
Zen-RUCM: A Tool for Supporting a Comprehensive
and Extensible Use Case Modeling Framework

Gong Zhang1, Tao Yue2, Ji Wu1 and Shaukat Ali2

1 School of Computer Science and Engineering, Beihang University, Beijing, China
zhanggong@sei.buaa.edu.cn, wuji@buaa.edu.cn

2 Simula Research Laboratory & University of Oslo, P.O. Box 134, Lysaker, Norway
{tao, shaukat}@simula.no

Abstract. The Restricted Use Case Modeling (RUCM) approach is composed
of a set of well-defined restriction rules and a new template, aiming to reduce
ambiguity and facilitate automated analysis. Zen-RUCM is an RUCM-based
framework to tackle the challenges of requirement specification in different
application domains (e.g., real-time systems) and from various requirement
specification concerns (e.g., variability). In this demonstration, we discuss an
implementation of the Zen-RUCM framework with the focus on its lightweight
design architecture and extension mechanism. (Demonstration video
link: http://youtu.be/a8YZ_wuVxQg)

1 Motivation and Overview
Requirements state the necessary attributes, capabilities, characteristics, or qualities of
a system in order for it to have value and utility to a user, and thus play a central role
in the communications between different stakeholders in the system engineering value
chain. More precise, consistent, and complete requirements can significantly improve
the quality of the system being developed. Vice versa, vague, inconsistent, and
inadequate requirements can result in significant consequences including system
failures, excessive maintenance costs, and future loss of credibility and business.

There is a wide range of techniques that one may use for requirements
specification from informal to formal [1]. Informal specifications in unstructured and
unrestricted Natural Language (NL) tend to be easier to understand by many
stakeholders and no special training is required. However, requirements in
unstructured and unrestricted NL are often ambiguous and therefore different
stakeholders may interpret the same requirement in different ways, in turn affecting
the quality of subsequent system development activities such as design and testing. In
addition, the absence of formalization precludes any form of automated analysis. In
contrast, formal specification languages (which are grounded on formal logic) have
higher precision than informal specifications. Sophisticated forms of validation and
verification can then be built on top of such specifications and automated by tools.
However, formal specification languages have limited expressiveness, are hard to
write and read without extensive training, and thus may be very difficult, if not
impossible, to communicate to end users and domain experts. Disciplined
specifications in structured and restricted NL strike a fine balance between informal
and formal specifications. They capture requirements in a more precise way than
informal textual specifications and thus enable automated processing by tools.

http://youtu.be/a8YZ_wuVxQg�

Use case modeling is one of the most promising and widely-used, disciplined
specification techniques in structured NL. By combining diagrammatic and textual
descriptions, use case models offer a very intuitive and yet precise foundation for
requirements specification. Tao et al. [4, 5] have devised a Restricted Use Case
Modelling approach, RUCM, which is composed of UML use case diagrams, a set of
well-defined restriction rules and a use case template. The goal is to reduce ambiguity
and facilitate the automated analysis of use case models.

As shown in Fig. 1, built on the top of RUCM, Zen-RUCM aims to tackle the
challenges of requirement specification in different application domains (e.g., real-
time systems, distributed systems, communication systems) and from various
requirement specification concerns (e.g., variability, Non-Functional Requirements
(NFR), crosscutting concerns). RUCM is a generic framework and has not been
tailored for use in any particular domain. Specifically, the use case template in RUCM
captures only the generic aspects of use cases. They are not specific to a particular
problem or application domain. We believe, and as strongly suggested by our
previous studies [3, 5-7], that RUCM has substantial room for improvement by
making use of domain-specific abstractions. Introducing these abstractions is
expected to bring several major benefits, including more succinct use case
descriptions, less ambiguity, and more precision in automated analysis. In addition,
RUCM does not provide solutions for commonly arising requirement specification
concerns like NFR.

Fig. 1. Overview of the Zen-RUCM Framework

As the first step towards the full realization of the Zen-RUCM framework, in this
demonstration, we presents the Zen-RUCM tool, which includes an RUCM modeling
editor and mostly important has an extensible, lightweight architecture design to
facilitate future extensions of RUCM for e.g., having crosscutting concerns and
variability modeling capabilities as shown in Fig. 1.

