
Interactive Dependency Graphs for
Model Transformation Analysis

Andreas Rentschler, Per Sterner

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
andreas.rentschler@kit.edu, per.sterner@student.kit.edu

Abstract. Model transformations are pivotal artifacts in model-driven
software projects. As with any software product, maintenance significantly
contributes to the lifecycle costs. This is particularly true for model trans-
formations. We present Transformation Analysis, a tool that supplements
existing transformation editors under Eclipse with a graph view on the
program’s data and control dependencies. The tool has been designed to
extract and deliver select information to maintainers to help them under-
stand behavior and locate relevant code quicker. To accomplish this goal,
the integrated view is interactively navigable and offers preconfigured
filter criteria.

1 Introduction

Together with metamodels, model transformations play an important role as first-
class artifacts in model-driven software projects. As with any software product,
changing requirements and new enhancements can significantly contribute to
the lifecycle costs. This is particularly true for model transformations. Missing
documentation of a transformation requires maintainers to first obtain or reobtain
a basic understanding of the transformations behavior. This requires to study the
underlying control flow. Furthermore, for adjusting the transformation to new
or changing requirements, e.g. changes in involved models, and for tracing bugs,
relevant places in the code need to be located in a preliminary step. Without a
useful structuring of the transformation into submodules that encapsulate single
concerns, maintainers are even more challenged to locate relevant concerns in the
code. At the present time, in the area of model transformations, there are only
few tools known for supporting the process of maintenance and understanding.
Some language workbenches [1], for example Spoofax, provide more sophisticated
techniques for transformation maintenance than Eclipse-based tools. Still, none
of them integrates data and control flow information from static analysis into
one single interactive view.

We present Transformation Analysis for Eclipse, a novel tool that supplements
existing transformation editors under Eclipse with a graph view on the program’s
data and control dependencies. The tool has been designed to extract and deliver
select information to maintenancers, in order to help them understand behavior
and locate relevant code more efficiently. To accomplish this goal, the integrated
view is interactively navigable and offers preconfigured filter criteria.



An early version of our tool served as a protoypical implementation of a
visual analytics process [2] for QVT-Operational (QVT-O) transformations under
Eclipse1 that we presented at ICMT’13 [3]. In an empirical study described there,
we showed that the tool is indeed able to increase efficiency. In the meantime,
we added support for QVT-Declarative2 and mediniQVT3, both derivatives of
QVT-Relations (QVT-R).

This paper is structured as follows. First, we provide a small motivating
scenario in Section 2 from which we conclude requirements for the tool to
implement. In Section 3, we present the implementation, and Section 4 describes
how the tool helps to tackle both challenges from the motivated scenario. Finally,
Section 5 concludes.

2 Application Scenario

Generally, there are two basic activities for maintainers to do, understanding
what the transformation does (comprehension of behavior), and carrying out
various maintenance tasks. As a running example, we observe the UML2RDBMS
usecase.

Comprehension. Similar to code in a procedural programming language, state-
ments in QVT’s imperative dialect QVT-Operational (QVT-O) are structured
into mapping methods that can call other mappings, constructors and query
methods. Regarding QVT’s relational dialect, rules can similarly have depen-
dencies to other rules and queries. To understand the transformation’s behavior,
developers need to first study these explicit and implicit control flow dependencies.
Such information can be extracted and visualized automatically. While some
transformations may be small enough to be readily comprehensible, in practice,
transformations easily comprise a hundred and more mappings, depending on
the size and heterogenity of the metamodels involved.

Maintenance. Whereas some maintenance tasks are similar to those carried
out for programs in general-purpose languages, other tasks are domain-specific,
e.g. adaptation to evolving metamodels (co-evolution). Co-evolution means that,
for example, if new concepts are added to related metamodels, the transformation
needs to be enhanced to support these concepts. Because of the often complex
structure of metamodels, it is not easy to locate places in the code that deal with
a certain class and subclasses thereof. If we would like to change the way class
attributes are mapped to the RDBMS domain, we must identify all the mappings
that deal with class Property or subclasses thereof. Existing Eclipse-based editors
only support text-based search-and-replace functionality that is prone to return
false positives and false negatives.

To improve the efficiency in understanding transformations and locating
relevant places in the code, we designed a tool that provides a graphical view on
mappings and other top-level methods, metamodel elements and attributes, and
occuring control and data dependencies.

1 http://www.eclipse.org/mmt/qvto
2 http://www.eclipse.org/mmt/qvtd
3 http://projects.ikv.de/qvt

http://www.eclipse.org/mmt/qvto
http://www.eclipse.org/mmt/qvtd
http://projects.ikv.de/qvt


