Nameling Discovery Challenge -
Collaborative Neighborhoods

Dirk Schafer and Robin Senge

Mathematics and Computer Science Department
Philipps-Universitat Marburg, Germany
dirkschaefer@jivas.de, senge@informatik.uni-marburg.de

Abstract. This paper describes a series of experiments designed to solve
the “Nameling” challenge. In this task, a recommender should provide
suggestions for interesting first names, based on a set of names in which
a user has shown interest. An approach based on dyadic factors is pro-
posed where side-information about names and users were incorporated.
Furthermore, factors based on User-based Collaborative Filtering play a
central role. The performance considering the neighborhood and binary
similarity measures was assessed.

Keywords: collaborative filtering, implicit feedback, dyad, competition

1 Introduction

Implicit feedback data can be collected whenever users are interacting with infor-
mation systems. In connection with recommender systems this data is appealing,
because it is obtainable in large quantities, e.g. from log files, and can be used
as a complementary information source to rating data. On the one hand, the
popularity of this kind of data is reflected by the numerous synonyms' in lit-
erature [6,5,12,11]. One the other hand, there are various applications ranging
from basket case analysis [7] to large scale news recommendation [2] and applied
machine learning fields, e.g. Information Retrieval and Recommender Systems
research to name a few.

2 The Challenge

The Nameling discovery challenge is part of a workshop held at the European
Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases? 2013.

1 0-1 data, one-class data, positive-only feedback, click-stream data, market basket
data, click-through data
? ECML PKDD



2.1 Task Description

Given is a set of names that has been recorded as input by users of the Nameling
web platform [8]. The task consists in recommending further names for a subset
of selected users. The recommender should build an ordered list of one thousand
names for each test user, where the most relevant names are placed at high rank
positions. As performance metric the Mean Average Precision (MAP@1000) had
to be used.

Table 1. Notations used in the paper

Symbols Definition

u Set of all users

T Set of all items

u,v Indices for users

1] Indices for items (=names)

Z(u) Item set of user u

Ui Set of users that have an affiliation with item i

Wy Similarity between two item sets

Suj Propensity for user u to select item j

N Items that are listed in the file “Namelist.txt”
2.2 Dataset

The dataset contains a training set which is a sparse matrix consisting of 59764
users (rows) and 17479 names (columns) and a test set with 4140 user IDs.
Furthermore, a namelist file? is provided consisting of 44k names. For each user
of the test set, two names from the system activity “ENTER_SEARCH”, that
are also contained in the namelist, have been extracted and are held out by
the challenge organizers. Two Perl scripts were provided, the first one is able to
build an own training and test set with names from the challenge training set
exactly the same way as the challenge training and test set were built. The second
script can be used for evaluation. In Figure 1 the sparsity of the training set is
reflected by the frequencies of the most often chosen names. It shows a long-tail
distribution, i.e. a small amount of names is very popular and at position 2000
names occur, which were only chosen by few users.

3 Related Work

In recommender systems literature, algorithms are classified as either being
neighborhood-based (aka memory-based) or model-based. In the first group,
there are user-based and item-based collaborative filtering methods. For user-
based k-nearest neighbor collaborative filtering (UCF) the idea is to identify a

3 Namelist.txt, see abbreviation N in Table 1



2500 T T T T T T T T T
«+—2273
2000 -

1500 B

Frequen,
=
3
5
1

270
500 # 39 —

W L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Pasitinn

Fig. 1. Frequencies of top 2000 names.

group of k most similar users for each user to infer a ranking of items that are
new for the user and also most interesting. Item-based nearest neighbor CF in
contrast identify new items that have a relation to the existing item set of a
user. The item-based CF approach has the advantage that a recommendation is
easily explainable to the user and much more efficient to generate compared to
UCF. On the other hand it lacks in accuracy.

