
A Framework for Specifying and Analyzing
Temporal Properties of UML Class Models

Mustafa Al-Lail
Colorado State University

Computer Science Department
mustafa@cs.colostate.edu

Abstract. Software designers widely use UML Class Models to specify
the static structure of object-oriented systems. Temporal properties of
class models can be expressed using the TOCL, an extension of OCL
with elements of a linear temporal logic. Specification and verification of
temporal properties expressed in TOCL is non-trivial and no automated
tools exist that aid such verification. Existing approaches rely on trans-
forming the UML models to other languages that have automated anal-
ysis support. Such transformation is complex and can introduce errors.
Towards this end, this paper proposes a framework for specifying and
directly analyzing temporal properties expressed in TOCL. The frame-
work was validated using two demonstration case studies and in both
cases, the approach uncovered design faults.

Keywords: Analysis, Verification, Class Model, Temporal Properties

1 Problem and motivation

UML Class Models are probably the most common specification diagrams used
in the software industry. Automated analysis of class models often uncovers
design problems in a timely manner and therefore saves time and effort. Spec-
ifying and analyzing temporal properties of class models is non-trivial due to
the following challenges. First, specifying temporal properties in formal tempo-
ral logic notations, such as LTL and CTL, can be challenging [1], specifically
for most Model-Driven Engineering (MDE) practitioners. Second, existing ap-
proaches (e.g., see [2–10]) rely on transforming the UML behavioral models to
another language that supports automated analysis. Such transformation is com-
plex and can introduce errors due to the gaps in semantics between UML and
the target languages. Third, given the complex state spaces and the dynamic
nature of the allocation and deallocation of object-oriented systems, developing
model-checking support for such systems is challenging [11].
This research proposal presents a framework that addresses the preceding chal-
lenges. In particular, the framework aims to provide the following results: (1) a
class model analysis approach that is UML-oriented, (2) an object-oriented tech-
nique for specifying temporal properties, and (3) a development process with an
automated tool. A successful development of such framework will yield results
that can be utilized by MDE practitioners to develop reliable complex systems.

2 Background and related work

A number of model-checking-based techniques exist for specifying and analyzing
temporal properties in UML behavioral models, such as statemachines and activ-
ity diagrams [2–10]. These techniques involve developing an exogenous transfor-
mation process. Typically, the UML behavioral models are transformed to lan-
guages that are supported by model checking tools. For example, the vUML [2]
tool automatically transforms UML statemachines to PROMELA specifications.
A LTL temporal property is specified in PROMELA language as well. The SPIN
model checker is then invoked to verify the desired property.
Three main shortcomings are associated with these approaches. First, effective
use of these model-checking techniques requires developers to have specialized
skills that are not UML-related. Second, the correctness of the analysis results
depends on the correctness of the transformation and whether it preserves the
semantics of the source UML models. Third, the results of the analysis performed
by the back-end analysis tool must be presented to developers in UML terms in
order to be examined, thus requiring another transformation process.
The existing structural anlaysis tools of UML/OCL such as USE [12] and OCLE [13]
provide little support for temporal analysis. Towards this end, researchers have
demonstrated how scenarios can be statically modeled as a sequence of state
transition, which in turn, can be verified using USE and OCLE [14]. However,
adapting such an approach for verifying temporal properties is still an ongoing
challenge. This research proposal aims to fill this gap.

3 Approach and uniqueness

3.1 The UML-based analysis approach

The research question that led to this approach is the following: Given a UML de-
sign class model, and a temporal property, is there a scenario, which is supported
by the class model, that violates the property? A design class model specifies the
set of all possible states of a system and includes operations contracts to specify
the system behavior. A scenario is a sequence of state transition supported by
the class model. A temporal property is specified in TOCL, which is a temporal
logic extension of OCL [15]. Fig. 1 presents an overview of the approach. At
the front-end of the approach, a system designer is responsible for 1) creating a
design class model, and 2) specifying a temporal property in TOCL. Then, the
system designer utilizes the USE Model Validator at the back-end to generate a
number of behavioral scenarios against which the temporal property is checked.
If any of the scenarios violates the TOCL property, the tool returns it as a coun-
terexample. The back-end processing is transparent to the system designer. The
approach consists of the following four major steps:

