abbreviations can be
expressed as a stratified Datalog¬ program [1,8], possibly after applying the Lloyd-
Topor transformations [46]. The Lloyd-Topor transformations are needed to transform
the rules that use ¬∃,∀,∨ (e.g., due to eliminating counting quantifiers) into logically
equivalent Datalog¬ rules, e.g., the transformed rule for Hydroxyl(o, h, s) would be:
Hydroxyl(o, h, s)← Oxygen(o)∧Hydrogen(h)∧Bond(o, h, s)∧
∃=2x(Atom(x)∧Bond(o, x, s))∧∃x1(Atom(x1)∧Bond(h, x1, s)∧¬P (h, x1, s)),

where P (h, x1, s) is the auxiliary predicate introduced by one of Lloyd-Topor’s trans-
formations. The rule defining P (h, x1, s) is as follows:

P (h, x1, s)← ∃y(Atom(y)∧Bond(h, y, s)∧y 6=x1).
The remaining counting quantifier ∃=2 can be similarly eliminated. Note that in the
above examples for inorganic and hydrocarbon molecules with (¬∃), the predicate
Connected was defined in previous rules. Using Lloyd-Topor’s transformations, these
rules can be transformed into stratified Datalog¬. Thanks to stratification of our ab-
breviations, there is always an unique minimal model satisfying our abbreviations. It is
known that data complexity of stratified Datalog¬ is P -complete [8].

Now we are ready to introduce the SC actions for representing chemical reactions
and write PAs and SSAs for them. We define an action for each generic chemical reac-
tion, with the arguments of the action being the atoms that change bond in the chemical

Organic Synthesis as AI Planning 7

reaction. The reactions are generic in the sense that usually they represent reactions be-
tween chemical classes rather than specific molecules. For example, a known chemical
reaction is the reaction between alcohols and bases. This reaction can be represented
as a SC action (alcohol base reaction, for short a b r) as follows (the long names for
arguments is intended to suggest which atoms they are representing):

a b r(oxOfAlcohol, hydOfAlcohol, xOfBase,metalOfBase)
An instance of this reaction is represented below, where the alcohol is ethanol
CH3−CH2−OH, and the base is sodium hydride Na−H. As can be seen, in this re-
action, four atoms change bond, and they are listed as the arguments of the action. In
this example, the metalOfBase is the sodium Na on the left hand side of the figure,
and the xOfBase is the hydrogen atom attached to the sodium atom.

Na

H

O

CH2 CH3

H

Na O

CH2 CH3

H H
Introducing action terms is not enough for representing the chemical reactions. We

also need to write PAs and SSAs, to specify when the reactions are possible, and what
are the effect of them on the fluents (fluents being bonds between the atoms). The PAs
are straight forward to write, as they essentially introduce the molecules on the left hand
side of the reaction. Consider the PA for a b r below:

Poss(a b r(oxOfAlcohol, hydOfAlcohol, xOfBase,metalOfBase), s) ↔
alcohol(oxOfAlcohol, hydOfAlcohol, s) ∧ base(xOfBase,metalOfBase, s).

Notice that the PA gives significance to the arguments of the actions, as it is in the right
hand side of the PA that, for example, the first argument of the a b r is specified to be the
oxygen of the alcohol. Also, notice that the right hand side of this precondition axiom
mentions abbreviations alcohol and base. The abbreviations defining functional groups
and chemical classes can occur only in the precondition axioms and other abbreviations.

The SSAs are slightly more complicated to write, since they should take into ac-
count all the bonds that are formed and cleaved as the result of the reaction. For sim-
plicity, assume that we are only interested in the Bond fluent, and that the only action
in our knowledge base is a b r. Consider the partial formula below as an example of
how the effects of a b r are captured in the SSA:

(∀x, y, a, s). Bond(x, y, do(a, s)) ↔
(∃ z, u)(a=a b r(x, z, u, y)) ∨ (. . .)

∨ Bond(x, y, s)∧
(¬∃u, z)(a=a b r(x, y, u, z)) ∨ (. . .) .

In the above partial SSA, the first line of the right hand side represents the bonds
that will be formed as the result of the reaction. Here, we see that x and y are listed
as the first and fourth arguments of the action, which correspond to the oxygen of the
alcohol and the metal of the base, respectively. Therefore, if the last action had been
a b r such that x and y appeared as the first and fourth arguments of the action, then
there is a bond between them after the action (Bond(x, y, do(a, s) holds).

The last line of the partial SSA accounts for the bonds that are cleaved as the re-
sult of the reaction. Notice that here x and y are listed as first and second arguments
of the action, representing oxygen of the alcohol molecule and its hydrogen, respec-
tively. Thus, had the last action been a b r such that x and y appear as the first two
arguments of the action, then the single bond between them is cleaved after the reaction
(Bond(x, y, do(a, s) does not hold).