For the model-based approaches and especially for this setting of implicit
feedback, various methods based on Matrix Factorization (MF) have been cre-
ated. In the One-Class Collaborative Filtering framework from Pan et al. two
extreme assumptions about the data are being made [11], these are, that all
missing values are all negative (AMAN) and all missing values are unknown
(AMAU). They use weighted matrix factorization and sampling strategies to
cope with the uncertainty about the unobserved data.

Another MF method that deals with side-information has been proposed
in [4], where an embedding of auxiliary information into a weighted MF has
been proposed. In [12] the Bayesian Personalized Ranking framework for implicit
feedback has been described where also MF in combination with a bootstrap
sampling approach is used to learn from pairwise comparisons.

NameRank is an item-based recommendation approach that has been pro-
posed recently in combination with the Nameling data set and showed very good
performance compared to the above mentioned approaches [10].

4 Recommendations Using Various Dyadic Factors

To begin with, we describe how dyadic factors can be used to induce rankings on
names. The rest of the section deals with the engineering of these factors with two
different approaches. The first one aims at improving the most popular items
approach by using side-information for users and names, whereas the second
approach is based on Collaborative Filtering.

4.1 Basic Scoring Scheme

In the following, each user-item pair (a dyad) receives a score based on the
following equation:



Sorting s,,; scores in descending order for user u provides a ranking of items that
can be recommended. The formula consists of a dyadic factor d,; and two filter
factors. The filters are indicator functions that adress the requirements of the
prediction task. fl!) is 0 for names that are members of the user item-set I(u).
And the purpose of the other filter f[?! is to comply with the demand to accept
only names that are part of the namelist /. The various possibilites to engineer
the dyadic factor are described below.

4.2 Discovering the “Most Popular” Baseline

In first experiments we found out that by simply considering a constant top
1000 majority vote for all names?*, we were already able to outperform some of
the results others contributed to the leaderboard at an early stage. We could
even improve this result by considering the 2000 top items and filtering out
the training names of the individual users, which lead to the definition of the
filter factor fl. It turned out, that recommending items that way is known
in literature as the Most Popular (MP) approach [10]. In the course of the
challenge, we could identify other teams that scored equally, and we think they
recommended names using the same approach. Because of this and its simplicity
we say we discovered the “baseline method” within the leaderboards.

4.3 Side-Information on Names

In the given data set, there were no additional attributes on the item objects
provided. Therefore we constructed two features as side-information for names:
length of name and gender. Both features are characterized by having a finite set
of discrete values as co-domain. With that, the now explained general procedure
is applied, where the Most Popular Ranking is used as input. The idea is to
split the MP Ranking into several queues corresponding to the available discrete
values of a feature and later to adjust the MP recommendations for some of the
users on basis of their item sets. From the queues, items are sampled according
to proportions found in the item sets of the user. Since the item sets are typically
small (see Figure 2), some significance criteria have to be met, e.g. a minumum
size of the item-sets. Having found a ranking of at least 1000 names that way,
we turned the ordered list of names in to numerical factors by assigning score
values uniformly according to the rank position in an interval [max, min], e.g.
the top ranked names recieved scores of 1,0.9,0.8,...5.

Name Length Factor The general strategy of sampling from queues described
above had to be slightly adapted due to the fact that there are 13 discrete values
for name lengths, but item sets of users are too small to capture the proportions
sufficiently (see Figure 2). To be able to sample from all those queues, the user

4 that were used by the approx. 60k training users
® we actually used the interval [1,0.1]



15000

T
10000 -
5000 | |
Ill--u... | 1 1 1 1
0 10

0
20 30 40 50 60 70 80
Item Set Size

Frequency

Fig. 2. Item set sizes across the training data

preferences for items, in this case for short or long names, must be significantly
explainable. For this reason we decided to join the discrete values in two almost
equally balanced sets: the set of shorter names (length 1 to 5) and longer names
(length 6 to 13), see Table 2.

