
MDA Game Design for Video Game Development by

Genre

Vargas R. E.
1
, Arellano G. G.2, Beltrán H. D.3,

Zepeda L. Z.4, Quintero R. R.5, Vega L6.

Instituto Tecnológico de Culiacán

Sinaloa, México

{ing.rosavargas@gmail.com
1
, gau_15@hotmail.com

2
,

hector_beltran@outlook.com
3
, leopoldozpd@gmail.com

4
,

rquintero@itculiacan.edu.mx
5
, vega.itc@salazarvega.net

6
}

Abstract. Game´s development process remains a difficult task due to game

platform’s increasing technological complexity and lack of game´s develop-

ment methodologies for unified processes. In this work we show a way to de-

velop different types of arcade games genre using Model Driven Architecture

(MDA). We present a metamodel for game design that allows the specification

for a high level abstraction independently of platform. This proposal shows that

it is possible to generate a 2D game from the essential characteristics that make

up such type of video game. Also, some model transformation rules to generate

executable Java code from a specific model are shown.

Keywords: Model-driven software development, MDA, Game development.

1 Introduction

Several authors have shown that current game development is more difficult than

a few decades ago. Due to the increasing technological complexity of the platforms

for which these games are developed [1, 2]. Thus, standardized methodologies are

needed to enable technological development [3]. Furthermore, during game develop-

ment, error detection is also another frequent problem; to solve it, a common practice

consist on edit code directly. However, after several iterations this causes loss of de-

sign documentation. Consequently, the code becomes harder to maintain and extend.

Models are a rapid and inexpensive strategy to define a software solution [4] that

preserve design concepts by helping to maintain design documentation [2]. In this

paper we show a proposal for the development of different types of arcade games

genre: such as mazes, shooting, racing and fighting. MDA is used to facilitate multi-

platform software development while keeping-up with technological evolution [5].

The rest of the paper is organized as follows: Section 2 presents the State of the Art

review. Section 3 describes MDA basic concepts. Section 4 illustrates the proposed

design methodology. Section 5 draw conclusions and future work. Finally, section 6

presents some contributions.

mailto:gau_15@hotmail.com2
mailto:vega.itc@salazarvega.net6

2 State of the Art

In this section, we present contributions related to Game Design editing tools for tile

based games creation. Gideros Mobile [6], is a platform for easy mobile 2D games

and applications development. The platform allows developers to write their code

once, but to run it on different resources. In addition, it aims to test applications im-

mediately after they are written. The proposed design method maximizes the effi-

ciency and effectiveness of the developers. Stencyl [7], is a platform for building 2D

games for computers, mobiles and web. The platform consists of the following modu-

les for game creation process: behavior editor, tileset editor, actor’s editor, and stage

designer. Allowing developers to write the code once and run it for any game´s style

creation. Both of these tools are related to basic thoughts of MDA in terms of impro-

ving productivity and reusability. However, the editor tool [6] is not platform inde-

pendent, it was built just for mobile and also have difficult access to native device

features. Furthermore, editor tool [7] apparently the IDE, consumes too much RAM.

In [8], the authors evaluates effectiveness of UML on game development as within

other areas, through modeling can predict improvements in productivity. Such work

evaluates the applicability and suitability for game development, together with the

establishment of a process by using UML modeling. The introduction of object orien-

ted and the MDA approach in game development supports productivity and reusabili-

ty. On the other hand, to the best of our knowledge, only one effort has been develo-

pment for aligning the design of video games with the general MDA paradigm. In [2]

the authors show 2D game design through a metamodel allowing the specification

using three fundamental perspectives: gameplay, control and graphical user interface.

3 Design Methodology

To explain our methodology design, we begin by reviewing MDA basic concepts and

proceed with an example. The MDA approach [3] proposes to define software buil-

ding process based on a set of models, a new way to develop software by transfor-

ming an input model into an output model. These models are organized and aligned in

three viewpoints: 1) The Computation Independent Model (CIM) describes the sys-

tem without showing details about how it is constructed. 2) The Platform Independent

Model (PIM) reflects the functionalities, structure and behavior of a system and con-

tains no specific information of platform or technology used in realization. 3) The

Platform Specific Model (PSM) is more implementation oriented and corresponds to a

first binding phase of a given PIM to a given execution platform. Using a series of

transformations rules, also called model transformations, the software system is deve-

loped from a PIM to source code. The transformation rules establish correspondences

between a source metamodel and a target metamodel allowing the transformation of

models to be specified in model transformation languages such as QVT [2], MO-

FScript [3], etc. Transformation engine applies transformation rules in the source

model and returns the target model. Following this approach we propose to overcome

the game development process in three steps: In step 1, we define the PIM for arcade

games types. In step 2, an instance of the arcade PIM is created. In step 3, a set of

model-to-text transformations rules produces the source code from the arcade model.