Finally, the middle line of right hand side of the partial SSA represents the non-
effects of the action. It simply states that, if the last action taken neither made the fluent
true (i.e. the last action was not mentioned somewhere in the bond formations part in
the SSA), nor made it false (i.e. the last action was not mentioned somewhere in the
bond cleavages part of the SSA), then the value of the fluent has not changed. In this

8 A. Masoumi, M.Soutchanski, A. Marrella

case, the last action is ignored and the truth value of the fluent is determined in the
previous situation (Bond(x, y, s) determines if x and y have a single bond between
them in situation do(a, s)).

It is worth noting the advantages of our way of representing and reasoning about
chemical reactions over representation adopted in the Pathways domain. Most impor-
tant of all, our approach allows representing generic chemical reactions, while the rep-
resentation used in the Pathways domain can only support specific instances of reac-
tions. Another important advantage of our approach is that we represent what structural
transformations the molecule undergoes. Thereby, our approach provides the means of
representing internal mechanism of reactions.

4 Experiments

In order to investigate the feasibility of our approach to representing and reasoning
about chemical reactions, we implemented it, and tried to solve a number of instances
of the organic synthesis problems using several AI planners. More specifically, we en-
coded instances of the problems in PDDL and PROLOG so that each problem in one
language is merely a translation from the other. The experiments were performed on
a machine with 2.30 GHz CPU and 12 GB RAM. We ran our tests using a PRO-
LOG planner and two state-of-the-art planners, specifically, Fast-Downward [37] and
Roamer [48]. The reason that Fast-Downward and Roamer were chosen in this research
was that they support PDDL2.2 [23], which enables representation of realistic plan-
ning domains by supporting features like derived predicates and a number of other
features. As such, both planners can handle the abbreviations used in our approach.
Fast-Downward [37] is a classical planning system based on heuristic search. It is a
progression planner, searching the space of world states of a planning task in the for-
ward direction. It uses hierarchical decompositions of planning tasks for computing its
heuristic function, called the causal graph heuristic, which approximates goal distances
by solving a hierarchy of “local” planning problems. The Roamer planner [48] builds
on the Fast-Downward planning system, and uses a best-first search in first iteration to
find a plan and a weighted A* search to iteratively decreasing weights of plans. Lastly,
the PROLOG planner, uses a simple iterative deepening depth-first planning algorithm
with declarative heuristics. The declarative heuristics used in the PROLOG planner
are domain specific, but not planning problem instance specific. These heuristics iden-
tify duplicate unnecessary actions, as well as the irrelevant actions, and consequently
reduces the search space. The interested reader can refer to [51] for more informa-
tion. Preliminary experiments have been also conducted with LPG-td planner (Local
search for Planning Graphs [29]). LPG-td is a satisficing planner based on a stochas-
tic local search in the space of particular “action graphs” derived from the planning
problem specification and inspired by WALKSAT, an efficient procedure for solving
SAT-problems. However, this planner proved unsuccessful for solving any of the in-
stances of the problems we had, as it ran out of memory at the stage of compiling the
abbreviations.

The organic synthesis problem instances that were solved required a sequence of
four reactions. The generic scheme of these chemical reactions is represented below:

– The reaction between ester and water results in a carboxylic acid and alcohol. This
reaction needs a strong acid as a catalyzer, but representing the catalyst has been
eliminated in the below generic reaction scheme to simplify it.

R C

OR′

O

ester

+ H2O

water

R C

OH

O

carboxylic acid

+ R′ OH

alcohol

Organic Synthesis as AI Planning 9

– The reaction between an alcohol and strong base results in an alkoxide salt and
either water or hydrogen molecule H2, depending on which strong base is used.
Below, the strong base is NaH, and thus H2 is formed.

O

R H

alcohol

+ NaH

strong base

O

R Na

alkoxide salt

+ H2

hydrogen

– The reaction between alkoxide salt and an alkyl halide results in an ether and a salt.
Here, X is any halogen, and Y is any alkali metal. Halogens and alkali metals are
specific groups of atoms. For example, Fluorine F and Chlorine Cl are halogens,
and Sodium Na is an alkali metal.

O

R Y

alkoxide salt

+ R′ X

alkyl halide

O

R R′

ether

+ Y X

salt

– The reaction between ether and mineral acids results in alcohol and alkyl halide.
HCl is a mineral acid, and thus the reaction scheme below holds.

