

Reasoning based on property propagation on CIDOC-CRM and CRMdig based repositories

K. Tzompanaki, M. Doerr, M. Theodoridou, I. Fundulaki

Center for Cultural Informatics, Institute of Computer Science Foundation for Research and Technology - Hellas

TPDL 2013
Practical Experiences with CIDOC CRM and its Extensions

- The problem
- Related work
- Our approach
- Examples
- Conclusion

Semantic repositories follow the "Open World Assumption"

- incomplete knowledge
- metadata may be created by different people who state different facts about the same artifact
- > use the schema in different albeit correct ways
- users cannot know precisely what has been documented and how.

Semantic repositories contain implicit knowledge:

- characteristics of artifacts that have been recorded somewhere in the semantic network but are not directly associated to the object of interest
- > characteristics that have multiple modeling alternatives.
- characteristics that are generalizations of sets of more specific properties.

Related work on data provenance

Main areas of research:

- Workflow systems coarse-grained provenance
- Database systems fine-grained provenance

deal mainly with:

- Data quality & reliability
- Audit trail
- Replication recipes
- Attribution

Workflow systems

Provenance of a workflow: the entire history of the derivation of the process result

- different versions of the software and the hardware used
- the agents that were involved in the workflow chain (processes, human agents)
- the "things" (e.g. data) employed by the processes.

Workflow provenance models:

- ♣ Querying allows to explore and better understand results and enables knowledge re-use
- computational processes only on digital artifacts

OPM, Provenir Ontology

- no notion of acquisition (measurement, observation), place
- Confuse agentive role with substance of actors, machines, S/W, context
- No notion of temporal indeterminacy

W3C Recommendation Provenance Ontology (PROV-O)

— precondition: No use of a larger reference ontology

CRMEX2013, Valletta, Malta, September 26, 2013

Database systems

Data provenance provides a detailed trace of how a piece of data has been obtained from a transformation process (i.e. query)

Data provenance may indicate:

- the tuples involved in the computation of a result tuple (why-provenance)
- where these tuples reside (where-provenance)
- the query operators used to obtain the result tuple (how-provenance)

- + extensively studied for relational databases
- only recently for Linked Data

Our approach

Need of a mechanism to reason upon complex structured metadata British Museum website:

the object "Horsemen from the west frieze of the Parthenon" is part of the Parthenon Acropolis Museum: Parthenon was created by Pheidias.

Integrated metadata described in CIDOC-CRM:

- "Horsemen from the west frieze of the Parthenon" crm: forms part of "Parthenon"
- > "Parthenon" crm: was produced by "Construction of Parthenon" crm: carried out by "Pheidias"
- > There is a likelihood that Pheidias was involved in the making of the Horsemen
- Inferences will increase recall and reduce precision
- Combined with application dependent relevance criteria can improve query results

Our approach

The Idea:

Exploit the transitive part-of and derivation chains and reason combining metadata of real world objects with metadata of digital objects and data acquisition/measurement processes

- Generalization and inferring of metadata from related objects by using the propagation of some object properties along the transitive part-of and derivation chains of information.
- Simple yet powerful reasoning mechanism based on inference and completion of metadata.

In order to:

- help scientists query a semantic repository in order to trace and understand the source of their results
- reproduce results
- ease quality control of results and processes

CRMEX2013, Valletta, Malta, September 26, 2013

Application environment

Semantic repository based on:

- CIDOC CRM v5.0.4 http://www.cidoc-crm.org/rdfs/cidoc-crm
- CRMdig 3.0 extension of CIDOC CRM appropriate for representing provenance http://www.ics.forth.gr/isl/CRMext/CRMdig.rdfs

Used platform:

OpenRDF-Sesame http://www.openrdf.org/

Ontotext BigOWLIM reasoner (now OWLIM-SE http://www.ontotext.com/owlim/editions)

Application environment

Applied in 3D-COFORM (IP FP7/2007-2013, no 231809, http://www.3d-coform.eu/)

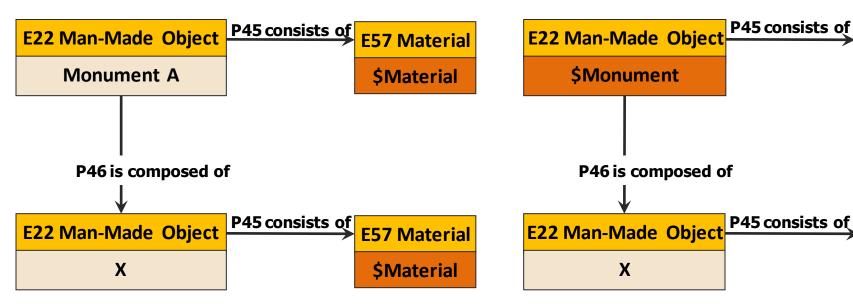
The semantic repository (1M RDF triples) includes:

- metadata describing the digital provenance for empirical 3D modeling and digitization processes
- metadata about the physical objects
- metadata about the digitized objects
- deep chains of events connected by input-output
- up to tens of thousands of intermediary products that "inherit" many properties along the processing chains

The Research Space project has also implemented this approach following our model.

