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Abstract. Mapping parallel algorithms to parallel computing platforms requires 
several activities such as the analysis of the parallel algorithm, the definition of the 
logical configuration of the platform, and the mapping of the algorithm to the logical 
configuration platform. Unfortunately, in current parallel computing approaches 
there does not seem to be precise modeling approaches for supporting the mapping 
process. The lack of a clear and precise modeling approach for parallel computing 
impedes the communication and analysis of the decisions for supporting the mapping 
of parallel algorithms to parallel computing platforms. In this paper we present an ar-
chitecture framework for modeling the various views that are related to the mapping 
process. An architectural framework organizes and structures the proposed architec-
tural viewpoints. We propose five coherent set of viewpoints for supporting the map-
ping of parallel algorithms to parallel computing platforms. We illustrate the archi-
tecture framework for the mapping of array increment algorithm to the parallel com-
puting platform. 

K eywords: Model Driven Software Development, Parallel Programming, High Per-
formance Computing, Domain Specific Language, Modelling. 

1 Introduction 

It is now increasingly acknowledged that the processing power of a single processor has 
reached the physical limitations and likewise serial computing has reached its limits. To 
increase the performance of computing approaches the current trend is towards applying 
parallel computing on multiple nodes typically including many CPUs. In contrast to serial 
computing in which instructions are executed serially, in parallel computing multiple pro-
cessing elements are used to execute the program instructions simultaneously. 

One of the important challenges in parallel computing is the mapping of the parallel al-
gorithm to the parallel computing platform. The mapping process requires several activi-
ties such as the analysis of the parallel algorithm, the definition of the logical configuration 
of the platform, and the mapping of the algorithm to the logical configuration platform. 
Based on the analysis of the algorithm several design decisions for allocating the algorithm 
sections to the logical configurations must be made. To support the communication among 
the stakeholders, to reason about the design decisions during the mapping process and to 
analyze the eventual design it is important to adopt the appropriate modeling approaches. 
In current parallel computing approaches there does not seem to be standard modeling 
approaches for supporting the mapping process. Most approaches seem to adopt conceptu-

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 53 -

mailto:bedir@cs.bilkent.edu.tr


al modeling approaches in which the parallel computing elements are represented using 
idiosyncratic models. Other approaches borrow for example models from embedded and 
real time systems and try to adapt these for parallel computing. The lack of a clear and 
precise modeling approach for parallel computing impedes the communication and analy-
sis of the decisions for supporting the mapping of parallel algorithms to parallel computing 
platforms. 

In this paper we present an architecture framework for modeling the various views that 
are related to the mapping process. An architectural framework organizes and structures 
the proposed architectural viewpoints. We propose five coherent set of viewpoints for 
supporting the mapping of parallel algorithms to parallel computing platforms. We illus-
trate the architecture framework for the mapping of parallel array increment algorithm to 
the parallel computing platform.  

The remainder of the paper is organized as follows. In section 2, we describe the back-
ground on software architecture viewpoints and define the parallel computing metamodel. 
Section 3 presents the viewpoints based on the defined metamodel. Section 4 presents the 
guidelines for using the viewpoints. Section 5 presents the related work and finally we 
conclude the paper in section 6. 

2 Background 
In section 2.1 we provide a short background on architecture viewpoints which is nec-

essary for defining and understanding the viewpoint approach. Subsequently, in section 
2.2 we provide the metamodel for parallel computing that we will later use to define the 
architecture viewpoints in section 3. 