O

R R′

ether

+ HCl

hydrochloric acid

O

R H

alcohol

+ R′ Cl

alkyl halide

Our experiments involved solving 10 different instances of planning problems, each
conforming to the above sequence of generic chemical reactions. To clarify the prob-
lem instances that were solved, we will present one of them. The other instances are
similar to this, and only differ in that they use a different ester molecule in the staring
stage. In this problem, our goal is to produce an alcohol molecule and an ethyl chloride
CH3−CH2−Cl, starting from methyl acetate CH3−COO−CH3, water H2O, hydrochlo-
ric acid HCl, sodium hydride NaH and ethyl fluoride CH3−CH2−F. Our goal molecules
can be synthesized as follows. First, the methyl acetate (an ester), the water molecule,
and the hydrochloric acid react to produce methanol (an alcohol) and acetic acid (a
carboxylic acid). Notice that hydrochloric acid HCl is the catalyst in this reaction.

CH3COOCH3 + H2O + HCl CH3COOH + CH3OH + HCl
Second, the methanol (an alcohol) reacts with the sodium hydride (a strong base) to

produce sodium methoxide (an alkoxide salt) and H2.

CH3OH + NaH NaOCH3 + H2
Third, the sodium methoxide (an alkoxide salt) reacts with ethyl fluoride (an ethyl

halide) to produce methyl ethyl ether (an ether) CH2−O−CH3.

NaOCH3 + CH3CH2F CH3CH2OCH3 + NaF
Lastly, the methyl ethyl ether (an ether) reacts with the hydrochloric acid (a mineral

acid) to produce methanol (an alcohol) and ethyl chloride (an alkyl halide). Notice that
our goal molecule of ethyl chloride is only produced at this fourth step, and thus the
problem instance required four reactions to achieve the goal.

CH3CH2OCH3 + HCl CH3OH + CH3CH2Cl
In our experiments, we represented 9 planning actions (corresponding to 9 different

chemical reactions), annotated with 2 relational predicates (used for identifying existing
bonds and double bonds between atoms) and 36 derived predicates (for representing
the different chemical classes possibly involved in the reactions), in order to make the
search space sufficiently challenging. Then, we defined 10 different planning problems
of varying complexity by manipulating the composition of the starting molecules in

10 A. Masoumi, M.Soutchanski, A. Marrella

Chemical Cases Ester Prolog Planner Fast-Downward Roamer
Case 1 Methyl Acetate 0.06 47.82 47.78
Case 2 Ethyl Acetate 0.12 69.44 69.28
Case 3 Isopropyl acetate 0.75 171.46 171.37
Case 4 Methyl Butyrate 0.13 39.01 38.89
Case 5 Butyl Butyrate 3.45 45.79 45.47

Case 1 + H2O + HCl Methyl Acetate 0.06 76.03 75.81
Case 2 + H2O + HCl Ethyl Acetate 0.13 111.23 111.01
Case 3 + H2O + HCl Isopropyl acetate 0.75 285.56 280.83
Case 4 + H2O + HCl Methyl Butyrate 0.13 58.29 58.09
Case 5 + H2O + HCl Butyl Butyrate 3.46 67.48 67.43

Table 1. Time performances (in seconds) of the PROLOG planner, Fast-Downward and Roamer.

the planning problem. Specifically, in Table 1, each case refers to a starting stage that
includes the following molecules: water H2O, hydrochloric acid HCl, sodium hydride
NaH, ethyl fluoride CH3−CH2−F and an Ester molecule, that changes from case to
case. The experiments done on such starting stages are identifiable in the first 5 rows
in Table 1. In order to increase the complexity of the planning problems, we increased
the size of the starting stage and compared the effect it has on the performance of
the planners. The last 5 rows in Table 1 identify these experiments, where the same
chemical cases as above are used, but duplicate water and HCl molecules are available.
In all experiments, the goal is to reach a state in which there are atoms identifying an
alcohol molecule and ethyl chloride. A planner invoked with whatever of the presented
cases generates the aforementioned chain of 4 chemical reactions.

As can be understood from these data, the performance of the PROLOG planner is
significantly better than the other planners. This is in part due to the domain-dependent
declarative heuristics that are used in the PROLOG planner. In general, constructing
domain-dependent heuristics offer opportunities to tailor the mechanisms to the partic-
ular domain for far a greater efficiency [47] (typically, several orders of magnitude). A
second reason lays in the way the PROLOG planner searches for a path satisfying the
goal condition; it reasons on-the-fly on the available knowledge while generating the
plan, avoiding to build any intermediate structure to be exploited during the planning
task. On the contrary, the state-of-the-art planners we have tested rely on a translator
that converts the planner input from PDDL into a multi-valued state representation and
on a grounding algorithm used for instantiating operators and axioms (e.g., derived
predicates) of the planning domain into a grounded transition system. Then, a search
engine exploits the transition system just built for finding a satisfying plan. The main
bottleneck is in the grounding algorithm, specifically when a large number of derived
predicates need to be instantiated in the transition system, resulting in an exponential
blow up of the space required for describing the planning problem.