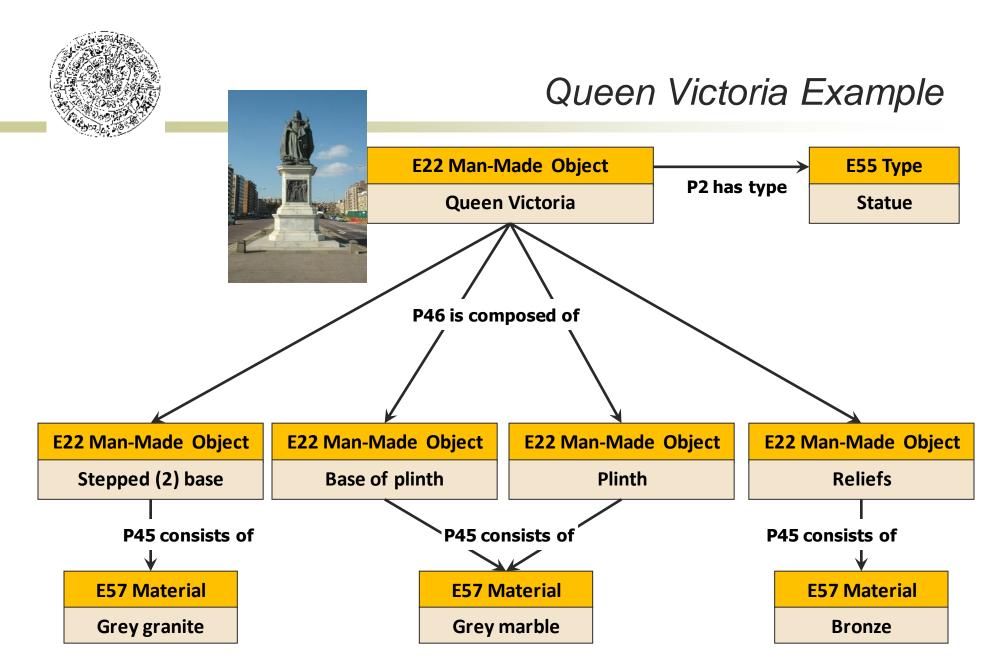
Rule 1

The property of an object is the aggregation of the explicitly defined property in the object itself and the respective properties of all its subparts.


Part-of chain

E57 Material

W


E57 Material

Material A

1. Forward traversal of the part of chain: Find the Material of Monument A

2. Backwards traversal of the part of chain: Find Monuments constructed from Material A

CRMEX2013, Valletta, Malta, September 26, 2013

Queen Victoria Example

Forward traversal query:

Find the material(s) from which the Queen Victoria Statue is made of

Answer set:

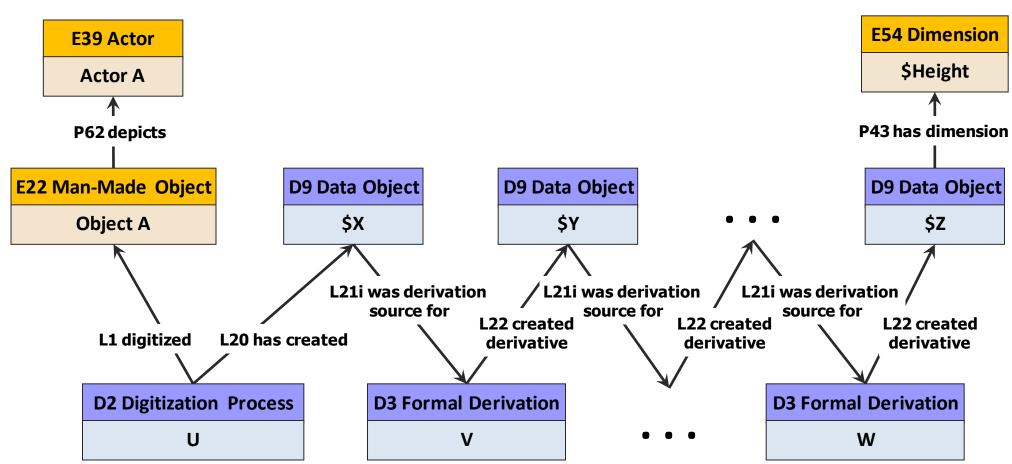
Grey granite, Grey marble, Bronze

Backward traversal query:

