
Towards a solution avoiding Vendor Lock-in to
enable Migration Between Cloud Platforms

Alexandre Beslic ‡, Reda Bendraou ‡, Julien Sopena ‡, Jean-Yves Rigolet †

Department of Computer Science and Engineering, Pierre and Marie Curie

University, 4 place Jussieu 75017 Paris, France ‡
{alexandre.beslic,reda.bendraou.julien.sopena}@lip6.fr

IBM, 9 rue de Verdun 94250 Gentilly, France †
rigolet.j@fr.ibm.com

Abstract. The Cloud Computing paradigm is used by many actors,

whether companies or individuals in order to harness the power and

agility of remote computing resources. Because they target developers

and offer a smooth and easy way to deploy modern enterprise software

without dealing with the underlying infrastructure, there is a steadily in-

creasing interest for Platforms as a Service (PaaS). However, the lock-in

makes the migration to another platform difficult. If the vendor decides

to raise its prices or change its security policies, the customer may have

to consider to move to the competition or suffer from these changes.

Assistance and tooling to move to the competition at the PaaS layer

still does not exist thus requiring tremendous re-engineering effort. In
this regard, we propose an approach to the challenge of software migra-

tion between PaaS using Model-Driven Engineering coupled to Program

Transformation

1 Introduction

Cloud Computing is now a popular paradigm, offering computing resources on a
”pay-as-you-go” basis. It allows a remote and on-demand access to a wide range
of services alleviating the need to own and maintain an internal infrastructure.
The service model is standardized by the NIST [16] and is divided into three
major layers. These layers vary in the amount of abstraction they provide to
the consumer. The more you climb this service model, the more you will face
restrictions.

Infrastructure as a Service (IaaS) provides the ability for consumers to provi-
sion fundamental computing resources such as processing power, storage capac-
ity or networks. They have control over the operating system and software stack
giving them the freedom to deploy any kind of software. Platform as a Service
(PaaS) came as an abstraction to the infrastructure layer. Because maintain-
ing and updating a whole infrastructure requires knowledge and time, platform
provides with a fully prepared runtime environment to deploy applications. It
targets developers to further fasten the development process and to focus on the

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 5 -

product features rather than configuring the underlying infrastructure. Software
as a Service (SaaS) is the highest level of the Cloud service model. The software

itself is provided as a service to the end-user.

While Infrastructure as a Service (IaaS) and Software as a Service (SaaS) are

still prevalent in the Cloud computing service model, Cloud platforms (PaaS)

are becoming increasingly used. According to the Gartner study on Cloud Com-

puting, the use of Cloud Platforms will increase at 43% in 2015 compared to 3%

in 2012. With a major struggle between cloud providers to dominate the PaaS

market, the use case of software migration between providers is to be considered.

But this task is far from being easy. Indeed, the platform layer suffers from a

well known issue: the vendor lock-in. Early platforms are providing tools and

libraries to use during the development process to access their own features thus

locking the application to this platform. The advent of NoSQL solutions with

data denormalization makes it even more difficult because of choices made on

the program’s design to ensure best performance. As a consequence, migrating

onto another platform requires tremendous re-engineering effort that a few are

able to provide.

The will to migrate is explained by several factors. The price is the first one

considering that computers are now a commodity that we need at the lowest

price, thus explaining the popularity of the Cloud Computing paradigm. Some

other factors are the Lock-in avoidance, an Increased Security, a Better avail-
ability (99,95% versus 100%), a Better Quality of Service (QoS guarantee), a

Major shift in technology trends or Legal issues (forced to move) among others.

As of today, no such tool exists to achieve this migration. Existing work like

mOSAIC [19] is taking the approach of the middleware abstracting cloud soft-

ware stacks or APIs. mOSAIC offers a thin layer of abstraction over software

stacks and data storage on PaaS in order to develop applications from scratch.

Thus it only supports newer applications and the user is still entangled by the

compatibility list of the middleware. Even if it tries to support a wide variety of

Cloud providers hence being a first step for Cloud platform interoperability, the

use of a middleware just moves around the lock-in and businesses are reluctant

to this.