Step1: Unfolding of Application Design Class Model. This step takes
a design class model as input and produces a transition-based class model of

Snapshot

s1:Snapshot s2:Snapshot s3:Snapshot

+Bop() : int

-B_att : Boolean

B

+Aop(in k : Boolean)

-A_att : Boolean

A

-b 0..1

-a 0..1

Transition

-nextS1

-beforeT 0..1

-beforeS 1

-nextT0..1 -APre : A
-APost : A
-k : Boolean

Aop

-BPre : B
-BPost : B
-ret : int

Bop

Application Design Class Model

Snapshot Transition Model(STM)

B_att becomes true in next state
in response to A_att being true
in current state.

context A
inv: self.A_att= true implies
next self.b.B_att=true

context A
inv: let CurrentSnapshot: Snapshot = self.getCurrentSnapshot()
in let NextSnapshot:Snapshot=CurrentSnapshot.getNext()
in self.A_att=true implies NS.b.B_att=true

OCL Property

BPre : B = b2
BPost : B = b3
ret : int = 1

bo1 : Bop

APre : A = a1
APost : A = a2
k : Boolean = true

ao1 : Aop

a:A b:B

Aop()

Bop()

Sequence diagram
counterexample

System
designer

USE Model
Validator

specified in
specified in

Step1

creates

specifies

Sequence of snapshot transition counterexample

Step2

Step3

Step4

Operation OCL Constraints
context A::Aop():void
pre:self.b→notEmpty()
pre:self.A_att=false
post:self.A_att=true

context B::Bop():int

pre:self.a.A_att =true

OCL Constraints
context Aop
inv: APre.b→notEmpty()
inv:APre.A_att =false
inv:APost.A_att=true

context Bop
inv:BPre.a.A_att=true

In the application model, the designer forgot to specify a postcondition of the Bop to assert that
the B_att becomes true, which results in B_att does not become true of the next state in which
A_att becomes true. This violates the specified temporal property.

context Snapshot::getNext():Snapshot = self.nextT.nextS
context Snapshot::futureClosure(sp : Set(Snapshot)) : Set(Snapshot)= if
sp→includesAll(sp→collect(sn:Snapshot | sn.getNext())→asSet()) then sp else
futureClosure(sp→union (sp→collect(t:Snapshot| t.getNext())→asSet()))endif
context Snapshot::getPost(): Set(Snapshot) = self.futureClosure(Set{self.getNext()})

A_att : Boolean

a : A

B_att : Boolean

b : B

A_att : Boolean = false

a1 : A

B_att : Boolean = false

b1 : B

B_att : Boolean = false

b2 : B

A_att : Boolean = true

a2 : A

A_att : Boolean = true

a3 : A

B_att : Boolean = false

b3 : B

{ordered}

{ordered}

{ordered}

{ordered}

TOCL Temporal Property

Before

After

Fig. 1: An Overview of the analysis approach

behavior, which is called a Snapshot Transition Model (STM). The STM is a
class model that characterizes the unfolding of the behavior of the design class
model as valid sequences of state transitions caused by executions of operations.
A state is called a snapshot and it is a structured class that represents a config-
uration of objects. The STM is formed by (1) creating a Snapshot class whose
instances represent states in a transition system, (2) creating a hierarchy of
transition classes that represents operation invocations, (3) converting the op-
erations’ contract conditions to invariants of the transition subclasses, and (4)
defining traversal query operations between snapshots. The STM is mechani-
cally generated from the design class model [14].
The approach utilizes the snapshots traversal operations to specify and analyze
temporal properties in OCL. Specifically, the operation getNext() returns the
next snapshot and the operation getPost() returns the set of all snapshots
that come after a snapshot. The operations getPrevious() and getPre() are
defined similarly.

Step2: Interpreting TOCL as OCL property. The unfolding of the transi-
tion system of the design class model results in linear traces (sequence of snap-

shots represented by the STM) that can be constrained by OCL. The approach
thus interprets the TOCL property, specified in the class model, as OCL first-
order constraint that is defined in the context of the SMT . Fig. 1 shows an
example. The TOCL and OCL properties are instances of formal property spec-
ification patterns, discussed in Section 3.2.