This is even more apparent when a larger starting stage is experimented (i.e. when
duplicate water and HCl exist), where the performance of the PROLOG planner is al-
most intact while the state-of-the-art planners experience additional performance defi-
ciency. This can be explained by direct relation of size of the starting stage with the
time needed for the state-of-the-art planners to build the transition system and employ
the domain independent heuristics for finding the solution.

To explore how close are the state-of-the-art planners to their limits, we extended
our set of planning instances with an additional reaction: combustion of methanol
CH3−OH. In this reaction, all atoms of two methanol molecules and three O2 molecules
(preconditions of this reaction) change bonds. Therefore, the action representing this
reaction needs many arguments (18, to be precise). The initial stage molecules include
additional three O2 molecules and the domain description was extended with two addi-
tional abbreviations defining methanol and oxygen molecules. We observed that neither
Fast-Downward nor Roamer were able to solve any of the instances of this extended set

Organic Synthesis as AI Planning 11

of planning instances, as they ran out of memory in their compilation stage. This was
somewhat expected because these planners rely on grounding that leads to combinato-
rial explosion when actions have many arguments. Still, it is somewhat surprising how
easy one can push the best planners beyond the edge of their functionality.

The experiments conducted in this paper are relatively simple, and different exper-
imental data may be obtained if more combinatorial benchmark instances (i.e. which
require more search) are used. However, we have to emphasize that the contribution of
this paper is not only the data obtained from the experiments, rather is also the method-
ology behind it. We propose an approach that can employ state-of-the-art planners,
among others, to solve organic synthesis problems. The experiments that we conducted
point out the limitations of the state-of-the-art planners and provide insight about fu-
ture research directions. At the same time, despite being preliminary, they provide a
successful case study of applying AI methods to solve problems in the life sciences.

5 Related Work

There seems to be little earlier work on semantic modeling of generic chemical reac-
tions and organic synthesis, except of our previous work [51]. On the other hand, on-
going research on RuleML and Reaction RuleML includes knowledge representation
calculi (e.g., the situation calculus) [7,55,56]. This is one of the emerging Semantic
Web technologies that is related to our research. The state of the art in cheminformat-
ics and in ontologies for chemistry is reviewed in [11,12,33,35] where the authors also
propose new ontologies for molecules. There are a number of unstructured represen-
tations for reactions, e.g., [24]. Similarly to the Pathway Domain [28], internal struc-
ture of molecules is not represented and reasoning can be done using only instances of
reactions. These approaches have limited scalability because only a small number of
reactions can be considered at a time. One could try to build a large graph of specific
reactions to reduce the synthesis problem to the reachability problem on this graph, but
a graph representation would be infeasible simply because the number of molecules
and reactions is very large since there are millions of different alkyls, esters, alcohols
and other kinds of molecules. In any case, a graph of specific reactions would not be
adequate as a semantic model of generic reactions or as a model of internal structure
of participating molecules. Moreover, the industrial cheminformatics systems represent
generic reactions [9,42,57] and there is serious ongoing research on developing libraries
of generic reactions using both data-driven and model-driven approaches.

The rule based modeling of biochemical systems can be carried out using a set
of software tools BioNetGen [6]. However, this approach lacks declarative semantics.
BioNetGen is designed mostly for simulating quantitative aspects that require differen-
tial equations solvers, or for modeling protein-protein interactions, but not for reasoning
about reactions between small molecules. There are a number of representations for bi-
ological pathways; Pathway Commons (http://www.pathwaycommons.org/)
is a collection of pathway data from several publicly available databases (includ-
ing BioCyc, Reactome and others). These pathways data are represented in BioPAX,
the standard exchange format for biological pathways [3,20]. It is defined using the
OWL/XML language. The multi-step reactions between small molecules can be de-
scribed in BioPAX, but there is no representation in ontology for bond changes. The
digital files representing molecules in SDF/MOLfile formats [2] can be linked from
BioPAX files, but these digital formats include only connection tables between atoms
without providing declarative representation for reasoning about bond changes.

Computer-assisted organic synthesis (CAOS), which aims to use computers to help
chemists in the process of designing multi-step synthesis of organic compounds, is not a
new field. The idea of using a computer-processable language for representing chemical
knowledge was proposed in the end of the 1950s, e.g., see [65]. This section is by no

http://www.pathwaycommons.org/

12 A. Masoumi, M.Soutchanski, A. Marrella

means a comprehensive review of CAOS; for more comprehensive reviews refer to
survey papers on this topic, such as [10,15,32,62].

