Improving the Recommendation of Given Names
by Using Contextual Information

Marcos Aurélio Domingues', Ricardo Marcondes Marcacini?, Solange Oliveira
Rezende!, and Gustavo E. A. P. A. Batistal

! Institute of Mathematics and Computer Science — University of Sdo Paulo
Av. Trabalhador Sao-Carlense, 400, Cx. Postal 668, 13560-970, Sao Carlos, SP, Brazil
mad@icmc.usp.br, solange@icmc.usp.br, gbatista@icmc.usp.br
http://labic.icmc.usp.br
2 Federal University of Mato Grosso do Sul
Trés Lagoas, MS, Brazil

ricardo.marcacini@ufms.br

Abstract. The people who have to choose a given name, know how
challenging it is to find a suitable name that fits the social context, the
language, the cultural background, and especially, the personal taste. For
example, future parents end up browsing through several lists of given
names in order to choose a name for their unborn child. A recommender
system can help a person in this task by recommending given names
which are of interest to the user. In this paper, we exploit contextual
information (e.g., time and location) in two state-of-the-art recommender
systems for the task of recommending given names. The empirical results
have shown that we can improve the recommendation of given names by
using contextual information.

Key words: Given Names, Recommender Systems, Item-based Collab-
orative Filtering, Association Rules, Contextual Information

1 Introduction

The task of finding a suitable name for an unborn child is not so easy. Future
parents usually face many books or web sites, listing given names, in order to find
a suitable name for their child. Here, a suitable name is represented by a given
name which satisfies a set of factors such as the social context, the language,
the cultural background, and especially, the personal taste. Although this task
is relevant in practice, little research has been performed on the analysis and
application of interrelations among given names from a recommender system
perspective. A recommender system is an information filtering technology which
can be used to output an ordered list of items (e.g., given names) that are likely
to be of interest to the user [1,2].

In different scenarios, recommender systems are subject to scientific research,
as, for example, recommending products [3], mobile applications [4], places of
interest [5], movies [6], music [7]. In this paper, we exploit two state-of-the-art

recommender systems for the task of recommending given names. In addition, we
also incorporate contextual information (e.g., time and location) in such systems
in order to capture tendencies in choosing given names and, thus, to improve
the recommendations.

The paper is organized as follows: In Section 2 we present some work related
to the recommendation of given names. In Section 3 we describe the two state-of-
the-art recommender systems used in this work and an approach to incorporate
contextual information in these systems. We present our empirical evaluation in
Section 4. We discuss the data set, the pre-processing of the data, the experi-
mental setup and evaluation metric, and the empirical results. In Section 5 we
show our contribution to the 15th Discovery Challenge: Recommending Given
Names. In Section 6 we present final remarks.

2 Related Work

In this section, we present some work related to the recommendation of given
names. A search engine and recommender system for given name is described
in [8]. This system, called Nameling®, can be used by users to find a suitable
given name. For example, the user enters a given name and obtains a browsable
list of names.

In [9], the authors analyze the co-occurence of names from the Nameling sys-
tem. They show how basic approaches from the field of social network analysis
and information retrieval can be applied for discovering relations among names.
In [10], a recommendation method for given names, based on co-occurence within
Wikipedia?, is proposed. The method, called preferential PageRank, is a mod-
ification of the well known PageRank algorithm [11]. There, the preferential
PageRank method is evaluated by using a data set from the Nameling system.

An empirical evaluation comparing the preferential PageRank method against
some state-of-the-art recommender systems, for the task of recommending given
names, is presented in [12]. By using a data set from the Nameling system,
the authors compare the user-based collaborative filtering [13], the item-based
collaborative filtering [14], the weighted matrix factorization method [15], the
most popular recommendation approach (that recommends the most popular
names), and the random approach (that recommends names randomly) against
the preferential PageRank method [10]. The results show that the preferential
PageRank method provides good performance in terms of prediction accuracy
as well as runtime complexity.

