
Semantic Specifications for Domain-Specific
Modeling Languages

Gabor Simko

Institute for Software Integrated Systems
Vanderbilt University

Nashville, TN

Abstract. While there is a generic agreement that formal semantic
specifications could resolve ambiguities in modeling languages, in prac-
tice, languages are often developed without such unambiguous speci-
fications. In this paper, I propose a logic-based infrastructure for the
specification of Domain-Specific Modeling Languages (DSML). The key
advantage of the approach is the executability of the specifications: for
model conformance checking, model checking and model finding.

1 Research Problem and Motivation

While there is a generic agreement that formal semantic specifications could re-
solve ambiguities in modeling languages, in practice, languages are often devel-
oped without such unambiguous specifications. The advantages of formal speci-
fications are unquestionable in safety-critical applications: they serve as unam-
biguous documentations, facilitate formal reasoning (such as model checking or
formal proofs), and help understanding design faults at an early stage.

In this paper, I propose an infrastructure based on a logic-based language
called FORMULA [1] for the semantic specification of DSMLs. FORMULA is
a fixed-point logic Constraint Logic Programming (CLP) language that uses
algebraic data types for data represention.

As a motivational example, consider a modeling language for embedded sys-
tems, such as shown in Fig. 1. Such a language consists of many sub-languages:
a data-flow language for representing controller software, a sub-language for de-
scribing hardware and networks, a sub-language for the deployment of software
to hardware, and a language describing the timing of software execution.

Clearly, in such complex languages, there are many ambiguous parts (e.g.,
what is the time model for the data-flow language; or what is transmitted on
the connections), for which we need to develop unambiguous definitions. In the
following, I describe an approach towards this goal.

Section 2 contains the background and related work. In Section 3, my ap-
proach and its uniqueness are discussed. Finally, in Section 4, the results and
contributions are described.



Fig. 1. An embedded controller model. Top-left: high-level data-flow between software
components; top-right: hardware and network architecture; bottom-left: software to
platform deployment; bottom-right: timing schedule.

2 Background and Related Work

The logic-based language FORMULA was first proposed by Jackson [12] as a
formal language for specifying the structural semantics of DSMLs and later for
specifying their operational semantics [13]. My research can be considered the
continuation of these initiatives. In [21, 22], I used FORMULA for specifying
the structural and denotational semantics of a physical modeling language and
in [15], our research group specified the operational semantics of a state-chart
language variant. FORMULA provides tools for executing these specifications,
in particular they can be used for automated model finding, model conformance
checking and linear temporal logic (LTL) based model checking.

A different line of research discussed by Rivera [16,18] uses Maude, an equa-
tional logic and term rewriting-based language to specify the operational be-
havioral and structural semantics of DSMLs. Using Maude’s rewriting engine,
this representation can be used for LTL model checking, and by leveraging the
Real-Time Maude framework it can be used for real-time simulations and anal-
ysis [17]. Furthermore, research by Romero [19], Egea [7], and Rusu [20] uses
Maude-based formalizations for arguing about model sub-typing, type inference,
model conformance and operational semantics of model transformations.

In [5] Chen et al. introduced a translational approach using the Abstract
State Machines (ASM) and a semantic anchoring framework, and in [6] they show
such a semantic anchoring framework can be used for compositional behavioral
specifications. Gargantini [9] also introduces an ASM-based semantic framework



that includes translational approaches, semantic mapping, semantic hooking and
semantic meta-hooking, and a weaving approach for semantic specifications.

Esfahasin [8] uses the Z notation to formally specify the behavioral seman-
tics of an activity-oriented DSML modeled in GME. While Z is not executable,
the formal specification provides an unambiguous guideline for automated code
generation for their models.

A similar line of research is found for Ptolemy [10] [11], where the authors
identified and investigated the composition of different models of computations:
the models are chosen such that they represent a broad range of computational
models.

BIP (Behavior, Interaction and Priority) [2] is a framework that supports the
composition of heterogeneous computational systems. The key idea is the sepa-
ration of component behaviors from component interactions. Such a separation
of concerns facilitates the correct composition of components. In [3], the algebra
of BIP is formulated, and in [4], the SOS style formalization of glue operators is
described.