In this regards, we present our approach to deal with this major issue of

software migrations between Cloud Platforms. The idea is to provide assistance

and tooling to re-engineer a software using the Model-Driven Architecture and

Refactoring approach. It is divided in several stages. The first one is the discov-

ery of a Cloud software deployed on a platform using MoDisco [12]. Follows the

Transformation on the program structure/layout using Model transformation

on the discovered model. Then fine grained transformations are defined between

an API and its counterpart on the targeted platform using a general purpose

transformation language such as TXL. Assistance on software transformation is

provided by applying these rules. The final step is the migration on the targeted

platform with offline and online tests suites validation to be sure that the soft-

ware runs as usual. In order to achieve this, as the number of scenarios is huge

(especially for the data storage part) and the cloud environment always evolv-

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 6 -

ing, we aim to provide the ability to add new knowledge for processing source

to target transformations using a dedicated DSL.

The paper is organized as follows. In section 2, we give examples of challenges

to be tackled when migrating a software tied to the provider’s data storage

solution or APIs. In section 3, we introduce our detailed approach to deal with

software migration between Cloud platforms. Section 4 discusses related work

and the limits of using middlewares to deal with this issue. Section 5 concludes

the paper and discusses future work.

2 Vendor lock-in issue

The Platform as a Service (PaaS) appeared shortly after the Infrastructure (IaaS)

and Software (SaaS) layers of Cloud Computing. Heroku, which has been in de-

velopment since 2007 is a owned subsidiary of Salesforce.com and is one of the

very first Platform as a Service provider. It provides a fully prepared stack to

deploy automatically Ruby, Node.js, Clojure, Java, Python and Scala applica-

tions and runs on top of Amazon Web Services (AWS). Since then many new

providers have entered the market as Google with its App Engine (GAE) plat-

form or Microsoft with Windows Azure both in 2008. These are three of the very

early platform providers but there are many others as of today creating a large

ecosystem of PaaS solutions. The particularity of Cloud platforms is that every

provider has its own set of features, frameworks or language supported.

With those early Cloud platforms, the customer is using a well defined set

of tools and libraries originating from the provider. Achieving best performance

is a result of using the providers data storage solution, not supported on other

platforms. Google App Engine is using BigTable while Windows Azure is using

Azure Table to store data. Both are categorized as NoSQL solutions meaning

that they differ drastically from classical RDBMS as MySQL or PostgreSQL

which are relational.

Both have a strikingly similar data structure, even if they have also subtleties

in their design like the way they handle fragmentation on servers, thus impacting

the design of the program. Both are schema-less and both are using two keys with

a timestamp to quickly query data using a distributed binary index. Both are

also categorized as Key-Value stores in their documentation (even if the right

definition for BigTable as defined in the white paper is a sparse, distributed,

persistent multi-dimensional sorted map [13]). Achieving best-performance on

both systems requires effort and knowledge. Thus and because they are exotic

in design compared to other platforms supported databases, you end-up being

locked in. These types of NoSQL databases are not represented elsewhere as a

true Storage as a Service offering. Your choices are to use similar solutions like

DynamoDB from Amazon, HBase (the open source implementation of BigTable)

on EMC (an IaaS provider), or try a migration from Azure Table to BigTable or

vice versa. The fact is that DynamoDB and HBase are not included as built-in

PaaS features but only at the Infrastructure layer. Moreover, they have different
properties in the way they handle the data compared to BigTable or Azure

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 7 -

Table. The data denormalization broadens the possibilities but trying to move
from a solution to another is a difficulty introduced recently with the advent
of NoSQL databases. Every NoSQL is used for a purpose and differs slightly or
completely from another solution. But as they offer the scaling properties that
relational databases couldnt offer, they are mandatory on PaaS to leverage best
performance and scalability.

Considering those design decisions, what if one of these two platforms on
which you deployed your application decides to raise its prices or do whatever
you disagree with as a customer? Either you accept these changes or you consider
moving onto another Cloud. But this will require tremendous efforts to adapt
your software that is locked-in by specific APIs and data storage proprietary
implementations.