Find statues made of Bronze

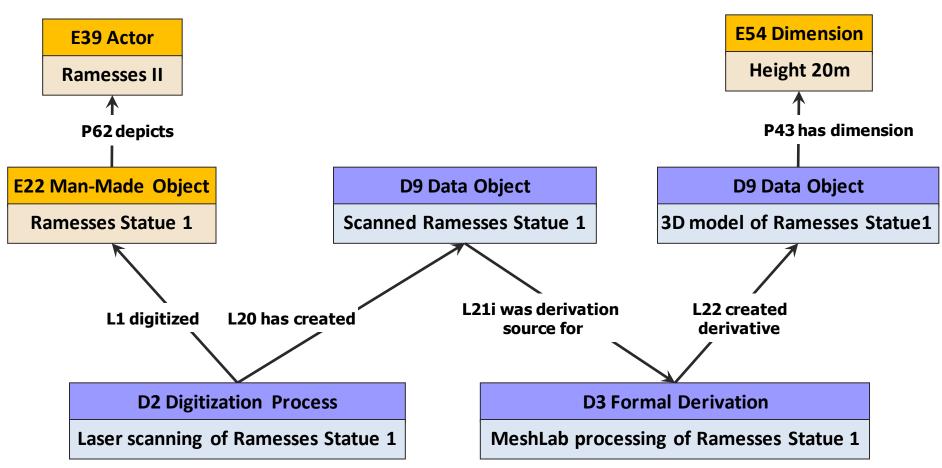
Answer set:

Queen Victoria


Derivation chain

Rule 2

Physical objects may share properties with their digital representations and their derivatives.



Derivation chain

Ramesses Statue Example

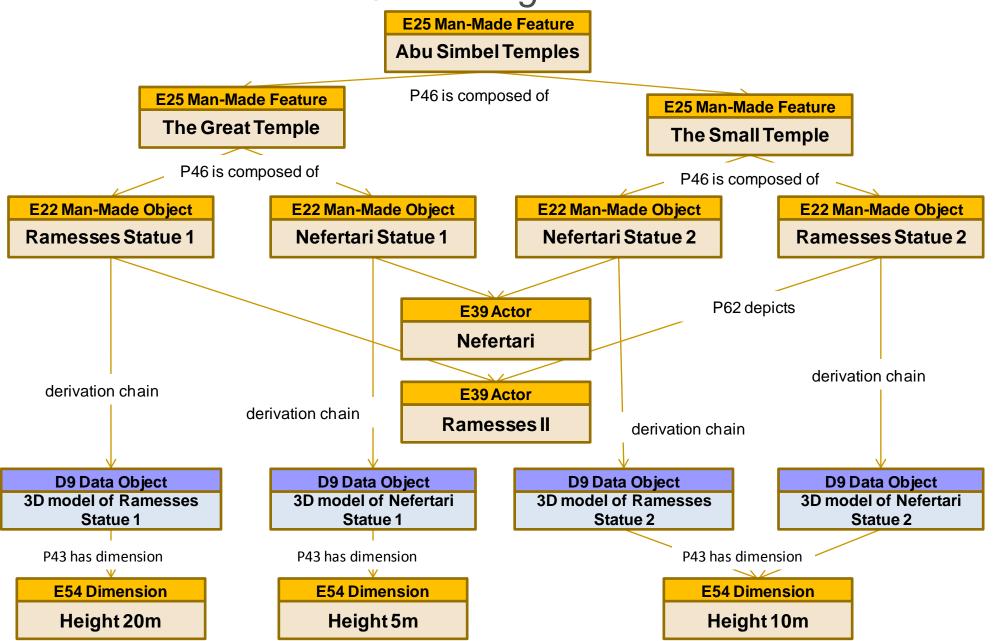
Ramesses Statue Example

Forward traversal query:

Find objects that depict Ramesses II

Answer set:

Ramesses Statue 1, Scanned Ramesses Statue 1, 3D model of Ramesses Statue 1


Backward traversal query:

Find the size of the Ramesses Statue 1 object

Answer set:

Height 20m

Combining Part-of & Derivation chains

Abu Simbel Example

Query:

Find Temples where Ramesses II and his wife Nefertari are represented with same size statues

Answer set:

Abu Simbel Temples, The Small Temple

Example use cases

- maintenance of repositories of digitization products
- garbage collection on reproducible intermediate files
- trace dependencies of products on tools and algorithms that should not become obsolete for long time preservation
- (re)production of valid, complete metadata at a loss of intermediate files
- completion of metadata by implicit knowledge, when production chains comprise thousands of intermediates and dozens of final products without need to manage this redundancy in the repository explicitly.

Conclusions

Exploiting property propagation along transitive derivation and part-of chains helps:

- > to combine metadata of physical objects with metadata of digital objects
- to complete metadata
- to derive useful inferences
- to improve query recall

Simple yet powerful

Open issue: Precision

> resolve relevance issues with additional application specific constraints

Thank you!