Our contribution for the Nameling system consists in exploiting the contex-
tual information (i.e., the month and the city) contained in the data from the
system to capture tendencies in choosing given names, and, thus, to improve the
recommendations. Our proposal will be described in the next sections.

3 http://nameling.net/
4 http://www.wikipedia.org/

3 Recommender Systems

A recommender system for the web is an information filtering technology which
can be used to predict preference ratings of items (e.g., movies, music, books,
news, images, web pages, given names, etc) not currently rated by the user [16],
and/or to output a set of items/recommendations that are likely to be of interest
to the user [1,2].

We focus our work on the task of selecting the top-N items/recommendations
which are of interest to a user. We formalize this task as follows:

Let p be the number of users U = {uq, ug, ..., u, } and ¢ the number of all
possible items that can be recommended I = {i1, i2, ..., iq}. Now, let j be
the number of historical sessions in a web site S = {s1, s9, ..., s;}. Each
session s = (u, I) is a tuple defined by a user u € U and a set of ac-
cessed items Iy C I. The set S is used to build a top-N recommendation
model M.

Given an active session s, defined by an active user u, and a set of
observable items O C I, the recommendation model M uses the set O
to identify the interest of the user u, and recommend N items from the
set of items/recommendations R, such that R C I and RN O = @, that
are believed to be the top preferences of the user u,.

In this section, we present two state-of-the-art recommender systems: Item-
based Collaborative Filtering and Association Rules based. In this work we use
these systems for recommending given names. In addition, we present an ap-
proach which is used to incorporate contextual information in the two state-of-
the-art systems in order to generate context-aware recommendations.

3.1 Item-Based Collaborative Filtering

The Item-based Collaborative Filtering technique analyzes items to identify re-
lations among them [17]. Here, the recommendation model M is a matrix rep-
resenting the similarities between all the pairs of items, according to a given
similarity metric. An abstract representation of a similarity matrix is shown in
Table 1. Each item i € I is an accessed item, for example, a given name.

Table 1. [tem-item similarity matrix

i ia iq
i1 1 sim(i1,i2)|- - - |sim(i1,iq)
12 |sim(iz,i1) 1 - |sim(i2, iq)

1
iq |stm(iq,i1)|sim(iq,2)]| - - 1

According to [17], the properties of the model and consequently the effective-
ness of this recommendation algorithm depend on the method used to calculate

the similarity among the items. To calculate the similarity between pairs of
items, for example, 71 and i3, we first isolate the users who have rated both of
these items, and then, we apply a metric on the ratings to compute the similarity
sim(i1, i2) between i1 and i9. Metrics to measure the similarity between pairs of
items are cosine angle, Pearson’s correlation and adjusted cosine angle. In this
paper, we use the cosine angle metric, defined as

S BR
sim(iy, i) = cos(iy, iz) = ————=— 1'2.) (1)
x| * [l a2 |l

where 71 and iy are rating vectors with as many positions as existing users in
the set U. The operator “.” denotes the dot-product of the two vectors. In our
case, the rating vectors are binary. The value 1 means that the users accessed
the respective item. The value 0 has the opposite meaning.

Once we obtain the recommendation model, we can generate the recommen-
dations. Given an active session s, containing a user u, and its set of observable
items O C I, the model generates the N recommendations as follows. First, we
identify the set of candidate items for recommendation C' by selecting from the
model all items ¢ ¢ O. Then, for each candidate item ¢ € C, we calculate its
similarity to the set O as

ZieKcﬂO sim(e, 1)
ZieKc Sim(cv 7’)

Sime,o0 = (2)
where K. is a set with the k most similar items (the nearest neighbors) to the
candidate item c.

Finally, we select the top-N candidate items with the highest similarity to
the set O and recommend them to the user u,.

3.2 Association Rules Based

A recommendation model M based on association rules is a set of rules. Each
rule m has the form m : X — Y, where X C I and Y C I are sets of items
and X NY = &. Here, we generate association rules with one single item in the
consequent of the rule [18], i.e., Y is a singleton set. Each association rule is
characterized by two metrics: support and confidence [19].