As the lock-in became a sore point for customers willing to move on a plat-
form, companies are now taking the bet to offer Open Platforms as a Service.
Initiatives like TOSCA [7] to enhance the portability of Cloud applications have
been supported by several partners like IBM, Red Hat, Cisco, Citrix and EMC.
Red Hat with OpenShift, VMWare with CloudFoundry and IMBs SmartCloud
Application Services are three of the most known projects for portable PaaS
solutions. As of writing, CloudFoundry is still in beta while OpenShift has been
released. The idea behind Open PaaS is that being restricted to a framework
or library to develop an application is not offering the flexibility desired by the
developers. Instead they offer the widest range of languages, frameworks and
data storage to vanish the lock-in still present on older Platforms. These plat-
forms are extensible with new technologies or patterns (in the case of IBMs PaaS
solution).

Still older Platforms have their benefit. Because the architecture is mature
and that they improve by offering the latest technologies to attract new cus-
tomers. There are a lot of examples of successful websites with a huge amount of
requests per day while newer platforms lacks such examples that could appease
new customers in their choice. Moreover, with the example of OpenShift, the
support is large but still limited to older versions of languages such as Python
used in its 2.6 version (while there is a 2.7 and 3 version of the language sup-
ported on many other platforms). It also misses built-in services present in other
PaaS like Redis, Memcached or RabbitMQ (some of them are available on carts,
which are pluggable components on OpenShift but are not straightforward to
use). Also proprietary implementations of database systems are still more scal-
able and BigTable is known to scale to petabytes of data with highly varied
data size and latency requirements which makes it particularly powerful for high
traffic websites. Given the diversity of configurations for developed applications,
Open platforms are not the general response to the vendor lock-in problem. Be-
cause the lock-in is traded off with the support of newer technologies and possi-
ble increased availability and security on other platforms. A dominant Platform
crushing the competition is unlikely to happen because of the wide range of cus-
tomers needs. As a consequence: How to offer the possibility to migrate from a
platform to another considering this ecosystem of PaaS providers?

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 8 -

While on the infrastructure layer, the migration was restricted in the study

of moving Virtual Machines from an Hypervisor to another [11], here the issue

is much larger. Because the diversity of modern applications is huge and that

finding a ”one-fits-all” answer is rather impossible. At least a way could be

found to assist the shift from a platform to another as for the migration of

legacy software to the Cloud.

3 Our Approach

In this section, we describe the details behind our approach to migrate appli-

cations between Cloud platforms. Given the similarities that could be found on

technologies of the same kind, we could define source to target transformations

by leveraging knowledge amongst the Cloud developer community as well as

Cloud vendors themselves. We strongly believe that assisting the migration of

applications between Cloud platforms using the re-engineering approach is more

flexible than the middleware approach because of the independence to any inter-

mediate technology that could be harmful in the future, in terms of performance

and support.

3.1 Overall Design

Fig. 1. PaaS migration workflow

Figure 2 shows our approach which contains three steps in the lifecycle of

a software about to be migrated on a new platform: Discovery, Transformation
and Migration. It also contains pluggable components: Pattern Definition with
Additional transformation rules.

The Discovery step includes the discovery on sources taken back from the

source platform. Because platforms generally have version control deployment

options using git, getting the sources is straightforward at this step. By having

a high level representation of sources, we have all the informations to transform

and adapt the software accordingly at an architectural level.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 9 -

Transformation step is going to adapt the software regarding the targeted
platform. It includes a Model Transformation step to address architectural (coarse
grained) violations that could prevent a successful migration. Because fine grained
transformations on sources from a given pattern to its counterpart on the tar-
geted platform are necessary as well, we include a Pattern recognition step. Pat-
terns are defined portions of code with a given semantic. Every pattern comes
with its counterpart for the targeted platform and mappings between method
calls and attributes are made to bridge the two representations. These mappings
are part of the Additional transformation rules that are provided by Cloud users
with a dedicated Domain Specific Language.