2.1 Software A rchitecture V iewpoints 

To represent the mapping of parallel algorithm to parallel computing platform it is im-
portant to provide appropriate modeling approaches. For this we adopt the modeling ap-
proaches as defined in the software architecture design community. According to ISO/IEC 
42010 the notion of system can be defined as a set of components that accomplishes a 
specific function or set of functions[4]. Each system has an architecture, which is defined 

n-
ships to each other, and to the environment, and the principles guiding its design and evo-

 A common practice to model an architecture of a software intensive system is to 
adopt different architectural views for describing the architecture according to the stake-

 [2]. An architectural view is a representation of a set of system elements 
and relations associated with them to support a particular concern. An architectural view-
point defines the conventions for constructing, interpreting and analyzing views. Architec-
tural views conform to viewpoints that represent the conventions for constructing and 
using a view. An architectural framework organizes and structures the proposed architec-
tural viewpoints [4]. The concept of architectural view appears to be at the same level of 
the concept of model in the model-driven development approach. The concept of view-
point, representing the language for expressing views, appears to be on the level of meta-
model. From the model-driven development perspective, an architecture framework as 
such can be considered as a coherent set of domain specific languages [9]. The notion of 
architecture framework and the viewpoints plays an important role in modeling and docu-
menting architectures. However, the existing approaches on architecture modeling seem to 
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have primarily focused on the domain of traditional, desktop-based and sometimes distrib-
uted development platforms. Parallel computing systems have not been frequently or ex-
plicitly addressed. 

2.2 Parallel Computing M etamodel 
Fig. 1 shows the abstract syntax of the metamodel for mapping parallel algorithms to par-
allel computing platform. The metamodel consists of four parts including Parallel Algo-

rithm, Physical Configuration, Logical Configuration, and Code. In the Parallel Algorithm 

part we can observe that an Algorithm consists of multiple Sections, which can be either 
Serial Section or Parallel Section. Each section is mapped on Operation which on its turn 
is mapped on Tile.  

Physical Configuration represents the physical configuration of the parallel computing 
platform and consists of Network and Nodes. Network defines the communication medium 
among the Nodes. Node consists of Processing Unit and Memory. Since a node can consist 
of multiple processing units and memory units we assume that different configurations can 
be defined including shared memory and distributed memory architectures. Logical Con-

figuration represents a model of the physical configuration that defines the logical com-
munication structure among the physical nodes. LogicalConfiguration consists of a num-
ber of Tiles. Tile can be either a (single) Core, or Pattern that represents a composition of 
tiles. Patterns are shaped by the operations of the sections in the algorithm. Pattern in-
cludes also the communication links among the cores. The algorithm sections are mapped 
to CodeBlocks. Hereby, SerialSection is implemented as SerialCode, and ParallelSection 

as ParallelCode. Besides of the characteristic of ParallelSection the implementation of 
ParallelCode is also defined by Pattern as defined in the logical configuration. The overall 
Algorithm is run on PhysicalConfiguration. 
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F ig. 1. Metamodel for Mapping Parallel Algorithm to Parallel Computing Platform 
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3 A rchitecture V iewpoints for Parallel Computing 

Based on the metamodel of Fig. 1 we define the architecture framework consisting of a 
coherent set of viewpoints for supporting mapping of parallel algorithms to parallel com-
puting platform. In section 3.1 we will first describe an example parallel algorithm and the 
corresponding logical configuration. In section 3.2 we will present the algorithm decom-
position viewpoint. In section 3.3 we will present the physical configuration viewpoint. 
Section 3.4 presents the logical configuration viewpoint, section 3.5 the algorithm-to-
logical configuration viewpoint, and finally, section 3.6 will present the algorithm-to-code 
viewpoint. 

 
3.1 Case Description 

To illustrate the problem we will use the array increment algorithm as shown in Fig. 2 
that will be mapped on a 4x4 physical parallel computing architecture. Given an array the 
algorithm recursively decomposes the array into sub-arrays to increment each element 
with one. The algorithm is actually composed of two different parts. In the first part the 
array element is incremented with one if the array size is one (line 3). If the array size is 
greater than one then in the second part the array is decomposed into two sub-arrays and 
the algorithm is recursively called.  

