
xMOF: A Semantics Specification Language for
Metamodeling

Tanja Mayerhofer, Philip Langer, Manuel Wimmer

Business Informatics Group, Vienna University of Technology, Austria
{mayerhofer, langer, wimmer}@big.tuwien.ac.at

Abstract. While MOF constitutes a standardized and widely accepted language
for formally defining a modeling language’s abstract syntax, no standardized
language for specifying its behavioral semantics exists. This impedes the effi-
cient development of tools which build upon the behavioral semantics of model-
ing languages, such as model interpreters, debuggers, and testing environments.
To address this shortcoming, we propose to adopt the standardized action lan-
guage fUML as semantics specification language in metamodeling. In this pa-
per we present tool support integrated with the EMF environment for specifying
the behavioral semantics of modeling languages with fUML as well as for ex-
ecuting models based on these specifications. A teaser for the demonstration of
this tool support can be found at http://www.youtube.com/watch?v=
p4alBfqbjk8.

1 Introduction
In model-driven engineering (MDE), models constitute the central artifacts in the soft-
ware development process. Thus, the success of MDE depends significantly on the
availability of adequate tool support for creating, exploring, analyzing, and utilizing
models. To develop such tools efficiently, modeling languages (i.e., their syntax and se-
mantics) have to be defined formally [1]. MOF [4] constitutes a standardized and widely
accepted metamodeling language for formally defining the abstract syntax of modeling
languages and laid the ground for the emergence of a variety of tools building upon the
abstract syntax definition of a modeling language, such as techniques for deriving mod-
eling editors from a metamodel and generic components for model serialization and
comparison. Despite the fact that several approaches for formally specifying the behav-
ioral semantics of modeling languages have been proposed in the past (cf. [1]), none of
these approaches is widely adopted compared to metamodeling languages. This ham-
pers the efficient development of tools which build upon the behavioral semantics of a
modeling language, such as model interpreters, debuggers, and testing environments.

Due to this lack of a standardized language for specifying the behavioral seman-
tics of modeling languages, we investigated whether the standardized action language
fUML [6] can be used as semantics specification language in metamodeling and how
it can be integrated with existing metamodeling methodologies and environments. This
investigation resulted in the metamodeling language executable MOF (xMOF) integrat-
ing fUML with Ecore, which is the most prominent implementation of MOF and em-
ployed in EMF [7]. Furthermore, we elaborated a methodology for systematically devel-
oping semantics specifications with xMOF and utilizing them for model execution. This

methodology integrates seamlessly with existing metamodeling methodologies and en-
vironments which enabled us to implement conforming tool support for EMF1.

In Section 2 we give an overview of our metamodeling language xMOF. In Sec-
tion 3 we present our methodology for developing semantics specifications and exe-
cuting models based on xMOF and its tool support in EMF. In Section 4 we give an
overview of the tool demonstration. Finally, in Section 5 we conclude this paper.

2 Semantics Specification Language xMOF
fUML [6] is a subset of UML [5] comprising modeling concepts for defining UML
classes, as well as activities defining the classes’ behavior. Furthermore, fUML defines
the execution semantics of this UML subset in terms of a virtual machine (VM) capable
of executing compliant models. Because UML classes and MOF metaclasses differ only
in their intended usage (modeling of systems vs. modeling of languages), we argue that
fUML might be well suited for also defining the behavior of metaclasses. Furthermore,
as fUML is an object-oriented and imperative action language and well known in the
MDE community as it is a subset of UML, which is widely adopted in MDE, it might be
intuitive to use for specifying the behavioral semantics of modeling languages. As both
MOF and fUML are standardized by OMG, fUML may be considered as promising
candidate for becoming a standardized action language in metamodeling.

For integrating fUML with existing metamodeling languages in order to enable
the specification of the behavioral semantics of modeling languages we identified two
strategies [3]: a transformation-based and an integration-based strategy. Because of the
better integration with existing metamodeling environments we decided to apply the
integration-based strategy. In this strategy, a metamodeling language is extended with
the behavioral part of fUML comprising modeling concepts for defining activities and
actions so that the behavior of metaclass operations defined in the metamodel of a mod-
eling language can be specified in terms of fUML activities. By applying this strategy
for integrating fUML with Ecore, which is the most prominent implementation of MOF,
we obtained a new metamodeling language which we called executable MOF (xMOF).

