
clooca : Web based tool for Domain Specific
Modeling

Shuhei Hiya⋆, Kenji Hisazumi, Akira Fukuda, and Tsuneo Nakanishi

Kyushu University 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
{hiya,nel,fukuda,tun}@f.ait.kyushu-u.ac.jp

http://portal.isee.kyushu-u.ac.jp/

Abstract. Clooca is a development environment that allows us to build
up domain-specific modeling languages, or DSMLs, and their code gen-
erators. DSMLs are widely used to improve productivity and quality of
developing software to raise the level of abstraction and to generate a
fully functional software codes. Currently some tools to develop software
are provided as web services. We can use the tool without installing any
software and without professional knowledge of software development.
Even domain specialists who do not know how to develop software can
use it. Therefore, we tackle with developing software-as-a-service(SaaS)
type of DSML tools to bring benefits of both DSML and SaaS type of
development tools. We chose to use clooca in an education setting, be-
cause this tool solves some problems in that field. The youtube link is
http://www.youtube.com/watch?v=VS5VNB0YA_o.

Keywords: Domain-Specific-Modeling, DSML, SaaS, Code Generator

1 Introduction

Clooca is a development environment that allows us to build up domain-specific
modeling languages (DSMLs), and their code generators. Clooca is provided as
a service, similar to Gmail. Clooca is simple to use: open a web browser that
supports HTML5 and JavaScript, input the URL of clooca, and start using it.
Instllation and setup are not required. DSMLs are widely used to improve the
productivity and quality of developing software[1][2][3]. Clooca raises the level of
abstraction rather than describing programming languages. By describing these
abstract models, clooca allows domain specialists to develop software without
knowledge of how to develop software using a programming language. The tool
can generate fully functional codes from these models. We used clooca in a
software modeling education setting.

Education can derive many benefits from using a development tool as a web
service. In software modeling courses, many students use modeling tools, which
are time consuming to install. As an alternative, teachers can use clooca to

⋆ Graduate School of Information Science and Electrical Engineering of Kyushu Uni-
versity.



eliminate the need for students to install the tools and professional knowledge of
software development. In addition, teachers and students can share and analyze
their model in real time on clooca.

DSML tools has two benefits in the education field. First, It raises the level
of abstraction rather than describing programming languages. Thus, teachers
can define a modeling language according to each student’s level of ability. Sec-
ond, because DSML tool can generate fully functional codes from these models,
students can execute the model soon after draw it, and they can check how the
model works.

The remainder of this paper is organized as follows. We discuss the archi-
tecture of the clooca and its implementations in Section 2. In Section 3, we
demonstrate the clooca in a real usage scenario. We conclude this paper in Sec-
tion 4.

2 Implementation of clooca

JavaScript Object Notation-Based Model Representation We identify
requirements for the scheme of DSML definition for a SaaS type of DSML tool
as follows. The model representation of the scheme should be easy to serialize
and deserialize. The model must be serialized and transferred between a web
browser and a server, because clooca is a web browser-based tool. The serialized
form should be used on many platforms used by constructing web services (e.g.,
JavaScript, Python, PHP, and Ruby). We are able to serialize and deserialize
the model without compiling or generating any stubs. The system should be able
to deal with these models dynamically. The scheme allows us to define DSMLs
easily. The representation of the model should not be complicated. The model
should be defined not only by the tools, but also by hand. In other words, the
representation form of the model should be human readable. Figure 1 shows a
DSML model. An extract of JavaScript Object Notation (JSON) [4] expression
of the DSML model is shown in Figure 2.

Clooca architecture Figure 3 shows the architecture of clooca, which consists
of a server and a client. The clooca server runs on web servers such as Apache and
has functions to load and store models and meta-models according to requests
from the clooca client. It is a kind of database wrapper. We employ JavaScript
to implement the server. The clooca client runs on web browsers that support
HTML5 and JavaScript such as Google Chrome. It consists of the workbench and
the model editor, shown in Figure 4 and Figure 5, respectively. The workbench
is a tool to define DSLs and to develop code generators. The model editor is a
tool to edit concrete DSLs.

Workbench The workbench is a tool to define DSMLs and to develop code
generators. Figure 4 shows a screenshot of the clooca workbench. It is quite
complicated to define a DSML to describe a JSON description. However, with the



Fig. 1. An example of model.

!
"#$%&'&()*"+,*--%,(.
/+#+%/&'&!

/0&'&!
/,12,#"/3+3*"/&'&!

+0&'&!
+#,4%+&'&(/+#+%/5/6(.
%7%"+&'&(89++*"&+*91:%;(

<
<

<.
/6&'&!