!" !"#$%&'"%#$%%&'()*+$,-.#)/0#
1" ()#)2!#*+%,#
3" ##4$#52#!#
6" %-.%#
7" ##$%%&'()*+$.#)81/#
9" ##$%%&'()*+$5)81.#)/#
:" %,&()#

F ig. 2. Array Increment Algorithm 

3.2 A lgorithm Decomposition V iewpoint 

In fact the array increment algorithm is a serial (recursive) algorithm. To increase the time 
performance of the algorithm we can map it to a parallel computing platform and run it in 
parallel. For this it is necessary to decompose the algorithm into separate sections and 
define which sections are serial and which can be run in parallel. Further, each section of 
an algorithm realizes an operation, which is a reusable abstraction of a set of instructions. 
For serial sections the operation can be custom to the algorithm. For parallel sections in 
general we can identify for example the primitive operations Scatter for distributing data 
to other nodes, Gather for collecting data from nodes, Broadcast for broadcasting data to 
other nodes, etc. Table 1 shows the algorithm decomposition viewpoint that is used to 
decompose and analyze the parallel algorithm. The viewpoint is based on the concepts of 
the Parallel Algorithm part of the metamodel in Fig. 1. An example algorithm decomposi-
tion view that is based on this viewpoint is shown in Fig. 3A. Here we can see that the 
array increment algorithm has been decomposed into four different sections with two serial 
and two parallel sections. Further, for each section we have defined its corresponding op-
eration.  

3.3 Physical Configuration V iewpoint 

Table 2 shows the physical configuration viewpoint for modeling the parallel computing 
architecture. The viewpoint is based on the concepts of the Physical Configuration part of 
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the metamodel in Fig. 1. As we can see from the table the viewpoint defines explicit nota-
tions for Node, Processing Unit, Network, Memory Bus and Memory. An example physical 
configuration view that is based on this viewpoint is shown in Fig. 3B. Here the physical 
configuration consists of four nodes interconnected through a network. Each node has four 
processing units with a shared memory. Both the nodes and processing units are numbered 
for identification purposes. 

Table 1. Algorithm Decomposition Viewpoint 

Name Algorithm Decomposition Viewpoint 
Concerns Decomposing an algorithm into different sections which can be either serial or 

parallel. Analysis of the algorithm.  
Stakeholders Algorithm analysts, logical configuration architect, physical configuration architect  
Elements  Algorithm  represents the parallel algorithm consisting of sections. 

 Serial Section  a part of an algorithm consisting of a coherent set of instructions 
that needs to run in serial 

 Parallel Section  a part of an algorithm consisting of a coherent set of instruc-
tions that needs to run in parallel 

 Operation  abstract representation of the set of instructions that are defined in the 
section 

Relations  Decomposition relation defines the algorithm and the sections 
Constraints  A section can be either  SER or PAR, not both 
Notation  

Index Algorithm Section Section Type Operation 

    
    

 

Table 2. Physical Configuration Viewpoint 

Name Physical Configuration Viewpoint 
Concerns Defining physical configuration of the parallel computing platform  
Stakeholders Physical configuration architect  
Elements  Node  A standalone computer usually comprised of multiple CPUs/ /cores, memory, 

network interfaces, etc.  
 Network   medium for connecting nodes 
 Memory Bus  medium for connecting processing units within a node 
 Processing Unit   processing unit that reads and executes program instructions 
 Memory  unit for data storage 

Relations  Nodes are networked together to comprise a supercomputer 
 Processing units are connected through a bus 

Constraints  Processing Units can be allocated to Nodes only 
 Memory can be shared or distributed 

Notation 
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A. Algorithm Decomposition View 
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B. Physical Configuration View 
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E . Algorithm-to-Code View 
 