Table 2. Frequencies according to different lengths of names

—
N

314|156 7]|8]|9]|10/11]12{13
98|354(522(455|277(158(85(25| 8 | 3 | 1

Length of Name
Frequency

]
=2

Gender Factor Since it was officially allowed and explicitly encouraged to use
additional data sources for the offline challenge, we decided to include gender
information for the names. By doing this, the Most Popular performance could be
considerably improved (see Table 5). We extracted all names from the training
set which were associated with the activity “ENTER_SEARCH” and used an
external program® to classify names into the following three classes: 0 - unisex
name or not identifiable, 1 - male, 2 - female. We used the idea described above
and sampled from three queues according to the item sets’ gender distributions
until the new recommendation set reached a size of 1000 names.

4.4 Side-Information on Users

In previous uses of side-information, one global Most Popular recommendation
was taken as basis and according to item set statistics the recommendation
was modified by reordering or filtering. In further experiments, we followed a
different approach: for groups of users, specified by their attributes, many Most
Popular recommendation lists are created. Approximate geo locations of users
were provided that were derived from IP addresses. We used in particular the
country information for defining a new factor as described next.

5 gender.c by Jorg Michael, which has been cited in the German computer magazine
c’t 2007: Anredebestimmung anhand des Vornamens.



Demographic Factor Additional geographical information was available for
a subset of users. For every country we created a separate Most Popular rec-
ommendation list (see Table 3 for an excerpt). Unfortunately, the performance
could only be increased marginally by this effort (see Table 5).

Table 3. The most popular names for seven countries are listed. The ? symbol repre-
sents the group of users that could not be geo-located.

Country|Frequency|Names
? 36639 |emma anna julia michael paul thomas christian

DE 19411  |julia emma anna michael greta  emil alexander
AT 1714 |emma  paul andreas michael anna  alexander katharina
CH 661 max sandra christian anna  daniel katharina jan
UsS 350 laura sophie emma august sarah  johann leo
GB 134 matilda emma pia martin caroline anja robert
FR 99 sebastian alma simon solveig emma lisa emil
1T 79 emma  astrid katharina sophie johanna ida verena

4.5 The User-based Collaborative Filtering Factor

User-based collaborative filtering is known as a successful technique to recom-
mend items based on the ratings of items by different users. For this technique,
the choice of a similarity measure that captures how similar users are, and the
choice of neighborhood are the most important factors. In order to cope with
this kind of binary data, the similarity has to be chosen suitably for implicit
feedback data. And, as will be shown later, also the neighborhood size is even
more crucial for the performance. The general user-based CF formula provides
a score for each user-item pair as follows:

U]

Puj = szuvcvj (2)
v=1

with indicator function

. 1, ifieZ(u)
ue 0, else

and a normalization term
1

Z‘vzill Wyw

to ensure that p,; € [0, 1]. Note that Equation (2) shows a special case, where
the similarities of user u to all other users v are considered. In literature often
only a neighborhood around u of the top N similar users are taken into account.

R =



Similarity Measures A classical similarity measure between two vectors con-
sisting of binary numbers is the Jaccard Index, which is the proportion between
the sizes of the intersection and the union of two sets.

) N Z(w)]
= [Z(w) UZ(0) ®)

wuv

In this context, it means two item-sets are more similar the more common items
they share.

Good and often superior results were reported regarding the “log-likelihood
similarity” which is implemented in the Mahout software package” for item- and
user-based collaborative filtering [10, 3]. In computational linguistics Dunning
proposed the use of the likelihood ratio test to find rare events as alternative to
traditional contingency table methods [3]. In a bigram study he aimed at finding
pairs of words that occurred next to each other significantly more often than
expected from pure word frequencies. As basis for the log-likelihood statistics he
used the following contingency table (see Table 4).

Table 4. Contingency table as used for the Dunning similarity. The first table shows
the generic structure and below is the same table with the actual values in the UCF
context.