2 Background: RUCM and UCMeta
RUCM encompasses a use case template and 26 well-defined restriction rules [5].
Rules are classified into two groups: restrictions on the use of NL, and rules enforcing
the use of specific keywords for specifying control structures. The goal of RUCM is
to reduce ambiguity and facilitate automated analysis, which have been empirically
evaluated [4, 5] and positive results were obtained.

A RUCM use case specification has one basic flow and can have one or more
alternative flows. An alternative flow always depends on a condition occurring in a
specific step in a flow of reference, referred to as reference flow, which is either the

basic flow or an alternative flow itself. We classify alternative flows into three types:
A specific alternative flow refers to a specific step in the reference flow; A bounded
alternative flow refers to more than one step (consecutive or not) in the reference
flow; A global alternative flow refers to any step in the reference flow. The 26
restriction rules of RUCM are classified into two categories: restrictions on the use of
natural language and rules enforcing the use of keywords for specifying control
structures. Eleven restriction rules are to reduce ambiguity in use case specifications
and 15 rules defines a set of keywords to specify concurrency sentences
(MEANWHILE), condition checking sentences (VALIDATES THAT), etc.

UCMeta is the intermediate model in aToucan [7], used to bridge the gap
between a textual use case model and a UML model including class, sequence,
activity, and state machine diagrams. It can be also used as a formal representation of
textual RUCM models. UCMeta is hierarchical and contains five packages:
UML::UseCases, UCSTemplate, SentencePatterns, SentenceSemantics, and
SentenceStructure. UML::UseCases is a package of UML 2 superstructure [2], which
defines the key concepts used for modeling use cases such as actors and use cases.
Package UCSTemplate models the concepts of the use case template of RUCM.
SentencePatterns describes different types of sentence patterns. SentenceSemantics is
a package modeling the classification of sentences from the aspect of their semantic
functions. Package SentenceStructure takes care of NL concepts in sentences such as
subject or noun phrase. The detailed description of UCMeta is given in [7].

3 The Zen-RUCM Tool
3.1 Architecture

The architecture of the Zen-RUCM tool is provided in Fig. 2. Its components and
their relationships are illustrated in the left side of the figure. As part of the solution,
we proposed our own modeling framework (i.e., LMF), which implements similar
kinds of functionalities that Eclipse EMF has, but with a lightweight design. The main
objective of designing such a framework is that it is easier for a small development
team (with few developers like the current setting we have) to transplant the tool to
different platforms. Though EMF can also be used, it is impractical for a small team,
as EMF is huge to compare with LMF. Note that my implementation of LMF only has
around 5000 lines of code, which is significantly smaller than EMF and therefore easy
to maintain and extend. With such a design, Zen-RUCM can then be easily deployed
to different platforms such as Java Web Applications and C++. As shown in Fig. 2,
the LMF architecture is similar to EMF in the sense that they both have components
such as Generators and Editors to facilitate the development of metamodel-based
modeling environment; however the main difference is in terms of the degree of
coupling with the EMF architecture and Eclipse platform.

Both LMF and EMF have two editors: reflective model editor and metamodel
editor. LMF Reflective Editor is a simple editor that can automatically adapt
metamodel changes. It is based on the LMF metamodel reflection mechanism. When
a user registers a domain-specific metamodel extension (e.g., Real-time) to the
framework, the reflective editor is instantly ready for editing model instances that
conform to the newly registered metamodel. The editor presents the model instances

in a tree structure. A user can add or delete elements on that tree with pop-up context
menu. With a property view, a user can edit the attribute values for a selected node.
New user interface items for the metamodel extension will automatically appear in
context menu and property view without introducing new implementation. This is
useful for domain experts who don’t want to customize the implemented RUCM
editor via directly coding and it can be used to check if a metamodel extension is
correctly defined.

LMF-based Solution

UCMeta

EMF-based Solution

built on

Eclipse Modeling Framework (EMF)

generates UCMeta Ecore Model

RUCM Models

UCMeta Ecore
Model Instances

aToucan UML Models

UCMeta Instances transform to

Web-based RUCM Editor

Lightweight Modeling Framework (LMF)