 
F ig. 3. Views for the given case using the defined viewpoints  

3.4 Logical Configuration V iewpoint 

Table 3 shows the logical configuration viewpoint for modeling the logical configuration 
of the parallel computing architecture. The viewpoint is based on the concepts of the Logi-
cal Configuration part of the metamodel in Fig. 1. The viewpoint defines explicit notations 
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for Core, Dominating Core, Tile, Pattern and Communication. An example logical config-
uration view that is based on this viewpoint is shown in Fig. 3C. The logical configuration 
is based on physical configuration as shown in Fig. 3B and shaped according to the algo-
rithm in Fig. 3A. As we can observe from the figure the 16 cores in the four nodes of the 
physical configuration are now rearranged to implement the algorithm properly. Each core 
is numbered based on both the node number and core number in the physical configura-
tion. For example, core (2,1) refers to the processing unit 1 of physical node 2. Typically, 
for the same physical configuration we can have many different logical configurations 
each of them indicating different communication and exchange patterns of data among the 
cores in the nodes. In our earlier paper we define an approach for deriving the feasible 
logical configurations with respect to speed-up and efficiency metrics [1]. In this paper we 
assume that a feasible logical configuration is selected. For very large configurations such 
as in exascale computing [5] it is not feasible to draw this on the same scale. Instead we 
define the configuration as consisting of a set of tiles which are used to generate the actual 
logical configuration. In the example of Fig. 3C we can see that the configuration can be 
defined as a tile that is two times recursively scaled to generate the logical configuration. 
For more details about the scaling process we refer to our earlier paper [1].  
 

Table 3. Logical Configuration Viewpoint 

Name Logical Configuration Viewpoint 
Concerns Modeling of the logical configuration for the physical configuration  
Stakeholders Logical configuration architect  
Elements  Core  model of processing unit  

 Dominating Core  the processing unit that is responsible for exchanging data 
with other nodes 

Relations  Cores can be composed into larger tiles 
 Tiles can be used to define/generate logical configuration 

Constraints  The number of cores should be equal to the processing units in the physical 
configuration 

 The numbering of the cores should match the numbering in the physical con-
figuration 

Notation 

Coren,p

Dominating Core

n  - the id of the node in the physical configuration 
p - the id of the processing unit in the physical 
configuration

n,p
 

3.5 A lgorithm-to-Logical Configuration M apping V iewpoint 

The logical configuration view represents the static configuration of the nodes to realize 
the parallel algorithm. However, it does not illustrate the communication patterns among 
the nodes to represent the dynamic behavior of the algorithm. For this the algorithm-to-
logical configuration mapping viewpoint is used. The viewpoint is illustrated in Table 4. 
For each section we describe a plan that defines on which nodes the corresponding opera-
tion of the section will run. For serial sections usually this is a custom operation. For paral-
lel section the plan includes the communication pattern among the nodes. A communica-
tion pattern includes communication paths that consist of a source node, a target node and 
a route between the source and target nodes. An algorithm-to-logical configuration map-
ping view is represented using a table as it is, for example, shown in Fig. 3D. 
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Table 4. Algorithm-to-Logical Configuration Mapping Viewpoint 

Name Algorithm-to-Logical Configuration Mapping Viewpoint 
Concerns Mapping the communication patterns of the algorithm to the logical configuration 
Stakeholders System Engineers, Logical configuration architect  
Elements  Section  a part of an algorithm consisting of a coherent set of instructions. A section 

is either serial or parallel 
 Plan  the plan for each section to map the operations to the logical configuration units 
 Core  model of processing unit  
 Dominating Core  the processing unit that is responsible for exchanging data with 
other nodes  

 Communication  the communication pattern among the different cores 
Relations  Mapping of plan to section 
Constraints  Each serial section has a plan that defines the nodes on which it will run 

 Each parallel section has a plan that defines the communication patterns among nodes 
Notation  

Index Algorithm Section Plan 
   
   

Core

Dominating Core

communication

 
 

3.6 A lgorithm-to-Code V iewpoint 

Once the logical configuration and the corresponding algorithm section allocation plan has 
been defined, the implementation of the algorithm can be started. The corresponding 
viewpoint is shown in Table 5. The viewpoint is based on the concepts of the Parallel 
Algorithm and Code parts of the metamodel in Fig. 1. An example algorithm decomposi-
tion view that is based on this viewpoint is shown in Fig. 3E.  