The support of a rule in a set of sessions S is defined as

support(X —Y) = X|L;Y|, (3)
where | X UY| is the number of sessions in S that contain all items in X UY and
|S| is the number of sessions in S.

The confidence of a rule is the proportion of the number of sessions which
contain X UY with respect to number of sessions that contain X, and can be
formulated as

confidence(X —-Y) = |X|XU|Y| (4)

Discovering all association rules from a set of sessions S consists in gener-
ating all rules whose support and confidence are greater than or equal to the
corresponding minimal thresholds, called minsup and minconf. The classical al-
gorithm for discovering association rules is Apriori [19].

To build the recommendation model M using association rules, the set of
sessions S is used as input to an association rules algorithm to generate a set
of rules. Once we have the model, we can make recommendations, R, to a new
session. Given an active session s, containing a user u, and its set of observable
items O, we build the set R as follows [18]:

R = {consequent(m)|m € M and antecedent(m) C O
and consequent(m) ¢ O}. (5)

To obtain the top-N recommendations, we select from R the N distinct
recommendations corresponding to the rules with the highest confidence values.

3.3 The Weight Post-Filtering Approach

There are many definitions of context in the literature depending on the field
of application and the available customer data [2]. For example, in [20], context
is defined as any information that can be used to characterize an item. In this
paper, we use time and location (i.e., month and city) as context to identify
tendencies in the choice of a given name to improve the recommendations.

To incorporate contextual information in the previous recommender systems,
we have extended the Weight Post-Filtering (PoF) approach, proposed in [21],
for the task of item recommendation. The original approach was proposed for
rating prediction [21].

The Weight PoF approach first ignores the contextual information in the data
(in our case, the month and the city from each access) and applies a traditional
algorithm (e.g., Item-based Collaborative Filtering or Association Rules based)
to build the recommendation model. Then, it computes the probabilities of user’s
access items under a given context. The probability P.(u,) that a user u accesses
an item 7 under the context ¢ can be computed as follows

Nume(u,)

Pelu, i) = Num(u,i)’ (6)

where Num,(u, 1) is the number of users that, like the user u, also accessed the
item 4 under the context ¢; and Num(u,i) is the total number of users that
accessed the item .

The score of the items computed by using the previous recommender sys-
tems are multiplied by the probabilities P.(u,), incorporating context into the

recommendations and improving the performance of the recommender systems.
Finally, the items are reordered and the top-V items are recommended to the
user.

4 Empirical Evaluation

In this section, we empirically evaluate the recommender systems, presented in
Section 3, in the task of recommending given names.

4.1 Data Set

The empirical evaluation is carried out using an usage data set from Nameling.
According to [8], Nameling is a search engine and a recommender system for
given names. In this system, the user enters a given name and obtains a browsable
list of recommended names, called “namelings”.

The data set is derived from the Nameling query logs, ranging from March
6th, 2012 to February 12th, 2013. It contains 515,848 accesses from 60,922
users to 20,714 different items (i.e., given names). There are five types of ac-
cesses/activities®:

1. ENTER_SEARCH: The user enters a name directly into the Nameling’s
search field;

2. LINK_SEARCH: The user follows a link on some result page;

3. LINK_CATEGORY _SEARCH: Wherever available, names are catego-
rized according to the corresponding Wikipedia articles;

4. NAME _DETAILS: Users can get some detailed information for a name;

5. ADD_FAVORITE: Users can maintain a list of favorite names.

Additionally, for each access there are a timestamp and a proxy for the user’s
geographic location (i.e., country code, province, city, latitude and longitude)
which is obtained by using the MaxMind’s GeoLite City data base®.

As part of the data set, there is also a list of known names’ containing all
names which are currently known in the Nameling web site. As we will see in
Section 4.3, all names that occur in the evaluation data set are contained in this
list of names.