The metamodel of xMOF is depicted in Figure 1. For integrating Ecore with the be-
havioral part of fUML we introduced the metaclasses BehavioredEClassifier, Behaviored-
EClass, MainEClass, and BehavioredEOperation. The metaclass BehavioredEClassifier
is a subclass of EClassifier and can own Behaviors in terms of Activities. Behaviored-
EClass is a concrete subclass of BehavioredEClassifier and EClass and can therefore
own Activities. The class MainEClass is introduced to distinguish one BehavioredEClass
in a semantics specification as the main class controlling the execution of a model con-
forming to the modeling language. We also introduced a subclass of EOperation called
BehavioredEOperation whose behavior can be defined by an Activity.

3 Methodology for Developing xMOF Semantics Specifications
With xMOF it is possible to define the abstract syntax and the behavioral semantics of
modeling languages. To foster the systematic and efficient development of behavioral
semantics specifications using xMOF, as well as the utilization of these specifications

1 The metamodel of xMOF, the source code of our tool support, as well as demos and case
studies can be found at our project website http://www.modelexecution.org.

Ecore metaclasses
(excerpt)

Integration
metaclasses

fUML metaclasses
(excerpt)

EClass EOperation

BehavioredEOperation

Behavior

EClassifier

BehavioredEClass BehavioredClassifier MainEClass

Activity
ActivityNode

ActivityEdge

ownedBehavior *

classifierBehavior 0..1

eOperations

*

node *

specification 0..1

method *

edge *

Fig. 1: Metamodel of xMOF (excerpt)

for executing models, we elaborated a dedicated methodology which is accompanied
by EMF-based tool support. An overview of our methodology is depicted in Figure 2.

In the semantics specification, the behavioral semantics of a modeling language
is developed starting from its Ecore-based metamodel. The behavioral semantics is de-
fined in an own artifact called xMOF-based configuration which is automatically initial-
ized. In this initialization one subclass (BehavioredEClass) of each metaclass defined
in the metamodel is generated. They are called configuration classes and can be ex-
tended with additional attributes, references, operations, and activities for specifying
the behavioral semantics of the metaclasses. Also additional configuration classes can
be defined. Furthermore, one BehavioredEClass called Initialization is generated which
can be used to define supplementary data that is necessary as additional input for ex-
ecuting models based on this semantics specification. This class can be extended with
attributes, references, and additional contained classes called initialization classes.

In the model execution preparation, preparatory tasks for executing a model ac-
cording to the xMOF-based behavioral semantics specification of the used modeling
language are carried out. In EMF, models consist of instances of the metaclasses de-
fined in the Ecore-based metamodel of the used modeling language. As the semantics
of these metaclasses is defined by the operations introduced in the configuration classes,
the model to be executed has to be represented in terms of instances of the respective
configuration classes. This representation is called xMOF-based model and is generated
automatically. The supplementary data needed as input for executing a model defined
by the initialization classes has to be instantiated manually by the modeler.

The xMOF-based model can be executed by leveraging the fUML VM (model exe-
cution). Therefore, it is automatically converted into an fUML-based model conforming
to the format required by the fUML VM. During the execution the fUML VM interprets
the activities specifying the behavioral semantics of the modeling language and manip-
ulates the fUML-based model accordingly. The result of the execution consists of the
manipulated fUML-based model (fUML extensional values) representing the runtime
state of the executed model after the execution finished. For enabling its visualization
model annotations are generated for the executed model. For this we make use of EMF
Profiles [2] which is an mechanism for annotating EMF-based models.