Step 3: Analysis. The approach uses the USE Model Validator [16] to produce
scenarios (e.g., instances of the STM) and check if any of them violates the OCL
property generated in Step 2. The Model Validator uses boolean satisfiability
(SAT) solver to perform the analysis. The tool generates a constrained number
of scenarios, not all possible scenarios. The designer uses scopes to restrict the
number of instances that each class can have and limit the number of transitions
in a scenario. As such, the Model Validator enumerates all possible scenarios
within the defined scopes and checks them against a given property. When no
counterexample is found, the scopes can be increased to provide the system
designer with higher confidence that the property holds on the model; but that
does not guarantee that there is no counterexample in bigger scopes. Provided
the right tool, the analysis could also be performed by more powerful solvers
such as Satisfiability Modulo Theories (SMT) solvers.

Step 4: Extracting sequence diagrams. A big number of objects and transi-
tions produces a counterexample that is complicated and difficult to examine. To
make the analysis result more readable, an algorithm was developed to extract
a sequence diagram from a scenario [17].

3.2 The temporal property specification technique

Many software designers find specifying temporal properties, in a formal nota-
tion, challenging [18]. The research question that led to this technique is:How can
we accommodate UML modelers who are unfamiliar with formal temporal lan-
guage notations? Dwyer et. al [18] designed a number of property specification
patterns to aid in specifying temporal properties in different formal notations
such as LTL and CTL. To address the above question, the patterns of Dwyer
et al. [18] are defined in the two object-oriented notations, TOCL and OCL. A
user of the technique determines the pattern that best fits the requirement and
then uses the corresponding TOCL pattern to write the intended property. The
OCL property is then systematically generated from the TOCL.
A total of eight patterns are proposed by Dwyer et al. [18] among which the
response pattern is the most widely used in practice [1]. The response pattern
captures the requirement that a state condition eventually holds in response to
another condition. Pattern scopes specify the portion of the system execution in
which a property must hold. Table 1 gives the TOCL and OCL patterns of the
response pattern in two scopes. The expression S|= P indicates that the property
P holds in the snapshot S. In instances of the patterns, the approach generates
the OCL condition that asserts that P is satisfied in S. Refer to Table 1 for an
example.

Table 1: Response Pattern
- Scope - TOCL Pattern on class model - OCL Pattern on the STM

Globally context [Class]
inv: [P] implies sometime [S]

context [Class]
inv: let CS: Snapshot = self.Snapshot
in let FS: Set(Snapshot) = CS.getPost()
in [P] implies FS → exists(s:Snapshot | [s |= S])

- Example property - TOCL instance - OCL instance

B att eventually becomes
true in response to A att
being true in current state

context A
inv: self.A att=true implies
sometime self.b.B att=true

context A
inv: let CS: Snapshot = self.Snapshot
in let FS: Set(Snapshot) = CS.getPost()
in self.A att=true implies FS → exists(s:Snapshot | s.b.B att=true)

After Q context [Class]
inv: [Q] implies always ([P]
implies sometime [S])

context [Class]
inv: let CS: Snapshot = self.Snapshot
in let FS: Set(Snapshot) = CS.getPost()
in let PS: Snapshot= FS → select(s:Snapshot | [s |= P])
in SS: Snapshot= FS → select(s’:Snapshot | [s’ |= S])
in [Q] implies PS.getPost() → includes(SS)

4 Conclusions

The main contribution of this research is a framework for specifying and analyz-
ing temporal properties of the UML class models. The framework provides three
results. First, the analysis approach does not require exogenous transformation
to other languages, nor does it require that system designers to be familiar
with notations other than UML and TOCL. Therefore, the analysis approach
is totally UML-oriented. Second, software design patterns are good solutions to
some software engineering problems. In the framework, the problem of specifying
temporal properties is addressed by defining TOCL specification patterns. UML
modelers can employ these TOCL patterns that represent a set of commonly
occurring properties to correctly and concisely specify temporal properties in
object-oriented notation. Third, the development of a tool that fully automates
the procedures and the algorithms is still ongoing, although a large portion of
the framework has been implemented.