4.2 Pre-processing of the Data Set

Before running the experiments, we pre-processed the data set by replacing in-
valid names and removing singleton sessions, as described below:

 We use the terms access and activity interchangeably.
5 http://www.maxmind.com/
" http://www.kde.cs.uni-kassel.de/nameling/dumps

Replacing invalid names: In real-world data sets, it is common to find several
variations of a name, for example, spelling variations due to typographical
errors (like “Richard” and “Ricahrd”) and differences in punctuation marks
(like “O’Reilly” and “O Reilly”). Considering the existence of a reference
list with valid names, we can use string comparison measures to replace an
invalid name by the nearest valid name, thus believing that we are correcting
a name typed incorrectly. Thus, in the data pre-processing step, we use the
list of known names, described in the previous section, and apply the Jaro-
Winkler measure [22] for detection and replacement of invalid names. For
this purpose, it is necessary first to define the Jaro (j) measure between two
strings wy e wy (Equation 7):

_ 0 ifh=0
](wlan): 1 h h

h—t :
3 (‘wl‘ + m —+ T) OtheI‘VVlse7

(7)

where h is the number of matching characters and ¢ represents the number
of transpositions. The matching between two characters ¢; and co, with
c1 € wy and co € wo occurs when ¢; = ¢ and they are not further than
max(lwillwal) _ 1 The number of transpositions is obtained by considering
different orders for matching characters. The Jaro-Winkler (jw) is based on
the Jaro measure, according to Equation 8, in which I(wy,ws) represents the
length of common prefix at the start of the string up to a maximum of 4
characters.

e (N
The Jaro-Winkler measure was selected for this work because it shows better
performance in studies involving name-matching [23].

Removing singleton sessions: For different reasons, users often access only
one item on a web site and then leave it. The use of these sessions containing
a singleton access by a recommender system can affect its accuracy nega-
tively [24]. For example, singleton sessions will never count for the item-item
similarity in the Item-based Collaborative Filtering technique. Thus, we have
removed the singleton sessions from the data set.

Jw(wy, we) = j(wi,ws2) +

After pre-processing the data, we obtained a set with 510,705 accesses from
55,779 users to 20,318 different names.

4.3 Experimental Setup and Evaluation Metric

To carry out the experiments, we use a Perl script® to split the data set in
training and test sets.

The script selects some users with at least five different names for the test set.
Then, for each test user, it withholds the last two entered names for evaluation.

8 http://www.kde.cs.uni-kassel.de/nameling/dumps/process_activitylog.pl

To withhold the last two entered names, the script uses the following rules. For
each test user, the script selects for evaluation the last two names which had
directly been entered into the Nameling’s search field (i.e., ENTER_SEARCH
access) and which are also contained in the list of known names. The script only
considers those names which were not previously added as a favorite name by the
test user (i.e., ADD_FAVORITE access). Finally, the script removes the accesses
after the names for evaluation and keeps in the test set only users with at least
three accesses. The remaining users in the data set are used as training set.

To evaluate the recommender systems, we compute the metric Mean Average
Precision (MAP) [25]. For each test user, the metric takes the left out evaluation
names and compute the precision at the respective position in the ordered list
of recommended names. These precision values are first averaged per test user
and than in total to obtain the final score. Here, we use a Perl script? to com-
pute the MAP@1000 which means that only the first 1,000 positions of a list of
recommendations are considered.

With respect to the recommendation algorithms, we use the Item-based Col-
laborative Filtering and the Association Rules based, which were described in
Section 3. In the Item-based Collaborative Filtering, the top-N recommenda-
tions are generated based on their 1, 5, 10, 15 and 20 most similar items (i.e.,
the 1, 5, 10, 15 and 20 nearest neighbors). In the Association Rules based al-
gorithm, the recommendation models are built using a minimum support value
determined to generate around 10,000; 50,000 and 100,000 rules. The minimum
confidence values are defined as being the support value of the one thousandth
most frequent item in the training set. This allows the generation of at least 1,000
rules without antecedent that can be used by default, in the case that no other
rule applies. Here, as the left out names for evaluation are only names which had
been directly entered into the Nameling’s search field (i.e., ENTER_SEARCH
access), we have selected only this type of access from the training set to build
the recommendation models.