The first synthesis system was organic chemical simulation of synthesis (OCSS)
introduced in [16] which is based on retrosynthetic analysis. Retrosynthetic analysis
is a technique similar to the well-known notion of regression in SC [58]. Soon after,
LHASA [17] was developed which was extension of OCSS by incorporating a more
complex strategy system which included multi-step plans based on useful reactions.
LHASA uses the knowledge base of reaction transformations and a set of rules to per-
ceive strategic bonds. SECS improves the earlier systems by accounting for stereo-
chemistry (three-dimensional arrangement of atoms in molecules and the effect of this
on reactions). OCSS and SECS rely on transform selection by recognition of functional
groups and the relationships between them. Two methods of functional group recogni-
tion have been described in the literature, one based on decision trees, and the other on
matching substructure patterns. Prior to 80s, CAOS systems were based on retrosynthe-
sis approach but in 80s other approaches emerged. SYNGEN [38] was published with
the main goal of being able to automatically generate the shortest synthetic route for
a given target structure. [27] discussed how machine learning methods can contribute
to a self-guided domain-specific heuristic synthesis design system. Later on, the non-
interactive system known as SYNSUP was published [21]. So-called “Formal-Logical
Approach” is discussed in [63] that focuses on reaction design problems. [68] discusses
SYMBEQ computer program created for the search of novel types of organic reactions
and is based on this approach. More recently, Route Designer is discussed in [45]. In
Route Designer, rules describing retrosynthetic transformations are automatically gen-
erated from reaction databases, which ensure that the rules can be easily updated to
reflect the latest reactions in the literature. [44] argues how statistical information de-
rived from chemical reaction databases can come handy for predicting the outcome of
a reaction, comparable to the most sophisticated methods developed for the same pur-
pose. Lastly, [36] adapts number-proof search to finding a correct synthesis route that
can synthesize a goal molecule from commercially available chemical compounds.

6 Discussion and Future Work

In this paper, we employed the expressive and well-studied SC for representing and
reasoning about generic (bio)chemical reactions. We are the first to develop semantic
modeling for biochemical reactions using an expressive logical language. The approach
presented brings forth notable advantages such as being able to represent generic reac-
tions, as opposed to specific instances of reactions. Additionally, it allows reasoning
at the level of changing bonds, and this together with the generic reactions adds dis-
covery potential to our approach. Another advantage of our approach is its declarative
representation, which makes it easily expandable and flexible. Moreover, our approach
is based on SC, which is well-studied in the AI community, and as such any related
advancement in the field will be immediate to our approach as well.

One of the current limitations of our approach is that we do not have any neg-
ative preconditions for the reactions. Of course, it is not a conceptual limitation of
our approach, rather a limitation of the datasets that we considered which lacked the
knowledge about the negative preconditions. Additionally, our approach lacks concur-
rent actions and non-deterministic actions, characterising when some reactions can oc-
cur concurrently and when the product of the reactions are not necessarily predictable.
Augmenting our reasoning approach with concurent and non-deterministic actions [58]
can address this limitation. Another limitation is the lack of representation for stereo-
chemistry, enantiomers, tautomerization and reasoning about chemical reactions in 3D.

As for future work, we intend to scale up the CAOS experiments based on our ap-
proach by significantly enlarging the knowledge base of chemical reactions; the library
of generic reactions provided by ChemAxon [9] can serve as a potential source, and

Organic Synthesis as AI Planning 13

try problem instances with more combinatorial search. Additionally, one can explore
how our semantic modelling approach can be integrated with existing static ontologies
such as those mentioned in the Introduction. Conceptually, it is possible to use our ab-
breviations to classify molecules in any standard digital format, for example to classify
molecules from CHEBI ontology [19,34]. Experimental evaluation of our approach on
CHEBI as well as comparison with related research such as [49] remains future work.

The important issue is knowledge acquisition: how are we going to acquire all
the axioms that are needed for this approach? We do not expect scientists working
in real biological or chemical labs to write anything like PDDL axioms. There are
industry-standard digital formats for encoding chemical reactions [2]. Often, these
formats can be an output of a graphical tool that a scientist can use to draw molecules
and reactions [9], or an output from a data mining tool. We are developing software
that can automatically generate our axioms from digital files representing reactions.
Our software will use a number of existing open-source cheminformatics software tools.