Structural and Behavioral Semantics

In general, models represent a structure and associated behaviors. Accordingly,
specification of modeling languages requires support for specifying both struc-
tural and behavioral semantics [13].

Structural semantics describes the meaning of model instances in terms of
their structure [5]. Structural semantics is described by a mapping from model
instances into a two-valued domain, which distinguishes well-formed models from
ill-formed models.

Behavioral semantics is represented as a mapping of the model into a se-
mantic domain that is sufficiently rich for capturing essential aspects of the
behavior [6] Although, there are many different representations for the behav-
iors of languages, in the following I focus on two of them: denotational semantics
and operational semantics.

Denotational semantics describes the semantics of the language by mapping to
a semantic domain (a domain with well-defined semantics), usually a mathemat-
ical domain. Therefore, we can specify the denotational semantics of a DSML by
defining a semantic domain (possibly as a meta-model) and a denotational se-
mantic mapping that transforms models of the DSML to models of the semantic
domain. E.g., differential algebraic equations, difference equations, state-chart
variants, parallel hybrid automata [22] are examples for semantic domains.

Operational semantics describes the step-wise execution of a computational lan-
guage on an abstract machine. Formal specification of operational semantics
involves defining the transformation that specifies how the system can evolve



Fig. 2. Our approach for formal semantic specification

through its states. Our research group developed the operational semantics spec-
ification for our ESMoL state-chart dialect in [15].

3 Approach and Uniqueness

The essence of my approach is shown in Fig. 2. Here, on the left side, we have
a GME (Generic Modeling Environment [14]) meta-model for the language in
question, which provides us with a customized modeling environment (i.e., with
a concrete syntax) and the abstract syntax for the language. By using the envi-
ronment, we can draw models, such as shown earlier in Fig. 1. Notice that while
the figure is based on GME meta-models and models, the idea is applicable to
other modeling environments as well.

As a next step, we would like to assign semantics to these models by means
of semantic mapping, but we cannot directly do so in GME. Therefore, we cre-
ate isomorphic mappings between GME meta-models/models and FORMULA
domains/models. Each concept of the meta-model is represented as an algebraic
data type, and each element of the model is an instantiation of the corresponding
data type.

By now, we have an equivalent FORMULA representation of the (meta-)model,
and we can use deductive rules to assign semantics to the language.

Structural semantics is described as the deducibility of a special conforms
statement. Because of the isomorphism between the GME model/meta-model
and FORMULA model/domain, whenever a FORMULA model conforms to its
domain, the GME model also conforms to its meta-model.

Behavioral semantics is represented by a semantic mapping: in the case of
denotational semantics, we transform the FORMULA model to a model of a
semantic domain (also represented using algebraic data types). For the opera-
tional semantics, we add behavioral concepts to the domain and model (such
as the current state of the system), and write a FORMULA transformation to
specify the evolution of the system. Based on the operational semantics, we can
also perform model checking as described in [15].



There are three factors that contributes to the uniqueness of my approach:
1) using the same formal language for describing both the structure and the be-
havior establishes a tight connection between them (and which can be leveraged
later on, when developing formal proofs); 2) being executable, the specifications
can be used for model conformance checking, model checking, and for driving
simulations; 3) support for model finding, i.e., automated search for models that
satisfy desired properties.

4 Results and Contributions

The approach introduced in this paper was successfully applied to specify the
semantics for a suite of Cyber-Physical Systems (CPS) modeling languages in
DARPA’s Adaptive Vehicle Make (AVM) program. So far, our research group
has developed the specification for many languages. In particular, I have devel-
oped semantic specifications for a hybrid bond graph language [22] (a physical
modeling language), a cyber-physical system integration language (CyPhyML),
parts of the embedded systems modeling language (ESMoL) and the Simulink
Stateflow language.

Altogether, our research group has developed more than 4000 lines of specifi-
cations. To our knowledge, this is the largest research project that aims complete,
formal, and unambiguous semantic specifications. We expect invaluable feedback
from the more than 1000 systems engineers and 200 designs teams who currently
uses our languages in DARPA’s FANG challenge (http://vehicleforge.org).

My contribution is the following: 1) the proposal of an infrastructure based on
algebraic data types and a logic language for both structural and behavioral se-
mantic specifications; 2) developing both structural and behavioral (denotational
and operational) semantics in the proposed language; 3) demonstrating the ap-
plicability of the approach by specifying a suite of languages in an industry-sized
project.

