
AToMPM: A Web-based Modeling Environment

Eugene Syriani1, Hans Vangheluwe2,3, Raphael Mannadiar3, Conner Hansen1, Simon
Van Mierlo2, and Huseyin Ergin1

1 University of Alabama, U.S.A.
2 University of Antwerp, Belgium

3 McGill University, Canada

Abstract. We introduce AToMPM, an open-source framework for designing do-
main-specific modeling environments, performing model transformations, ma-
nipulating and managing models. It runs completely over theweb, making it in-
dependent from any operating system, platform, or device itmay execute on.
AToMPM offers an online collaborative experience for modeling. Its unique ar-
chitecture makes the framework flexible and completely customizable, given that
AToMPM is modeled by itself, and external applications can be easily integrated.
Demo:https://www.youtube.com/watch?v=iBbdpmpwn6M

1 Introduction

Today, several tools and technologies allow modelers to develop domain-specific mod-
eling languages (DSMLs) and manipulate models, such as AToM3 [1], DSLTools [2],
EMF [3], GME [4], MetaEdit+ [5], and VMTS [6], just to name a few. They often re-
quire aninstallation of the tool and depend on external artifacts such as operating sys-
tem (VMTS), middleware platform (DSL Tools), or virtual machine (EMF, AToM3).
Furthermore, the degree ofcollaboration between developers and their models is often
restricted to the version controlled repository used by thetool (SVN, CVS, or GitHub).
Nevertheless, one of the reasons for the success and popularity of EMF is its plugin
framework that allows tremendous extensions of its core which gave birth to a suite of
numerous modeling and transformation tools, such as ATL [7], Epsilon [8], XText [9],
VIATRA2 [10]. However, the development of these extensionsrequires expertise in
EMF, and its Java API.

In this paper, we introduce AToMPM (A Tool for Multi-Paradigm Modeling) [11],
the successor of AToM3. AToMPM is an open-source framework for designing DSML
environments, performing model transformations, manipulating and managing models.
It runs completely over the web, making it independent from any operating system,
platform, or device it may execute on. AToMPM follows the philosophy of modeling
everything explicitly, at the right level of abstraction(s), using the most appropriate
formalism(s) and process(es), being completely modeled byitself (i.e., bootstrapped).

2 Highlight of Features

AToMPM is a modern, versatile and theoretically sound multi-paradigm modeling envi-
ronment. It is a tool for modeling any and every part of a system at the most appropriate

https://www.youtube.com/watch?v=iBbdpmpwn6M


level(s) of abstraction, using the most appropriate formalism(s). For instance, AToMPM
is explicitly modeled using a combination of UML Class diagrams and Statecharts. The
tool offers unique features given its web-based nature thatwe outline below.

2.1 Modeling in the Cloud

AToMPM runs entirely online and requires no client-side installation. It allows one to
model in the cloud, although it is possible to install the server on-premise. The client
consists only of an SVG-compliant web browser. Models can bedownloaded locally if
desired.

2.2 Graphical Modeling vs. Textual Commands

AToMPM is primarily a graphical modeling environment. On the concrete syntax side,
all model elements displayed are SVG elements. All static and dynamic manipulation
offered by SVG are fully supported (e.g., translation, scaling, rotation, transparency,
Bézier curves). Model manipulation, such as CRUD operations, can be performed with
mouse clicks and movements as in traditional modeling environments. In AToMPM, it
is also possible to write textual commands to perform the same manipulations, designed
with a modeled textual DSL. Textual commands can be more useful for more advanced
users, especially for creating/deleting/updating multiple elements at a time.

2.3 Synthesis of Domain-Specific Modeling Environments

As in any modeling tool, the specification and synthesis of DSMLs is central function-
ality of AToMPM. The default modeling language for defining meta-models is a sim-
plification of UML class diagrams. Nevertheless, any modeling language can be used
to define meta-models, as long as there is a transformation defined mapping that meta-
modeling language to the default language. Synthesis of a DSML editing environment
for that new DSML is automatically supported. Static constraints are expressed on top
of the meta-model in a textual DSL for constraints or using the Javascript API directly.