Acknowledgements. Thanks to anonymous reviewers for comments. The Natural Sci-
ences and Engineering Research Council of Canada and the Dept. of Computer Science
of Ryerson Univ. provided partial support for a visit of Andrea Marrella to Toronto.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Accelrys: CTfile Formats (2011), http://download.accelrys.com/freeware/
3. Anwar, N., Bader, G., Demir, E., Donaldson, S., Rodchenkov, I.: BioPAX Biological Path-

ways Exchange Language. http://www.biopax.org/release/biopax-level3-documentation.pdf
4. Baumann, R., Loebe, F., Herre, H.: Ontology of Time in GFO. In: Donnelly, M., Guizzardi,

G. (eds.) FOIS. Frontiers in Artificial Intelligence and Applications, vol. 239, pp. 293–306.
IOS Press (2012)

5. BFO: The Basic Formal Ontology. http://www.ifomis.org/bfo (Accessed on 9/20/2013)
6. Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph theory for rule-based modeling of

biochemical networks. In: Trans. on Comp. Syst. Biology, LNCS v4230. pp. 89–106 (2006)
7. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specification of Web

Rules. In: Proc. 4th Intern. Web Rule Symp. LNCS, vol. 6403, pp. 162–178 (2010)
8. Bry, F., et.al.: Foundations of rule-based query answering. In: Proc. of the 3rd Intern. Summer

School on Reasoning Web. pp. 1–153. Springer (2007)
9. ChemAxon: JChem software. http://www.chemaxon.com (accessed on Nov 9 2013)

10. Chen, W.L.: Chemoinformatics: Past, Present, and Future. Journal of Chemical Information
and Modeling 46(6), 2230–2255 (2006)

11. Chepelev, L.L., Dumontier, M.: Chemical Entity Semantic Specification: Knowledge repre-
sentation for efficient semantic cheminformatics. J. Cheminformatics 3, 20 (2011)

12. Chepelev, L.L., Hastings, J., Ennis, M., Steinbeck, C., Dumontier, M.: Self-organizing on-
tology of biochemically relevant small molecules. BMC Bioinformatics 13, 3 (2012)

13. Chepelev, L.L., Riazanov, A., Kouznetsov, A., Low, H.S., Dumontier, M., Baker, C.J.O.: Pro-
totype Semantic Infrastructure for Automated Small Molecule Classification and Annotation
in Lipidomics. BMC Bioinformatics 12, 303 (2011)

14. Claßen, J., Hu, Y., Lakemeyer, G.: A Situation-Calculus Semantics for an Expressive Frag-
ment of PDDL. In: AAAI. pp. 956–961. AAAI Press (2007)

15. Cook, A., Johnson, A.P., Law, J., Mirzazadeh, M., Ravitz, O., Simon, A.: Computer-aided
synthesis design: 40 years on. Wiley Interdisciplinary Reviews: Computational Molecular
Science 2(1), 79–107 (2012)

16. Corey, E.J., Wipke, W.T.: Computer-assisted design of complex organic syntheses. American
Association for the Advancement of Science 166(3902), 178–192 (1969)

17. Corey, E.J., Wipke, W.T., Cramer, R.D., Howe, W.J.: Computer-assisted synthetic analysis.
facile man-machine communication of chemical structure by interactive computer graphics.
Journal of the American Chemical Society 94(2), 421–430 (1972)

18. Davidson, D.: The logical form of action sentences. In: Rescher, N. (ed.) The Logic of Deci-
sion and Action, pp. 81–95. University of Pittsburgh Press (reprinted in “Essays on Actions
and Events”, 2001, Oxford University Press, pages 105-149, ISBN: 0198246374) (1967)

http://download.accelrys.com/freeware/
http://www.chemaxon.com

14 A. Masoumi, M.Soutchanski, A. Marrella

19. Degtyarenko, K., et.al.: ChEBI: a database and ontology for chemical entities of biological
interest. Nucleic Acids Research 36(Database-Issue), 344–350 (2008)

20. Demir, E., et.al.: The BioPAX community standard for pathway data sharing. Nature
Biotechnology 28(1-2), 935–942 (2010)

21. Dogane, I., Takabatake, T., Bersohn, M.: Computer-executed synthesis planning, a progress
report. Recueil des Travaux Chimiques des Pays-Bas 111(6), 291–296 (1992)

22. Dumontier, M.: Situational modeling: Defining molecular roles in biochemical pathways
and reactions. In: Dolbear, C., Ruttenberg, A., Sattler, U. (eds.) OWLED. CEUR Workshop
Proceedings, vol. 432. CEUR-WS.org (2008)

23. Edelkamp, S., Hoffmann, J.: PDDL2.2: The Language for the Classical Part of the 4th In-
ternational Planning Competition. Tech. rep., Albert-Ludwigs-Universitt Freiburg, Institut fr
Informatik (2004)

24. Fages, F., Jovanovska, D., Rizk, A., Soliman, S.: BIOCHAM 3.4 Reference Manual. http:
//contraintes.inria.fr/biocham/DOC/manual.html (Oct 2012)

25. Fujita, S.: Description of organic reactions based on imaginary transition structures. Journal
of Chemical Information and Computer Sciences 26(4), 205–242 (1986)

26. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies
with dolce. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW. Lecture Notes in Computer
Science, vol. 2473, pp. 166–181. Springer (2002)