Fig. 1. The graph view augmenting the existing textual view of Eclipse QVT-O

3 The Dependence Graph View

We implemented software for the Eclipse platform that adds a Dependency Graph
view that is able to interact with existing QVT editors under Eclipse.
Live Dependence Information. When editing a transformation in the Eclipse
editor, dependence information is extracted from the parsed abstract syntax
tree. Similar to the commonly supported outline views for Eclipse code editors,
information is updated live. A graph structure is built, where nodes reflect
top-level constructs of the program and referenced metamodel elements. In the
QVT dialects, top-level constructs are mappings, helpers, constructors, relations,
and queries. Referenced metamodel elements are modeled as classes and class
attributes. The extraction algorithm recognizes different types of links to reflect
inheritance between classes, containment between classes and attributes, and
also read-only and modifying accesses to data elements.
Graph-based View. The graph represents the extracted dependence informa-
tion visually as a node-link diagram. Visualization and automatic layouting is
realized with the Eclipse Zest framework4. Control units are displayed as gray
nodes. If one unit calls another, a black arrow connects both, pointing into the
calling direction. Multiple calls are condensed to one arrow. Data elements are
displayed in green. If a control unit reads or modifies an element, either a green
arrow points to the control unit, or a red arrow points from the control unit to
the accessed element. If an attribute is accessed, a dashed line is leading to a class
element which contains the attribute. Multiple reads/writes are condensed to
one arrow. Inheritance relationships among classes are depicted as a gray arrow
pointing to the super class. They currently selected node is highlighted in orange.
Nodes and links that are not in direct context of the actively selected element
are slightly faded out to a lighter color.

The graph from Figure 1 is computed for mapping TopClassToTable. In its im-
mediate context, there is one caller (Package2Schema), and two callees (ClassTo-
TableMarker and ClassToTableActual). It maps elements of type Class to
elements of type Table. Element Class subclasses Classifier.

4 http://www.eclipse.org/gef/zest/

http://www.eclipse.org/gef/zest/


Fig. 2. Control dependence graph of UML2RDBMS (Filter F1)

Configurable Filters. The graph is processed by a chain of filter functions.
There are four predefined filter configurations, they can be activated from a
context menu that appears when right-clicking the graph canvas:

F1: Show control dependencies for the currently loaded transformation program.
F2: Show control dependencies in direct context of a selected control unit.
F3: Show control and data dependencies in direct context of a selected control

or data unit.
F4: Same as filter three, but in addition, condense data dependencies to the

class-level, i.e., if an attribute is accessed, the parent class is shown instead.

Synchronization with Textual View. The graph is navigable. A double-click
on one of the control nodes leads to the corresponding method in the code editor.
Our graph view is synchronized with the textual view, so the graphical view
always reflects the current editing context.

4 Application Scenario Revisited

Now we take a second look at the UML2RDBMS scenario, this time we elaborate
how comprehension and maintenance tasks can be supported by the tool. Down-
load instructions for the tool are available at the tool’s website.5 The site also
links to a screencast which illustrates how each of the presented requirements is
reflected in the tool.

As example transformation for the UML2RDBMS usecase, we choose the
implementation that belongs to the samples from the Eclipse QVT-O distribution.
Understanding the Call Dependencies. To understand the logic of a trans-
formation, it is inevitable to track dependencies between the mappings. With
the help of filter F1, a diagram of the call structure is no longer needed to be
drawn using paper and pencil. Figure 2 demonstrates the result with mapping
primitiveAttribute2Column selected in the text editor.

5 http://sdqweb.ipd.kit.edu/wiki/Transformation_Analysis

http://sdqweb.ipd.kit.edu/wiki/Transformation_Analysis


Fig. 3. Data dependencies of UML2RDBMS in context of class Property (Filter F4)

Understanding Data Dependencies for Metamodel Evolution. The sec-
ond scenario is about understanding and modifying transformation logic that is
dealing with certain UML concepts in the source domain. In our view, we can
apply filter F4 to obtain all the mappings and helper functions that deal with
class Property (Figure 3).

5 Conclusion

In this paper, we demonstrated a novel tool that implements the visual analytics
process in the particular case of model transformation maintenance. Our tool
processes dependence information based on filter criteria and provides interactive
visual feedback to maintainers. We subsequently demonstrated that the tool can
help to ease comprehension and concern location in the introductory scenario.

Of course, static analysis brings certain weaknesses, as well – analysis abstracts
from concrete input models, and OCL’s reflection capabilities on types cannot be
fully considered. Nevertheless, we found the tool’s effect on the overall efficiency
impressive: According to our experiences from a practical course on model-driven
techniques, students whom we introduced to the tool in a short tutorial session
promptly integrated it into their workflow. Some of them even utilized the graph
representation for documentation purposes. In the future, refactoring operations
could add additional value to our graph view.
Acknowledgements. This research has been funded by the German Research
Foundation (DFG) under grant No. RE 1674/5-1.

References

1. Erdweg, S., van der Storm, T., Völter, M., et al.: The State of the Art in Language
Workbenches. Conclusions from the Language Workbench Challenge. In: 6th Int.
Conf. on Software Language Engineering (SLE’13). LNCS, Springer (2013)

2. Telea, A., Ersoy, O., Voinea, L.: Visual Analytics in Software Maintenance: Challenges
and Opportunities. In: Int. Symp. on Visual Analytics Science and Technology
(EuroVAST’10), Bordeaux, France, Eurographics Association (2010) 75–80

3. Rentschler, A., Noorshams, Q., Kapova, L., Reussner, R.: Interactive Visual Analytics
for Efficient Maintenance of Model Transformations. In: 6th Int. Conf. on Model
Transformation (ICMT’13). LNCS, Springer (June 2013)


	Interactive Dependency Graphs for Model Transformation Analysis