Finally, we use the month and the city from the accesses as contextual in-
formation in the Weight PoF approach, as described in Section 3.3. Such infor-
mation can capture tendencies of names in a given city, in a given month. The
month is obtained from the timestamp of the access. We obtain the city by using
the proxy for the user’s geographic location provided with the data set.

4.4 Empirical Results

We start by comparing the Item-based Collaborative Filtering technique (CF)
against its contextual version that makes use of the Weight PoF approach (CF-
PoF). In Table 2, we see that the values of MAP@1000 decrease when we in-
crease the number of neighbors. This fact occurs because when we increase the
number of neighbors, less similar items are used to generate the recommenda-
tions. Comparing the CF-PoF against the CF, we see an improvement of the

9 http://www.kde.cs.uni-kassel.de/nameling/dumps/evaluate_recommender.pl

recommendations by using the contextual information. The CF-PoF algorithm
provides gains of MAP@1000 ranging from 6.9% to 22.6%.

Table 2. Comparing the MAP@1000 values between CF and CF-PoF algorithms

K-neighbors CF CF-PoF
K=1 0.0092 0.0099
K=5 0.0038 0.0042
K =10 0.0033 0.0039
K=15 0.0031 0.0038
K =20 0.0029 0.0031

In Table 3, we can see that the difference between the Association Rules
based algorithm (AR) and its, respective, contextual version (AR-PoF) is quite
small. In this case, the AR-PoF algorithm provides gains of MAP@1000 around
2.4%.

Table 3. Comparing the MAP@1000 values between AR and AR-PoF algorithms

Number of Rules AR AR-PoF
10,000 0.0337 0.0343
50,000 0.0314 0.0321
100,000 0.0290 0.0299

We also compare the results between both Tables 2 and 3. We see that
the AR-PoF recommender system with 10,000 rules provides the best value for
MAP@1000, i.e., 0.0343. If we compare this value against the one provided by
the best recommender system in Table 2, the CF-PoF with K = 1, we see a
gain of 246.5%. Besides, our Association Rules based algorithms are quite fast.
We measured the computational time to build the recommendation model and
generate the 1,000 recommendations. In our experimental scenario, we used an
Intel Core i7 Ivy Bridge with a CPU clock rate of 3.4 GHZ, 32 GB of main
memory, and running the Debian Linux operating system. To build a recom-
mendation model, the algorithms take around 26 seconds (10,000 rules) to 2
minutes (100,000 rules). Here, the top-1000 recommendations are generated in
approximately 1 second.

5 The 15th Discovery Challenge: Recommending Given
Names

After analyzing the results presented in Section 4.4, we applied our best scenario
to the data set from the 15th Discovery Challenge: Recommending Given Names.

We pre-processed the data set, selected only names entered into the Namel-
ing’s search field, and then ran the algorithm which provided the best MAP@1000,
i.e., the AR-PoF algorithm with about 10,000 association rules. With this sce-
nario, our Labic team obtained a score of 0.0379 in the final leaderboard.

6 Final Remarks

Although the task of recommending given names is relevant in practice, little
research has been performed on the perspective of recommender systems. In
this paper, we exploited two state-of-the-art recommender systems in the task
of recommending given names. In addition, we also incorporated contextual in-
formation in such systems to capture tendencies in choosing given names and,
thus, to improve the recommendations. Although the gains obtained by using the
Weight PoF approach are small, the results of our empirical evaluation present
evidences that we can improve the recommendation of given names by using
contextual information.

There are some directions to be explored in future research. For example,
other pre-processing tasks can be applied on the data set in order to improve the
quality of the data. We can also try other context-aware recommender systems
in the task of recommending given names [26,27]. On the other hand, we can
also combine the two state-of-the-art recommenders, presented in this paper, in
a hybrid algorithm.

Acknowledgments. This work was supported by the grants 2010/20564-8,
2011/19850-9, 2012/13830-9, 2012/07295-3, Sao Paulo Research Foundation
(FAPESP).