References

1. FORMULA. http://research.microsoft.com/en-us/projects/formula.

2. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components
in BIP. In SEFM, pages 3 –12, Sept. 2006.

3. S. Bliudze and J. Sifakis. The algebra of connectors – structuring interaction in
BIP. IEEE Transactions on Computers, 57(10):1315 –1330, Oct. 2008.

4. S. Bliudze and J. Sifakis. A notion of glue expressiveness for Component-Based
systems. In CONCUR, page 508–522, 2008.

5. K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic anchoring
with model transformations. In Model Driven Architecture – Foundations and
Applications, volume 3748 of LNCS, pages 115–129. Springer, 2005.

6. K. Chen, J. Sztipanovits, and S. Neema. Compositional specification of behavioral
semantics. In Proceedings of the conference on Design, automation and test in
Europe, DATE ’07, page 906–911, San Jose, CA, USA, 2007. EDA Consortium.



7. M. Egea and V. Rusu. Formal executable semantics for conformance in the MDE
framework. Innovations in Systems and Software Engineering, 6(1-2):73–81, Dec.
2010.

8. N. Esfahani, S. Malek, J. P. Sousa, H. Gomaa, and D. A. Menascé. A modeling
language for activity-oriented composition of service-oriented software systems. In
Model Driven Engineering Languages and Systems, volume 5795, pages 591–605.
Springer, 2009.

9. A. Gargantini, E. Riccobene, and P. Scandurra. A semantic framework for
metamodel-based languages. Automated Software Engineering, 16(3-4):415–454,
Apr. 2009.

10. A. Goderis, C. Brooks, I. Altintas, E. Lee, and C. Goble. Composing different
models of computation in kepler and ptolemy II. In Computational Science –
ICCS, volume 4489, pages 182–190. Springer, 2007.

11. A. Goderis, C. Brooks, I. Altintas, E. Lee, and C. Goble. Heterogeneous composi-
tion of models of computation. Future Generation Computer Systems, 25(5):552–
560, May 2009.

12. E. Jackson and J. Sztipanovits. Formalizing the structural semantics of domain-
specific modeling languages. Software and Systems Modeling, 8(4):451–478, 2009.

13. E. Jackson, R. Thibodeaux, J. Porter, and J. Sztipanovits. Semantics of domain-
specific modeling languages. Model-Based Design for Embedded Systems, 1:437,
2009.

14. A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nord-
strom, J. Sprinkle, and P. Volgyesi. The generic modeling environment. In Work-
shop on Intelligent Signal Processing, Budapest, Hungary, volume 17, 2001.

15. D. Lindecker, G. Simko, I. Madari, T. Levendovszky, and J. Sztipanovits. Multi-
way semantic specification of domain-specific modeling languages. In ECBS, 2013.

16. J. E. Rivera, F. Duran, and A. Vallecillo. Formal specification and analysis of
domain specific models using maude. SIMULATION, 85(11-12):778–792, Aug.
2009.

17. J. E. Rivera, F. Durán, and A. Vallecillo. On the behavioral semantics of real-time
domain specific visual languages. In Rewriting Logic and Its Applications, volume
6381, pages 174–190. Springer, 2010.

18. J. E. Rivera and A. Vallecillo. Adding behavior to models. In EDOC, page 169.
IEEE, Oct. 2007.

19. J. R. Romero, J. E. Rivera, F. Duran, and A. Vallecillo. Formal and tool support for
model driven engineering with maude. Journal of Object Technology, 6(9):187–207,
2007.

20. V. Rusu. Embedding domain-specific modelling languages in maude specifications.
ACM SIGSOFT Software Engineering Notes, 36(1):1–8, 2011.

21. G. Simko, T. Levendovszky, S. Neema, E. Jackson, T. Bapty, J. Porter, and J. Szti-
panovits. Foundation for model integration: Semantic backplane. In IDETC/CIE,
2012.

22. G. Simko, D. Lindecker, T. Levendovszky, E. Jackson, S. Neema, and J. Szti-
panovits. A framework for unambiguous and extensible specification of DSMLs for
cyber-physical systems. In ECBS, 2013.