Event A Everything but A
Event B A and B together(k11)| B, but not A(ki2)
Everything but B| A without B(k21) |Neither A nor B(ka2)
Event A Everything but A
Event B |Z(uw) NZ(v)] |Z(v)| — |Z(u) N Z(v)|
Everything but B||Z(u)| — |Z(u) NZ(v)|||Z] — |Z(u)] — |Z(v)] + |Z(u) N Z(v)]|

The Dunning similarity, as we call it, is the log-likelihood ratio score defined®
as follows:

Wy = 2[H (k11 + k12, ka1 + koo) + H (k11 + ko1, k1o + ko) — H (11, k12, ka1, k22)]

where H(X) is the entropy defined as

H(X) = - p() log p(a).

Both similarity measures can be characterized regarding their use of information
from two binary vectors under consideration. In [1] a survey of 76 binary similar-
ity and distance measures had been carried out. All measures were described by
a table called Operational Taxonomic Units that is identical to the contingency
table shown above in Table 4. The measures fall in two groups regarding their
use of negative matches that corresponds to the cell value k2. The Dunning

7 http://mahout.apache.org/ - scalable machine learning libraries
8 for implementation details refer to the Appendix



similarity is not covered in that survey but falls into the category of similarity
measures that make use of that kind of information. In contrast, the Jaccard sim-
ilarity belongs to the negative match exclusive measures. The general inclusion
or exclusion of negative matches has been debated over years and the particular
choice of a measure is surely domain dependent.

4.6 Results

The MAP performances for the dyadic factor approaches based on MP are given
in Table 5. Among those, the dyadic factor using user geo-locations performs
best. Otherwise, the dyadic factor approaches based on UCF perform clearly
better, if neighborhood sizes of UCF factor p,,; are larger than 500 (see Figure 3).
The best performance values can be achieved when choosing the neighborhoods
as large as possible. This means to consider all users according to Equation
(2). To conclude, the choice between Dunning and Jaccard similarity for the
UCF factor is not that relevant. In contrast, the neighborhood size is much
more important. However, if not many users are available in the system and
furthermore not much is known about users and items, the MP approach then
provides a solid basis.

Table 5. MAP performance values for Most Popular experiments.

Method|Most Popular|Length of Name|Gender|Country
MAP 0.0247 0.0248 0.0252| 0.0256

0.028

0.026

0.024

0018

MAP Performance

0016

0014

0012 -

100
Neighborhood Size

Fig. 3. Dyadic factor approach with different neighborhood sizes and two different
similarity measures for the UCF factor. Mean MAP values measured on 50 test set
splits of size 1000.



5 Hybridization by Combining Multiple Dyadic Factors

We propose to combine the different dyadic factors presented in the last section
by extending the basic scheme. Furthermore, experimental results are shown for
different factor combinations.

5.1 Extended Scoring Scheme

In this section, we show how different dyadic factors can be combined into a
unified scoring scheme, which is an extension to Equation (1).

sui =D, - [l P (4)

DS, = () - (di)yz - (dgy e (5)

ut ut ui

The choice of a dyadic factor combination is governed by the hyperparameter
set © = {71,732, ...}, where each parameter has the purpose of weighting the
contribution of a particlar dyadic factor to the score s,;.

5.2 Optimization

The optimization of the hyperparameter set © for formula (4) for Vu € U and
Vi € 7 to maximize the overall MAP value is not trivial, because gradient based
methods are not applicable here. For this reason we used grid search and an
evolutionary algorithm?® to find a well weighted combination of dyadic factors.

5.3 Experiments and Results

For a random selection of 1000 test users the following dyadic factors described
in the last section were considered:

— The demographic factor c,;, where the most popular items are recommended
according to the country of a user.

The length of a name factor n,;.

The gender of a name g,;.

User based Collaborative Filtering factor using Jaccard similarity py;.

According to Table 6 the combination of multiple dyadic factors can be ben-
eficial. However, regarding the MAP performance only minimal improvements
can be observed.