27. Gelernter, H., Rose, J.R., Chen, C.: Building and refining a knowledge base for synthetic
organic chemistry via the methodology of inductive and deductive machine learning. Journal
of Chemical Information and Computer Sciences 30(4), 492–504 (1990)

28. Gerevini, A., Dimopoulos, Y., Haslum, P., Saetti, A.: The 5th International Planning Com-
petition: Deterministic part. http://ipc5.ing.unibs.it/ (2006)

29. Gerevini, A., Saetti, A., Serina, I., Toninelli, P.: LPG-TD: a fully automated planner for
PDDL2.2 domains. In: In Proc. of the 14th Int. Conference on Automated Planning and
Scheduling (ICAPS-04) International Planning Competition abstracts (2004)

30. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL 2: The
next step for OWL. J. Web Sem. 6(4), 309–322 (2008)

31. Gu, Y., Soutchanski, M.: A description logic based situation calculus. Ann. Math. Artif.
Intell. 58(1-2), 3–83 (2010)

32. Hanessian, S.: Man, machine and visual imagery in strategic synthesis planning: computer-
perceived precursors for drug candidates. Current Opinion in Drug Discovery and Develop-
ment 8(6), 798–819 (Nov 2005)

33. Hastings, J., Chepelev, L., Willighagen, E., Adams, N., Steinbeck, C., Dumontier, M.: The
chemical information ontology. PLoS ONE 6(10), e25513 (2011)

34. Hastings, J., et.al.: The ChEBI reference database and ontology for biologically relevant
chemistry: enhancements for 2013. Nucleic Acids Research 41(DB), 456–463 (2013)

35. Hastings, J., Magka, D., Batchelor, C., Duan, L., Stevens, R., Ennis, M., Steinbeck, C.:
Structure-based classification and ontology in chemistry. J. of Cheminformatics 4(8) (2012)

36. Heifets, A., Jurisica, I.: Construction of new medicines via game proof search. In: Hoffmann,
J., Selman, B. (eds.) AAAI. pp. 1564–1570. AAAI Press (2012)

37. Helmert, M.: The Fast Downward Planning System. J. Artif. Intell. Res.(JAIR) 26, 191–246
(2006), http://www.fast-downward.org/

38. Hendrickson, J.B., Grier, D.L., Toczko, A.G.: A logic-based program for synthesis design.
Journal of the American Chemical Society 107(18), 5228–5238 (1985)

39. Herre, H.: General formal ontology (gfo): A foundational ontology for conceptual modelling.
In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer
Applications, pp. 297–345. Springer Netherlands (2010)

40. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P., Rudolph, S.: OWL 2 web ontology
language. http://www.w3.org/TR/owl2-primer/ (2009)

41. Holliday, G.L., Murray-Rust, P., Rzepa, H.S.: Chemical Markup, XML, and the World Wide
Web. 6. CMLReact, an XML Vocabulary for Chemical Reactions. Journal of Chemical In-
formation and Modeling 46(1), 145–157 (2006)

42. James, C., Weininger, D., Delany, J.: Daylight Theory Manual Ver. 4.9 (08/01/11). http:
//www.daylight.com/dayhtml/doc/theory/index.html (2011)

43. Konyk, M., Battista, A.D.L., Dumontier, M.: Chemical knowledge for the semantic web. In:
Bairoch, A., Boulakia, S.C., Froidevaux, C. (eds.) DILS. Lecture Notes in Computer Science,
vol. 5109, pp. 169–176. Springer (2008)

http://contraintes.inria.fr/biocham/DOC/manual.html
http://contraintes.inria.fr/biocham/DOC/manual.html
http://ipc5.ing.unibs.it/
http://www.fast-downward.org/
http://www.daylight.com/dayhtml/doc/theory/index.html
http://www.daylight.com/dayhtml/doc/theory/index.html

Organic Synthesis as AI Planning 15

44. Kowalczyk, B., Bishop, K.J.M., Smoukov, S.K., Grzybowski, B.A.: Synthetic popularity
reflects chemical reactivity. Journal of Physical Organic Chemistry 22(9), 897–902 (2009)

45. Law, J., Zsoldos, Z., Simon, A., Reid, D., Liu, Y., Khew, S.Y., Johnson, A.P., Major, S.,
Wade, R.A., Ando, H.Y.: Route designer: A retrosynthetic analysis tool utilizing automated
retrosynthetic rule generation. Journal of Chemical Information and Modeling 49(3), 593–
602 (2009)

46. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer (1987)
47. Long, D., Fox, M.: Domain-independent planner compilation. In: Working notes of the

Workshop on Knowledge Engineering and Acquisition for Planning, held in conjunction
with AIPS-98. unpublished material (1998)