Migration is the last phase of the process, it tests the transformed application
prior to the deployment on the new platform and gets feedbacks at runtime. If
nothing goes wrong in the deployment and at runtime, we take back resources on
the ancient provider. But if something goes wrong after the resources are taken
back, rollback is applied on the ancient platform with the help of saved sources
and configurations. Specific insights on each phase are covered on subsections.

Discovery phase As we are treating of the use case of migration between
platforms, we assume that an existing project is already deployed on a PaaS.
Whatever the provider, as long as the sources are accessible by any mean, the
process can go further. With these sources, we get back a higher level representa-
tion of the software. For this, we use MoDisco [12] which is a reverse engineering
tool (the term of discoverer is more appropriate) that traduces sources to UML
models or even an Abstract Syntax Tree (AST). MoDisco is extensible by new
definitions of legacy software to discover. However in our case, the OMG’s Knowl-
edge Discovery Metamodel (KDM) [18] already provides the required metadata
for the source discovery. KDM is a standard providing ontology (a set of defi-
nitions) for system knowledge extraction and analysis. This KDM discoverer is
a built-in feature of MoDisco which takes away the complexity of the process.
The target KDM model gives insights of the technology used by the application.
It represents the project structure and overall design. At this state, the target
model as well as configuration options are saved for future purposes (Rollback
which is further explained in the migration section).

For a given configuration we could guide the user to a new platform that
has the same kind of technologies to reduce the work on the transformation
phase. This could be done by defining a configuration pattern for each provider
and match our configuration among these definitions. This choice could also be
guided by the price and other parameters taking inspirations from customer
needs. Given the diversity of platform providers, a right behavior is to forbid the
choice to a target provider with a completely different language with an opposed
data representation. Such a case will make the transformation step weaker and
likely to break the integrity of the sources. Otherwise, we could also find a perfect
matching configuration for our software. Not every software are locked in by a
specific API or data solution (especially on an Open Platform which promote

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 10 -

the use of open source software) thus enabling an easy migration to another

provider.

1 // Create a new student en t i t y .

2 StudentEntity student1 = new StudentEntity (”Foo” , ”Bar”) ;

3 student1 . setEmai l (” foo . bar@upmc . com”) ;

4 student1 . setPhoneNumber (”0102030405”) ;

5

6 // Create I n s e r t operat ion

7 TableOperation in s e r tS tudent1 = TableOperation . i n s e r t (student1) ;

8

9 // Submit the operat ion

10 t ab l eC l i e n t . execute (” people ” , i n s e r tS tudent1) ;

Listing 1.1. New entity on Azure Table

1 // Create a new student en t i t y

2 Entity student1 = new Entity (”Student ”) ;

3 student1 . se tProper ty (”name” , ”Foo”) ;

4 student1 . se tProper ty (” lastName” , ”Bar”) ;

5 student1 . se tProper ty (” emai l ” , ” foo . bar@upmc . com”) ;

6 student1 . se tProper ty (”phoneNumber” , ”0102030405”) ;

7

8 // Add the student en t i t y

9 data s to r e . put (student1) ;

Listing 1.2. New entity on BigTable

Transformation phase Transformation process takes place after the Discov-

ery step and benefits from the KDM model discovery. KDM provides a set of

abstraction layer to understand existing softwares. There are three main layers:

– Program Elements Layer: Code primitives and actions

– Runtime Resource Layer: Data, Events, UI and Platform

– Abstractions Layer: Conceptual, Build and Structure

All these layers are helpful to define the context of the migration, giving

us insights of the specific code portions, frameworks and APIs used, to higher

level details about runtime environment. The KDM model is used for two goals:

finding the best target platform and apply architectural changes to the project.

By architectural changes, the idea is to address project varying layouts forced

by some frameworks (mostly for web applications). Examples are project lay-

outs of Struts, JSF or the webapp lightweight framework of Google App En-

gine. Changes to the project configuration and deployment scheme are guided to

comply to the new provider as each offer different options of deploying on their

platform.