UCMeta Extensions
Real Time

Safety

Domain Expert

End User

Generators
Java

C++

Web Application

uses
generate

conforms to

uses
LMF Metamodel

Editors
LMF Reflective Model uses

constructs

need to update

consistent to

formalized as

built on

generatesinvokes

uses

equivalent to

invokes

RUCM Model Editors
Java Editor
C++ Editor

construct

Java

Generators

C++EMF Metamodel

Editors
EMF Reflective Model

UCMeta Runtime Library

LMF (Java)

construct

Fig. 2. Architecture of the Zen-RUCM tool

One of the key features of Zen-RUCM is to support extensions to the generic
RUCM methodology. As we discussed in Section 1, there is a need to extend the
RUCM template and restrictions for various purposes, such as capturing domain-
specific information and supporting specific concerns (e.g., variability modeling).
Zen-RUCM is developed to account for this need by carefully designing the LMF
metamodel editor, which allows users to implement UCMeta extensions easily. With
this editor, users can create new packages, new meta classes and enumerations and it
is also possible to append new attributes to existing meta classes. Notice that these
elements are reflected as keywords, restrictions and fields of the extended RUCM
specification methodology. The editor can also automatically generate Java code for
the newly introduced metamodel or extension. See Section 3.2 for details.

RUCM models are formalized as UCMeta Instances as shown in Fig. 2. These
UCMeta instances can be automatically transformed into UCMeta Ecore Model
Instances, which are consumed by aToucan as input to automatically generate UML
analysis models such as UML class, sequence, activity, and state machine diagrams. It
is important to bridge the gap between LMF and EMF to integrate the Zen-RUCM
tool with EMF-based applications such as aToucan [7].

End users can rely on the provided RUCM Model Editors to construct
requirements as RUCM models. Equivalently a user can also construct RUCM
models using the web-based RUCM editor. All the RUCM editors have two parts: a
use case diagram editor and a use case specification editor. It is worth mentioning that
to ease the adoption of Zen-RUCM in practice, the use case specification editor is
designed to look like a table in Word, with some features such as automatically
highlighting RUCM keywords and indenting for nested sentence structures when
using keywords such as IF-THEN-ELSE-ENDIF and syntax checking of keywords.

The current implementation of the Zen-RUCM tool is highlighted using the light
green color in the LMF-based solution. UCMeta extensions are ongoing projects and
Web-based RUCM Editor is currently under development and will be made available
online soon. All the UCMeta artifacts are implemented and the analysis model
generation part is fully implemented as well.

3.2 LMF Extension Mechanism

The LMF extension mechanism is the most important feature of the Zen-RUCM tool.
As shown in Fig. 3, the LMF metamodel editor is used by domain experts to construct
new metamodels. Extension points are implemented in the metamodel editor to
facilitate the addition of new classes and properties, deletion and modification of
existing classes and properties. Extension points are also implemented in the RUCM
model editor to facilitate the introduction of graphical notations in use case diagrams
and new fields to the RUCM use case template. Based on the extension mechanism
implemented both in the metamodel and model levels, the generic RUCM model
editor and the corresponding UCMeta can be easily extended, without requiring much
modifications and coding. This feature nicely enables the lightweight implementation
of the Zen-RUCM framework described in Fig. 1.

Fig. 3. LMF Extension Mechanism

4 Conclusion
We presented a tool called Zen-RUCM, which provides extensible mechanisms for
specifying use case models for various domains (e.g., Real Time) and facilitates easier
generation of editors in different platforms (e.g., Java Web Applications).

5 References
[1] Lamsweerde A. V., Requirements Engineering From System Goals to UML Models to

Software specifications, Wiley, John&Sons, Incorporated, 2009.
[2] OMG, “UML 2.2 Superstructure Specification (formal/2009-02-04).”
[3] Yue T., Ali S. and Briand L., “Automated Transition from Use Cases to UML State

Machines to Support State-based Testing,” Proc. 7th ECMFA, 2011.
[4] Yue T., Briand L. and Labiche Y., “Facilitating the Transition from Use Case Models to

Analysis Models: Approach and Experiments, TOSEM 22(1), 2013.
[5] Yue T., Briand L. C. and Labiche Y., “A Use Case Modeling Approach to Facilitate the

Transition Towards Analysis Models: Concepts and Empirical Evaluation,” Proc.
MODELS2009, 5795/2009, pp. 484-498, 2009.

[6] Yue T., Briand L. C. and Labiche Y., “An Automated Approach to Transform Use Cases
into Activity Diagrams,” Proc. 6th ECMFA, LNCS 6138, pp. 337-353, 2010.

[7] Yue T., Briand L. C. and Labiche Y., “Automatically Deriving a UML Analysis Model
from a Use Case Model,” Simula Research Laboratory, Technical Report 2010-15, 2010.