48. Lu, Q., Xu, Y., Huang, R., Chen, Y.: The Roamer planner: Random walk assisted best-first
search. In: 7th International Planning Competition. pp. 73–76 (2011), http://staff.
ustc.edu.cn/˜qianglu8/software/seq-sat-roamer.tar.gz

49. Magka, D.: Ontology-based classification of chemicals: a logic programming approach. In:
SWAT4LS. CEUR Workshop Proceedings, vol. 952. CEUR-WS.org (2012)

50. Magka, D., Motik, B., Horrocks, I.: Chemical knowledge representation with description
graphs and logic programming. In: SWAT4LS. pp. 74–75 (2011)

51. Masoumi, A., Soutchanski, M.: Reasoning about chemical reactions in an expressive logical
action theory. In: Discovery Informatics Symposium: 2012 AAAI Fall Symposium Series,
AAAI Technical Report FS-12-03. pp. 35–44. AAAI Press (2012), http://www.aaai.
org/ocs/index.php/FSS/FSS12/paper/view/5635/5824

52. Mcdermott, D.: The 1998 AI planning systems competition. AI Magazine 21, 35–55 (2000)
53. Motik, B., Grau, B.C., Horrocks, I., Sattler, U.: Representing ontologies using description

logics, description graphs, and rules. Artif. Intell. 173(14), 1275–1309 (2009)
54. Özgövde, A., Grüninger, M.: Foundational process relations in bio-ontologies. In: Galton, A.,

Mizoguchi, R. (eds.) FOIS. Frontiers in Artificial Intelligence and Applications, vol. 209, pp.
243–256. IOS Press (2010)

55. Paschke, A., Boley, H.: Rules Capturing Events and Reactivity. In: Giurca, A., Gasevic, D.,
Taveter, K. (eds.) Handbook of Research on Emerging Rule-Based Languages and Technolo-
gies: Open Solutions and Approaches, pp. 215–252. IGI (May 2009)

56. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction RuleML 1.0: Stan-
dardized Semantic Reaction Rules. In: Bikakis, A., Giurca, A. (eds.) Rules on the Web, Proc.
6th Intern Symp, RuleML 2012. LNCS, vol. 7438, pp. 100–119. Springer (2012)

57. Pirok, G., Máté, N., Varga, J., Szegezdi, J., Vargyas, M., Dóránt, S., Csizmadia, F.: Making
”real” molecules in virtual space. J. of Chem. Inform. and Model. 46(2), 563–568 (2006)

58. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-
namical Systems. MIT (2001)

59. Smith, B.: Beyond concepts: Ontology as Reality Representation. In: FOIS. pp. 73–84. IOS
Press (2004)

60. Smith, B.: Against fantology. Genome Biology 6(1), 153–170 (2005)
61. Thiébaux, S., Hoffmann, J., Nebel, B.: In defense of PDDL axioms. Artificial Intelligence

168(1-2), 38 – 69 (2005)
62. Todd, M.H.: Computer-aided organic synthesis. Chem. Soc. Rev. 34, 247–266 (2005)
63. Tratch, S.S., Zefirov, N.S.: Systematic search for new types of chemical interconversions:

Mathematical models and some applications. Journal of Chemical Information and Computer
Sciences 38(3), 331–348 (1998)

64. Vladutz, G.: Do we still need a classification of reactions? In: Willett, P. (ed.) Modern Ap-
poraches to Chemical Reaction Searching, Proceedings of a Conference by the Chemical
Structure Association of the University of York, England, 8-11 July 1985. pp. 202–220.
Gower Publishing Company, Aldershot, England (1986)

65. Vléduts, G.E., Finn, V.: Creating a machine language for organic chemistry. Information
Storage and Retrieval 1(2), 101–116 (1963)

66. Vléduts, G.E., Geivandov, E.A.: Automated Information Systems for Chemistry (in Russain).
Nauka, Moscow (1974)

67. Yehia, W., Soutchanski, M.: Towards an Expressive Logical Action Theory. In: Proc. of the
25th Intern. Workshop on Description Logics (DL-2012). Rome, Italy (2012)

68. Zefirov, N.S., Baskin, I.I., Palyulin, V.A.: Symbeq program and its application in computer-
assisted reaction design. Journal of Chemical Information and Computer Sciences 34(4),
994–999 (1994)

http://staff.ustc.edu.cn/~qianglu8/software/seq-sat-roamer.tar.gz
http://staff.ustc.edu.cn/~qianglu8/software/seq-sat-roamer.tar.gz
http://www.aaai.org/ocs/index.php/FSS/FSS12/paper/view/5635/5824
http://www.aaai.org/ocs/index.php/FSS/FSS12/paper/view/5635/5824

	Organic Synthesis as Artificial Intelligence Planning
	Introduction
	Background
	Methodology
	Experiments
	Related Work
	Discussion and Future Work