9 CMA-ES from Apache Commons (http://commons.apache.org).



10

Table 6. MAP performance values for different combinations of factors

DS, Hyperparameters MAP Best Single Factor
ctn? 1.751, 0.066 0.0261 cui (0.0257)
cgn? 1.082, 0.941 0.0255 cui (0.0257)
prter? 1.137, 0.516 0.0350 pui (0.0350)

p e3¢ | 2,449, 1.365, 0.726, 0.877 | 0.0356 pui (0.0350)

6 Discussion

During the challenge phase we could confirm findings reported in literature:
The baseline method described in section 4.2 performs well compared to statical
methods using relational data from co-occurrence networks [9]. We found out
that the choice of input for the recommendation has a large impact on the
performance, e.g. restricting the item sets for the UCF approach a-priori to
names contained in N has a negative effect. Furthermore, we introduced an
approach based on weighted dyadic factors, which enabled us to combine different
information sources and assumptions in a formal way. That allowed us to express
the preferences of users by different factors and provides further possibilities, that
are out of the scope of this paper, e.g. to combine User-based with Item-based
Collaborative Filtering. Even though this approach seems to be appealing at first
sight, the MAP performance improvements are only minimal compared to single
dyadic factors. Introducing the various dyadic factors using side-information,
they performed not as well as factors based on Collaborative Filtering, which
shows the effectiveness of UCF despite its simplicity.

References

1. Seung-Seok Choi, Sung-Hyuk Cha, and C Tappert. A survey of binary similar-
ity and distance measures. Journal of Systemics, Cybernetics and Informatics,
8(1):43-48, 2010.

2. Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google
news personalization: scalable online collaborative filtering. In Proceedings of the
16th international conference on World Wide Web, pages 271-280. ACM, 2007.

3. Ted Dunning. Accurate methods for the statistics of surprise and coincidence.
Computational linguistics, 19(1):61-74, 1993.

4. Yi Fang and Luo Si. Matrix co-factorization for recommendation with rich side
information and implicit feedback. In Proceedings of the 2nd International Work-
shop on Information Heterogeneity and Fusion in Recommender Systems, pages
65-69. ACM, 2011.

5. Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-Thieme.
Learning attribute-to-feature mappings for cold-start recommendations. In Data
Mining (ICDM), 2010 IEEE 10th International Conference on, pages 176—185.
IEEE, 2010.



10.

11.

12.

11

Michael Hahsler. Developing and testing top-n recommendation algorithms for 0-1
data using recommenderlab, 2010.

Andreas Mild and Thomas Reutterer. An improved collaborative filtering approach
for predicting cross-category purchases based on binary market basket data. Jour-
nal of Retailing and Consumer Services, 10(3):123-133, 2003.

Folke Mitzlaff and Gerd Stumme. Namelings - discover given name relatedness
based on data from the social web. In Karl Aberer, Andreas Flache, Wander
Jager, Ling Liu, Jie Tang, and Christophe Guret, editors, SocInfo, volume 7710 of
Lecture Notes in Computer Science, pages 531-534. Springer, 2012.

Folke Mitzlaff and Gerd Stumme. Relatedness of given names. Human Journal,
1(4):205-217, 2012.

Folke Mitzlaff and Gerd Stumme. Recommending given names. arXiv preprint
arXiv:1302.4412, 2013.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. One-class collaborative filtering. In Data Mining, 2008. ICDM’08.
FEighth IEEE International Conference on, pages 502-511. IEEE, 2008.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 452-461.
AUALI Press, 2009.

Appendix

Calculation of the Entropies for the Dunning Similarity

The entropies for the Dunning similarities using the notation of Table 4 can be
calculated as follows :

LLR = 2[H (row) + H(col) — H(row, col)]
H(row) = —((k11 + k12)log(k11 + ki2) + (ko1 + ka2) log (k21 + ka2))
H(col) = —((k11 + ka1)log(ki1 + ka1) + (k12 + kaz) log (k12 + ka2))
H(row, col) = —((Z kij log(z kij) — (Z kijlog kij)).