This research is validated by applying it to the specification and verification of
two demonstration case studies [19, 17]. The first case study is based on the Gen-
eralized Spatio-Temporal Role-Based Access Control Model(GSTRBAC) [20].
The second case study is based on the Steam Boiler Control System specifica-
tion problem [21]. The results of the studies show that all the temporal properties
of the two systems can be expressed by the property specification technique, and
that the analysis approach is capable of uncovering errors.

Future work will concentrate on improving the framework and addressing its
limitations. First, the approach is lightweight and only checks finite scenarios;
therefore, unbounded liveness properties that require infinite scenarios can not be
checked. Investigation will be performed on how the approach can be extended to
support such properties. Second, the scalability and the efficiency of the property
specification and analysis approaches will be investigated. Specifically, a slicing
technique will be developed to verify properties on large class models.

References

1. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE. (1999) 411–420

2. Lilius, J., Porres, I., Paltor, I.P., Centre, T., Science, C.: vUML: a Tool for Verifying
UML Models. (1999) 255–258

3. Eshuis, R.: Symbolic model checking of uml activity diagrams. ACM Trans. Softw.
Eng. Methodol. 15 (January 2006) 1–38

4. Zhang, S.J., Liu, Y.: An Automatic Approach to Model Checking UML State
Machines. In: SSIRI (Companion). (2010) 1–6

5. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and
Collaborations. Electr. Notes Theor. Comput. Sci. 55(3) (2001) 357–369

6. Shen, W., Low, W.L.: Using Abstract State Machines to Support UML Model
Instantiation Checking. In: IASTED Conf. on Software Engineering. (2005) 100–
105

7. Dubrovin, J., Junttila, T.A.: Symbolic Model Checking of Hierarchical UML State
Machines. In: ACSD. (2008) 108–117

8. Raschke, A.: Translation of UML 2 Activity Diagrams into Finite State Machines
for Model Checking. In: EUROMICRO-SEAA. (2009) 149–154

9. Niewiadomski, A., Penczek, W., Szreter, M.: A New Approach to Model Checking
of UML State Machines. Fundam. Inform. 93(1-3) (2009) 289–303

10. Xie, F., Levin, V., Browne, J.C.: Model checking for an executable subset of uml.
In: ASE. (2001) 333–336

11. Distefano, D.: On Model Checking the Dynamics of Object-Based Software - a
Foundational Approach. PhD thesis, University of Twente (2003)

12. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based Specification Envi-
ronment for Validating UML and OCL. Sci. Comput. Program. 69(1-3) (2007)
27–34

13. Chiorean, D., Paşca, M., Cârcu, A., Botiza, C., Moldovan, S.: Ensuring UML
Models Consistency Using the OCL Environment. Electron. Notes Theor. Comput.
Sci. 102 (November 2004) 99–110

14. Yu, L., France, R.B., Ray, I., Ghosh, S.: A Rigorous Approach to Uncovering
Security Policy Violations in UML Designs. In: ICECCS. (2009) 126–135

15. Ziemann, P., Gogolla, M.: OCL Extended with Temporal Logic. In: Ershov Memo-
rial Conference. (2003) 351–357

16. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying uml/ocl
models using boolean satisfiability. In: MBMV. (2010) 57–66

17. Al-Lail, M., Abdunabi, R., France, R., Ray, I.: An Approach to Analyzing Temporal
Properties in UML Class Models. In: Submitted to MODEVVA workshop. (2013)

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP. (1998) 7–15

19. Al-Lail, M., Abdunabi, R., France, R., Ray, I.: Rigorous Analysis of Temporal
Access Control Properties in Mobile Systems. In: ICECCS. (July 2013)

20. Ramadan Abdunabi, Mustafa Al-Lail, Indrakshi Ray, Robert France: Specification,
Validation, and Enforcement of a Generalized Spatio-Temporal Role-Based Access
Control Model. IEEE Systems Journal (2013)

21. Abrial, J.R., Börger, E., Langmaack, H.: The Stream Boiler Case Study: Com-
petition of Formal Program Specification and Development Methods. In: Formal
Methods for Industrial Applications. (1995) 1–12