References

1. Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM
40(3) (1997) 56-58

2. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B., eds.: Recommender Systems
Handbook. Springer (2011)

3. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing 7(1) (2003) 76-80

4. Karatzoglou, A., Baltrunas, L., Church, K., Béhmer, M.: Climbing the app wall:
enabling mobile app discovery through context-aware recommendations. In: Pro-
ceedings of the 21st ACM international conference on Information and knowledge
management. CIKM 12, New York, NY, USA, ACM (2012) 2527-2530

5. Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context-aware places of interest
recommendations for mobile users. In Marcus, A., ed.: Design, User Experience,
and Usability. Theory, Methods, Tools and Practice. Volume 6769 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2011) 531-540

6. Ko, S.K., Choi, S.M., Eom, H.S., Cha, J.W., Cho, H., Kim, L., Han, Y.S.: A smart
movie recommendation system. In Smith, M., Salvendy, G., eds.: Human Interface
and the Management of Information. Interacting with Information. Volume 6771
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2011) 558-566

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Domingues, M.A., Gouyon, F., Jorge, A.M., Leal, J.P., Vinagre, J., Lemos, L.,
Sordo, M.: Combining usage and content in an online recommendation system for
music in the long tail. International Journal of Multimedia Information Retrieval
2(1) (2013) 3-13

Mitzlaff, F., Stumme, G.: Namelings: discover given name relatedness based on
data from the social web. In: Proceedings of the 4th international conference on
Social Informatics. SocInfo’12, Berlin, Heidelberg, Springer-Verlag (2012) 531-534
Mitzlaff, F., Stumme, G.: Onomastics 2.0 - the power of social co-occurrences
(2013)

Mitzlaff, F., Stumme, G.: Relatedness of given names. Human Journal 1(4) (2012)
205217

Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30(1-7) (1998) 107-117

Mitzlaff, F., Stumme, G.: Recommending given names (2013)

Su, X., Khoshgoftaar, T.: A survey of collaborative filtering techniques. Advances
in Artificial Intelligence (2009)

Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: WWW?’01: Proceedings of the Tenth International
Conference on World Wide Web, New York, NY, USA, ACM (2001) 285-295

Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: Eighth IEEE International Conference on Data Mining (ICDM’08).
(2008) 263-272

Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algo-
rithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence. (1998) 43-52

Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM
Transaction on Information System 22(1) (2004) 143-177

Jorge, A.M., Alves, M.A., Azevedo, P.J.: Recommendation with association rules:
A web mining application. In: Proceedings of Information Society (IS-2002): Data
Mining and Warehouses, Ljubljana, Slovenia (2002)

Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Pro-
ceedings of Twentieth International Conference on Very Large Data Bases. (1994)
487-499

Dey, A.K.: Understanding and using context. Personal Ubiquitous Computing
5(1) (2001) 4-7

Panniello, U., Gorgoglione, M.: Incorporating context into recommender systems:
an empirical comparison of context-based approaches. Electronic Commerce Re-
search 12(1) (2012) 1-30

Winkler, W.E.: Methods for evaluating and creating data quality. Information
Systems 29(7) (2004) 531-550

Christen, P.: A comparison of personal name matching: Techniques and practical
issues. In: Proceedings of the Sixth IEEE International Conference on Data Mining
- Workshops, Washington, DC, USA, IEEE Computer Society (2006) 290-294
Domingues, M.A., Soares, C., Jorge, A.M.: An empyrical study on the impact of
singleton web accesses on the accuracy of recommender systems. In: Proceedings of
the SBIA 2008 First Workshop on Web and Text Intelligence (WTI 08), Salvador,
Bahia, Brazil (2008) 43-50

Voorhees, E., Harman, D., of Standards, N.I., (US), T.: TREC: Experiment and
evaluation in information retrieval. Volume 63. MIT Press Cambridge (2005)

26. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating con-
textual information in recommender systems using a multidimensional approach.
ACM Transactions on Information Systems 23(1) (2005) 103-145

27. Domingues, M.A., Jorge, A.M., Soares, C.: Dimensions as virtual items: Improving
the predictive ability of top-n recommender systems. Information Processing &
Management 49(3) (2013) 698-720