Table 5. Algorithm-to-Code Mapping Viewpoint 

Name Algorithm-to-Code Mapping 
Concerns Mapping the algorithm sections to code  
Stakeholders Parallel Programmer, System Engineer 
Elements  Algorithm  represents the parallel algorithm consisting of sections. 

 Section  a part of an algorithm consisting of a coherent set of instructions  
 Code Block  code for implementing the section 

Relations  Realization of the section to code 
Constraints  Each section has a code block 
Notation  

Index Algorithm Section Code Block 
   
   

 

4 Guidelines for Adopting V iewpoints 

In the previous section we have provided the architecture framework consisting of a co-
herent set of viewpoints for supporting the mapping of parallel algorithms to parallel com-
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puting platforms. An important issue here is of course the validity of the viewpoints. In 
general evaluating architecture viewpoints can be carried out from various perspectives 
including the appropriateness for stakeholders, the consistency among viewpoints, and the 
fitness of the language. We have evaluated the architecture framework according the ap-
proach that we have described in our earlier study [9]. Fig. 4 shows the process as a UML 
activity for adopting the five different views. The process starts initially with the definition 
of algorithm to decomposition view and the physical configuration view, which can be 
carried out in parallel. After the physical configuration view is defined the logical configu-
ration view can be defined, followed by the modeling of the algorithm to logical view, and 
finally the algorithm to code view. Among the different steps several iterations can be 
required which is shown by the arrows.  
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F ig. 4. Approach for Generating/Developing and Deployment of Parallel Algorithm Code 

5 Related Work 
In the literature of parallel computing the particular focus seems to have been on paral-

lel programming models such as MPI, OpenMP, CILK etc. [8] but the design and the 
modeling got less attention. Several papers have focused in particular on higher level de-
sign abstractions in parallel computing and the adoption of model-driven development.  

Several approaches have been provided to apply model-driven development to high per-
formance computing. Similar to our approach Palyart et. al. [7] propose an approach for 
using model-driven engineering in high performance computing. They focus on automated 
support for the design of a high performance computing application based on abstract plat-
form independent model. The approach includes the steps for successive model transfor-
mations that enrich progressively the model with platform information. The approach is 
supported by a tool called Archi-MDE. Gamatie et al. [3] represent the Graphical Array 
Specification for Parallel and Distributed Computing (GASPARD) framework for mas-
sively parallel embedded systems to support the optimization of the usage of hardware 
resources. GASPARD uses MARTE standard profile for modeling embedded systems at a 
high abstraction level. MARTE models are then refined and used to automatically generate 
code. Our approach can be considered an alternative approach to both GASPARD and 
Archi-MDE. The difference of our approach is the particular focus on optimization at the 
design level using architecture viewpoints.   
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Several hardware/software codesign approaches for embedded systems start from high 
level designs from which the system implementation is produced after some automatic or 
manual refinements. However, to the best of our knowledge no architecture viewpoints 
have been provided before for supporting the parallel computing engineer in mapping the 
parallel algorithm to parallel computing platform.  

6 Conclusion 

In this paper we have provided an architecture framework for supporting the mapping of 
parallel algorithms to parallel computing platforms. For this we have first defined the 
metamodel that includes the underlying concepts for defining the viewpoint. We have 
evaluated the viewpoints from various perspectives and illustrated it for the array incre-
ment algorithm. We were able to apply the viewpoint for the incrementing array algorithm. 
We have adopted the approach also for other parallel algorithms without any problem. 
Adopting the viewpoints enable the communication among the parallel computing stake-
holders, the analysis of the design decisions and the implementation of the parallel compu-
ting algorithm.  In our future work we will define the tool support for implementing the 
viewpoints and we will focus on depicting the design space of configuration alternatives 
and the selection of feasible alternatives with respect to the relevant high performance 
computing metrics.  
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