Multiple concrete syntaxes can be assigned to the same abstract syntax. This allows
different users to have their own representation of the samemodel. A graphical concrete
syntax is defined by mapping a group of SVG elements to each meta-model element,
both class-like and association-like elements. Since everything is modeled explicitly in
AToMPM, the concrete syntax is itself specified by a DSML representing geometric
shapes.

2.4 Model Transformation, Code Generation and Debugging

Model transformations are also explicitly modeled in AToMPM. All model transforma-
tions are based onT-Core [12], a minimal collection of model transformation operators.
This has the advantage of executing automatically any custom-built rule-based trans-
formation language. Given the input and output meta-modelsof a transformation, a
language for designing domain-specific rules is automatically generated [13]. Rules are
defined with a left-hand side, right-hand side and negative application conditions, as in
graph transformations. The patterns inside the rules are represented using the concrete



Fig. 1. Model transformation debugging.

syntax of the input and output languages, adapted to patterns. The default scheduling
language of a model transformation is MoTif [14]. Nevertheless, any modeling lan-
guage can be used to define the transformation language, as long as there is a higher-
order transformation defined mapping that language to theT-Core language. Execution
and debugging of that new model transformation language is automatically supported.

There are two modes of execution of model transformations inAToMPM. In release
mode, the input model displayed on the canvas is sent to the server, transformed com-
pletely, and the new resulting model is then displayed on thecanvas. Indebug mode,
the transformation is animated on the client’s canvas. The execution can be continuous,
or step-by-step. Breakpoints can be specified at the controlflow level and a new win-
dow pops up to inspect the current state of the model and transformation as depicted in
Fig. 1. The model transformation execution is deployed as a plugin in AToMPM, which
may run on a dedicated server. The transformation engine is based on Himesis [15], a
Python implementation.

2.5 Process Modeling

Any process enforced by AToMPM is also modeled explicitly bya UML activity diagram-
like DSML. For example, the process for defining a meta-model, then assigning the
concrete syntax and, finally, generating the modeling environment is a process model.
A chain of model transformations is also modeled with this language. The activities in
a process model can be automatic (like a transformation or plugin) or manual. In the
latter case, a window pops up to let the user manipulate a model.

2.6 Collaborative Modeling

One motivation behind an online development environment isthe ability to collaborate
and share modeling artifacts among users. Multiple users can be logged in simultane-
ously with each having their own view of the models. Models and model elements vis-
ibility is controlled with permission roles that an administrator can assign and specify.
Currently, AToMPM supports two types of real-time distributed collaboration mech-
anisms.Screenshare allows two or more clients to share the exact same canvas: any
change made to a model (abstract or concrete syntax) is replicated on all observing
clients.Modelshare only shares the abstract syntax of a model between clients. Each



client has its own view of the same model, using its own concrete syntax. For example,
if a client updates the value of an attribute of a model element, this may change the
displayed text next to the represented element on that client’s model while changing the
color of that element on another client’s representation.

3 Modeled Plugin Framework Architecture

PluginManager GUIUtils

Custom Plugins

Stateful

socket-io SCION DB driver

Node.js Database

AToMPM Server

External
Server

Client 1

Client 2

Fig. 2. High level architecture of AToMPM.

AToMPM is a completely bootstrapped environment. The client-server architecture
depicted in Fig. 2 allows multiple web-browsers (client) tosend and receive HTTP
requests with AToMPM (server) following the MVC pattern. AToMPM is a Node.js
server driven by SCXML statecharts executed within the SCION engine [16]. It consists
of a minimal kernel “Stateful” deprived from any modeling-specific functionality. It is
a plugin framework where every toolbar and functionality ismodeled explicitly as a
plugin.