However, these architectural changes are not sufficient to adapt the software

for the new platform. As such, our approach focuses on the use of pattern-based

techniques so that fine grained transformations are realized on the sources. Pat-

terns are defined as a provider’s code portion with a meaningful semantic. As

every pattern comes with an associated transformation definition bridging the

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 11 -

methods and attributes to their counterparts in the targeted platform, transfor-
mation are made in a fine grain fashion. Thus the architectural changes mixed
to the program transformation depicts an hybrid way to adapt an application
to be migrated on a new platform, covering most of the re-engineering effort.

Listing 1.1 and 1.2 are showing Java code portions to store an entity respec-
tively on Azure Table and BigTable. The similarity between both source code is
striking, and a move from the one to the other is straightforward with manual
intervention. But doing this on large sources is tedious and error prone. Both
code are storing the same entity using the same scheme. Defining a strategy of
transformation between those two elementary operations is possible, and could
help to this re-engineering effort to enable a migration. Although differences
still remains between the two datastores by design (mostly on the way to handle
fragmentation over multiple servers), this variance could also be dealt within the
program transformation process. Developers are the first source of knowledge for
the huge amount of technology used across all this platform ecosystem. Thereby,
providing a DSL helping to define those sets of transformation could leverage
the potential of this approach. The DSL would come as an abstraction of tools
such as TXL and other general purpose transformation languages.

Fine grained transformations on specific method calls and class wise modi-
fications could be made using TXL [14], a Language processing transformation
on sources. It provides with rewrite rules, strategies to apply those rules with
support for context-sensitive transformations.

Migration phase Migration is the last step of the workflow. It moves the
transformed sources on the new provider. Prior to the deployment, some tests
are going to be applied on sources to avoid the case of applications that are not
providing a correct behavior. At this time, we are uncertain on the manner tests
are going to be handled. They will need to fit the targeted Cloud provider, then
adding complexity to the process for the developer that is going to write those
tests. After the application being validated, deployment on the target platform
could be launched. Runtime informations are caught after the deployment pro-
cess to validate the success of the migration. Then, we take back resources on the
ancient provider. Still, if something goes wrong we could rollback to the ancient
state, that was saved during the discovery phase.

4 Related Work

Existing work addresses the problem by using middlewares. mOSAIC is one of
those projects. However there are several reasons for us not to use the middleware
approach. First the Overall complexity: In order to support the widest amount
of technologies, middlewares are strongly tied to the software and often pro-
vides with configuration files and eventual cluttered logic. Also, it could cause a
Performance overhead during program execution. Cloud software are especially
developed to be accessed by a huge amount of users, generating an enormous
quantity of data to write and read. This makes considering a middleware to

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 12 -

support the portability for a potential migration a huge tradeoff. Finally, the
Compatibility list: The user is tied to the technology supported by the middle-

ware. In the case of a major shift in technology trends, the customer will always

face this transformation process if the middleware still dont offer support for

the targeted technology. Existing work are already relying on models to adapt

legacy software to be migrated on the Cloud through modernization (from the

companys infrastructure to a cloud infrastructure or platform) such as REMICS

[17], MODAClouds [9] and artist [1] amongst notable cloud migration projects.

These solutions are focusing on the provisioning or on the migration of legacy

software to the Cloud. None of these are actually dealing with the migration be-

tween PaaS. Another existing work is CloudMIG Xpress [15] which is also using

KDM to reverse engineer cloud software to check violations for the deployment

but does not try to correct those.

5 Conclusions and Future work

In this paper, we presented our approach to deal with software migration between

Cloud platforms. We introduced the overall design depicted in three phases: Dis-

covery, Transformation and Migration. We rely on program transformation to

enable the migration between PaaS solutions. The discovery on sources is per-

formed with MoDisco, which has a built-in KDM (Knowledge Discovery Meta-

model) discovery feature. This discovery provides insights on the software con-

figuration to help choosing the best target platform regarding numerous parame-

ters (price, availability, etc.). Instead of providing yet another middleware much

likely to cause a performance hit, we will build a system to provide the ability

to define transformation rules on cloud software. Those rules will be defined by

developers (and we may imagine, Cloud providers to attract new customers),

with the help of a dedicated Domain Specific Language. Transformations are

made at an architectural level using models and on source code using tools like

TXL, which is a language to define transformations.