"#$%&'&(=9""3"4&>+#+%(.
#1+3*"&'&(?*&@*,A#,;(.
/,12,#"/3+3*"/&'&!

+6&'&!
+#,4%+&'&(/+#+%/5/B(.
%7%"+&'&(A:3+%&;%+%1+%;(

<
<

<.
/B&'&!

"#$%&'&(@3"3/:&>+#+%(.
#1+3*"&'&(>+*C(.

<
<

<

Fig. 2. JSON expression.

!"#$"#! %&'"()*+++,-#.+/"#0!

12)2-2/"! 3&..32,/"#$"#,

*#4(,.(,+++,/"#$"#0!

5.#6-"(37!

8.9"&,:9').#!

8")2;<.9"&,

2(9,<.9"&!

8")2;<.9"&!

Fig. 3. Architecture of clooca.

workbench, we can define DSMLs using a graphical user interface (GUI), rather
than describing the JSON description mentioned in the previous section. The
workbench allows us to write the definition with table forms of diagrams, objects,
relationships, and properties. We can develop templates to generate codes in the
workbench. The next subsection shows how to define code templates.

Model Compiler The model compiler framework facilitates the development
of model compilers which obtain a DSL description and generate source code
according to a template and the DSL description. The model compiler runs on
the server side. The model compiler framework is developed with ejs[5]. ejs is a
template library written in JavaScript.

Figure 6 shows an example of the code template to generate a name list of
objects of“action”defined in Figure 2. We can access all of the diagrams, objects,
relations, and properties in the DSML model to describe an object reference code



Fig. 4. A screenshot of the workbench. Fig. 5. A screenshot of the editor.

of JavaScript in the code template. All of them are bound to ” ” as a top-level
variable. For example, if we want to access all the objects of ”action,” we can get
a reference to the states to describe ” .states”. In the code template, we can use
Javascript expressions with special markers. A line that begins with the ” <%”
marker indicates that the line is a control structure.” <%expression% >” means
that it will be substitute a concrete string generated to evaluate JavaScript
expression.

<%for(var key in _.states) {%>

<%=_.states[key].action%>

<% } %>

Fig. 6. An example of a code template.

Model Editor The editor is a tool to draw models defined by the workbench
and to generate codes according to code templates and the model. Figure 5 shows
a screenshot of the clooca editor.

3 Evaluation

As a test, we use clooca to define diagrams and code templates for some appli-
cations.

3.1 A software modeling course

We used clooca in a software modeling course[7]. where approximately 80 stu-
dents designed a class diagram and a state machine diagram for a line trace robot



and then ran the robot. The teacher defined the DSML for the line trace robot on
clooca, and the students used the DSML. Teachers are always concerned about
modifying lab environments to employ special tools; however, clooca eliminates
this concern because it does not require installation, as mentioned above.

3.2 For a project-based learning and in a classroom

We also used clooca in a classroom setting to lecture about the concept of model-
driven development and DSMLs. The teacher defined a simple class diagram
and a state-machine diagram of the UML and developed code generators, which
generate JavaScript codes running on a web browser according to the input
model. We can execute the generated code on browsers. The number of students
in this classroom setting was approximately 20. In this test, we successfully used
clooca without any installation efforts.

4 Conclusion

Clooca is a SaaS type of development environment that allows users to build
DSMLs, and their code generators [6] . We can use clooca without any instal-
lation efforts. In this paper, we proposed a novel method to define DSMLs that
is suitable for web based services including clooca. We described the clooca ar-
chitecture and its implementations that employ a method to define DSMLs. We
described some cases to prove the usefulness of clooca. These cases demonstrate
benefits of SaaS type of DSML tools.

Our future work is to evaluate quantitatively with effort according to the
deployment of clooca: for example, we should compare the time it takes to set
up and installation with the conventional tool.

References

1. S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Gener-
ation. Wiley-IEEE Computer Society Press, 2008.

2. S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain Specific Development with
Visual Studio DSL Tools (Microsoft .Net Development). Addison-Wesley Longman,
2007.

3. Graphical Modeling Project. http://www.eclipse.org/modeling/gmp/ [Online; ac-
cessed July 1 2013].

4. Introduction JSON, http://www.json.org/ [Online; accessed July 1 2013].
5. ejs Javascript Template, http://embeddedjs.com/ [Online; accessed July 15 2013].
6. clooca http://www.clooca.com

7. K. Masumoto, M. Kayama, S. Ogata, K. Itoh, M. Hashimoto, and M. Otani. A
Basic Study of Teaching Methods for Model-Based Design with Error Analyses of
Beginners. ESS2012. pp101-109, 2012.