On startup, Stateful loads the kernel statechart, which handles all requests to and
responses from the server. The kernel also brings in the PluginManager plugin during
initialization, which is enough to then drive the loading ofvarious custom plugins, such
as AToMPM. The PluginManager design provides register/unregister hooks so that any
plugin can easily register and load or unregister and unloaditself within the Plugin-
Manager package system. Stateful allows for plugins to register their own statecharts to
respond to specific server endpoints, which allows for plugins to easily extend the be-
havior of Stateful. Within this framework, if some degree ofcommunication is needed
with an external server then that behavior can be added, madeaccessible, and begin
responding in Stateful. This provides the ability for a backend to be written in a com-
pletely different language than Javascript, while still being able to fully interact with
Stateful using only a very small amount of mostly generatable code. While this design
does allow for easy extension, it also relies heavily on plugins being properly designed
which may make it less robust from the client’s experience.

There are client side variants for the kernel and PluginManager components as well.
When a user first attempts to access Stateful, these components are sent over which then
load either the default plugins or plugins that are specific to that user’s configuration if
logged in. Any client side components that are available on the server can be loaded
by a client at any time, allowing for plugins to be able to be dynamically loaded and
unloaded.



As depicted in Fig. 2, there four asynchronous communication paths in this frame-
work. (1) A call-back mechanism allows a client to send requests to the server and re-
ceive results. (2) A headless mode allows the client to send requests to be processed in
batch. (3) A broadcast mechanism allows the server to notifymultiple client observers.
(4) AToMPM can communicate with external servers in the sameway as it does for
clients. The latter is very useful when interoperating external tools (such as transforma-
tion engine, model verification) with AToMPM. These communications are all modeled
with plugins.

Acknowledgments

We would like to thank all the members of MSDL at McGill University and the Univer-
sity of Antwerp for their work and contributions to the built-in formalisms available in
AToMPM: Sadaf Mustafiz, Levi Lucio, Maris Jukss, Johachim Denil, and Bart Meyers.

References

1. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-Modelling. In:
FSE’02. Volume 2306 of LNCS., Springer-Verlag (2002) 174–188

2. Cook, S., Jones, G., Kent, S., Wills, A.C.: Domain-Specific Development with Visual Studio
DSL Tools. Addison-Wesley Professional (2007)

3. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.:EMF: Eclipse Modeling Framework.
2nd edn. Addison Wesley Professional (2008)

4. Lédeczi, Á., Bakay, A., Maroti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing Domain-Specific Design Environments. IEEE Computer 34(11) (2001) 44–51

5. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ A fully configurable multi-user and multi-
tool CASE and CAME environment. In: Conference on Advanced Information Systems
Engineering. Volume 1080 of LNCS., Crete, Springer-Verlag(may 1996) 1–21

6. Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: A Systematic Approach to Metamod-
eling Environments and Model Transformation Systems in VMTS. In: GraBaTs’05. Volume
127 of ENTCS., Amsterdam, Elsevier (mar 2005) 65–75

7. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL:A model transformation tool. Science
of Computer Programming72(1-2) (jun 2008) 31–39

8. Kolovos, D., Paige, R., Polack, F.: The Epsilon Object Language (EOL). In: ECMDA-FA’06.
Volume 4066 of LNCS., Springer (2006) 128–142

9. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick and dirty
way. In: OOPSLA’10, ACM (2010) 307–309

10. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework.
Science of Computer Programming68(3) (2007) 214–234

11. https://acom.cs.mcgill.ca/trac/AToMPM/
12. Syriani, E., Vangheluwe, H., LaShomb, B.: T-Core: A Framework for Custom-built Trans-

formation Languages. Journal on Software and Systems Modeling (jul 2013)
13. Syriani, E., Gray, J., Vangheluwe, H.: Modeling a Model Transformation Language. In:

Domain Engineering: Product Lines, Conceptual Models, andLanguages. Springer (2012)
14. Syriani, E., Vangheluwe, H.: A Modular Timed Model Transformation Language. Journal

on Software and Systems Modeling12(2) (jun 2011) 387–414
15. Syriani, E., Vangheluwe, H.: Performance Analysis of Himesis. Technical Report SOCS-

TR-2010.8, McGill University, School of Computer Science (aug 2010)
16. https://github.com/jbeard4/SCION

https://acom.cs.mcgill.ca/trac/AToMPM/
https://github.com/jbeard4/SCION

	AToMPM: A Web-based Modeling Environment