Future work includes the realization of a dedicated Eclipse plugin. This plugin

will directly points to the changes to be made on a Java project to adapt for

the migration on a targeted provider. This work is also going to include insights

from the discovery phase to choose wisely platform that fits the best in terms

of technology and customer needs. Finally, we will go onward with the program

transformation support, validating the approach on real use cases. This part

being the heart of the contribution.

6 Acknowledgement

The author’s work is funded by the MERgE project (ITEA 2 Call 6 11011).

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 13 -

References

1. artist project. http://www.artist-project.eu/.
2. Google app engine. https://appengine.google.com/.
3. Heroku. https://www.heroku.com/.
4. Ibm smartcloud application services. http://www.ibm.com/cloud-computing/us/

en/paas.html.
5. Microsoft windows azure. http://www.windowsazure.com/.
6. Red hat openshift. https://www.openshift.com/.
7. Tosca. http://cloud-standards.org/wiki/index.php?title=Main_Page.
8. Vmware cloud foundry. http://www.cloudfoundry.com/.
9. Danilo Ardagna, Elisabetta Di Nitto, P Mohagheghi, S Mosser, C Ballagny,

F D’Andria, G Casale, P Matthews, C-S Nechifor, D Petcu, et al. Modaclouds:
A model-driven approach for the design and execution of applications on multiple
clouds. In Modeling in Software Engineering (MISE), 2012 ICSE Workshop on,
pages 50–56. IEEE, 2012.

10. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A
view of cloud computing. Communications of the ACM, 53(4):50–58, 2010.

11. David Bernstein, Erik Ludvigson, Krishna Sankar, Steve Diamond, and Monique
Morrow. Blueprint for the intercloud-protocols and formats for cloud computing
interoperability. In Internet and Web Applications and Services, 2009. ICIW’09.

Fourth International Conference on, pages 328–336. IEEE, 2009.
12. Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. Modisco:

a generic and extensible framework for model driven reverse engineering. In Pro-

ceedings of the IEEE/ACM international conference on Automated software engi-

neering, pages 173–174. ACM, 2010.
13. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM Transactions on Computer

Systems (TOCS), 26(2):4, 2008.
14. James R Cordy. The txl source transformation language. Science of Computer

Programming, 61(3):190–210, 2006.
15. Sören Frey and Wilhelm Hasselbring. Model-based migration of legacy software

systems to scalable and resource-efficient cloud-based applications: The cloudmig
approach. In CLOUD COMPUTING 2010, The First International Conference on

Cloud Computing, GRIDs, and Virtualization, pages 155–158, 2010.
16. Michael Hogan, Fang Liu, Annie Sokol, and Jin Tong. Nist cloud computing stan-

dards roadmap. NIST Special Publication, page 35, 2011.
17. Parastoo Mohagheghi and Thor Sæther. Software engineering challenges for migra-

tion to the service cloud paradigm: Ongoing work in the remics project. In Services

(SERVICES), 2011 IEEE World Congress on, pages 507–514. IEEE, 2011.
18. Ricardo Pérez-Castillo, Ignacio Garcia-Rodriguez De Guzman, and Mario Piattini.

Knowledge discovery metamodel-iso/iec 19506: A standard to modernize legacy
systems. Computer Standards & Interfaces, 33(6):519–532, 2011.

19. Dana Petcu. Portability and interoperability between clouds: challenges and case
study. In Towards a Service-Based Internet, pages 62–74. Springer, 2011.

20. Dana Petcu, Georgiana Macariu, Silviu Panica, and Ciprian Crăciun. Portable
cloud applications-from theory to practice. Future Generation Computer Systems,
2012.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 14 -