Ecore-based
Metamodel

Generate
xMOF-based
Configuration

xMOF-based
Configuration

[initial]

Conf
Classes

Init
Classes

Specify
Semantics

Model
Instantiate
xMOF Conf

Classes

Instantiate
xMOF Init
Classes

fUML-based
Model

xMOF-based
Model

Conf
Model

Init
Model

Tramsform
xMOF- to fUML-

based Model

Execute
Model

Semantics Specification

Model Execution Preparation

Model Execution

xMOF-based
Configuration

[complete]

Conf
Classes

Init
Classes

xMOF-based
Configuration

[complete]

Conf
Classes

Init
Classes

xMOF-based
Model

Conf
Model

Init
Model

Artifact

Manual
Task

 Automated
Task

Caption:

in/out relation

Transform
Execution

Result

Execution
Result

Annotations

fUML
Extensional

Values

Fig. 2: Overview of our semantics specification approach based on fUML

4 Demonstration
In the demonstration of our tool support for specifying the behavioral semantics of mod-
eling languages, we will develop a Petri Net modeling language (PNML) following the
methodology introduced in Section 3. We will showcase how the following tasks are
accomplished using our EMF-based tool support: (i) initialization of the xMOF-based
configuration from the Ecore-based metamodel of PNML, (ii) specification of the be-
havioral semantics of PNML by extending the xMOF-based configuration, (iii) execu-
tion of PNML models based on the xMOF-based configuration of PNML.

The Ecore-based metamodel of PNML (cf. Figure 3a) defines that a Net consists of
Places and Transitions whereas a Transition is associated with at least one input and one
output Place. The xMOF-based configuration of PNML (cf. Figure 3b) consists of the
configuration classes NetConfiguration, PlaceConfiguration, and TransitionConfiguration
generated for the metaclasses of PNML. For the configuration class TransitionConfig-
uration the operation fire() was introduced whose behavior is specified by the activity
depicted in Figure 3c. This activity specifies that for the output places of a transition the
operation addToken() is called while for the input places removeToken() is invoked. Fur-
thermore, the initialization class Token was introduced which has to be used for defining
the initial token distribution in the net to enable the executing of a PNML model.

5 Conclusion
We have presented the metamodeling language xMOF integrating fUML with Ecore.
It enables to define the behavioral semantics of modeling languages in an operational
way. Furthermore, we gave an overview about our methodology for developing xMOF-
based semantics specifications and utilizing them for model execution and we presented
accompanying tool support for EMF.

To evaluate the applicability of our semantics specification approach, we carried
out several case studies in which we developed the behavioral semantics specifications
of distinct modeling languages and utilized these specifications to execute conforming

(a) (b)(a) (b)

(c)

Fig. 3: Tool support for specifying behavioral semantics with fUML

models using the implemented tool support. In summary, the case studies confirmed that
xMOF, its accompanying methodology, and its tool support are applicable for defining
the behavioral semantics of different kinds of modeling languages. Regarding the suit-
ability of fUML as semantics specification language, we come to the conclusion that
due to its object-oriented and imperative nature, fUML is highly suitable.

References

1. B. R. Bryant, J. Gray, M. Mernik, P. J. Clarke, R. B. France, and G. Karsai. Challenges
and Directions in Formalizing the Semantics of Modeling Languages. Computer Science and
Information Systems, 8(2):225–253, 2011.

2. P. Langer, K. Wieland, M. Wimmer, and J. Cabot. EMF Profiles: A Lightweight Extension
Approach for EMF Models. Journal of Object Technology, 11(1):1–29, 2012.

3. T. Mayerhofer, P. Langer, and M. Wimmer. Towards xMOF: Executable DSMLs based on
fUML. In Proc. of the 12th Workshop on Domain-Specific Modeling, pages 1–6. ACM, 2012.

4. Object Management Group. OMG Meta Object Facility (MOF) Core Specification, Version
2.4.1, August 2011. Available at: http://www.omg.org/spec/MOF/2.4.1.

5. Object Management Group. OMG Unified Modeling Language (OMG UML), Superstructure,
Version 2.4.1, August 2011. Available at: http://www.omg.org/spec/UML/2.4.1.

6. Object Management Group. Semantics of a Foundational Subset for Executable UML Mod-
els (fUML), Version 1.0, February 2011. Available at: http://www.omg.org/spec/
FUML/1.0.

7. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling Framework.
Addison-Wesley Professional, 2nd edition, 2008.