3.1 Step 1: Metamodel Definition

Figure 1 shows the PIM metamodel for arcade games types where the root element

(Game) is generalized in the class (Maze). Also, classes are created and to build the

Maze. They establish relationships among them by assigning names and cardinality.

For example, the class Maze may contain one or more classes Worlds, which in turn

contains classes Enemy, Objetive, and Obstacle that can appear in the game one or

more times. The Enemy class has attributes such as name, number of enemies per

level, speed movement, and motion animation. Also, attack move is specified by met-

hod MoveAttack ().

Fig. 1. PIM for Arcade Games Types.

3.2 Step 2: Model Creation

Once the metamodel has been created, a dynamic instance is also created to obtain an

XMI file which defines values for the metamodel element’s attributes. This in turn,

allows to create a model of the desired game. In Figure 2 we present a XMI code

segment which represents an instance of the metaclass Obstacle, where obstacles

elements defined as rocks will be represented by an image (defined in the attribute

NameFile):

Fig. 2. Metamodel Instance.

3.3 Step 3: Model to Text Transformation and Code Generation

In Figure 3 we show one of the transformation rules of the enemies in the code gene-

ration phase by using MOFScript language [3]. This is a part of the template code,

where is defined the corresponding tile and the file path for each element described as

enemy or obstacle in the model. In the label enemiesLevel is specify its name and

number of enemies per level. For this example, it specifies four enemies in the first

level and so on:

Fig. 3. Transformation Rule.

Figure 4 shows the game obtained after transformation process, in which four enemies

can be represented by a flame. Rocks, that represent obstacles, may also be observed.

Fig. 4. Maze Game Generated.

4 Conclusions and Future Work

In this paper, we have introduced our MDA methodology for arcade game design.

This work presents a semi-automatic process. The choice of MDA as a guiding met-

hodology is justified by the need of building the video game using standardized

means. There are a number of advantages using MDA: 1) it is possible to check the

transformation rules for correctness given that they are specified in a structured, pre-

cise way, independent of any implementation. 2) MDA models are a uniform and

standard way for video Game Design and 3) this kind of transformations is carried out

to support model evolution (Perfective and Corrective). As future work, we plan to

extend the metamodel to create a design of a more complex games that offers greater

expressiveness to increase functionality. This is because we work with models and we

have the ability to extend our models at any time. Another aim is to develop a tool for

game development using the model-driven approach.

5 Contributions

Our main contributions are: 1) a method for arcade games genre development. 2) a set

of transformation rules to apply that supports our methodology and 3) a standardized

methodology for novice game designers.

6 References

1. Blow, J. (2004, February). Game Development: Harder Than You Think. ACM Queue,

I(10), pp. 28-37.

2. Montero, E., & Carsí, J. A. (n.d.). MDA y Desarrollo de Videojuegos.

3. Kepple, A., Warmer, J., & Bast, W. (2003). MDA Explained: The Model Driven

Architecture™: Practice and Promise of the Model Driven Arquitecture. Pearson

Education, Inc.

4. Quintero, J. B., & Anaya, R. (2007). MDA y el papel de los modelos en el proceso de

desarrollo de software. Revista EIA, pp. 131-146.

5. Miller, J., & Mukerji, J. (Eds.). (2001, July 9). Model Driven Architecture (MDA).

Retrieved from Document number ormsc/2001-07-01.

6. Gideros Mobile. (n.d.). Official Site. Retrieved from Gideros Mobile:

http://www.giderosmobile.com/

7. Stencyl, LLC. (2013). Official Site. (Stencyl, LLC.) Retrieved from

http://www.stencyl.com/

8. Inoue, T., & Shinkawa, Y. (2008). Applying MDA to Game Software Development. CEIS,

(pp. 454-459).

