Factor Models for Recommending Given Names

Immanuel Bayer and Steffen Rendle

University of Konstanz, 78457 Konstanz, Germany,
{immanuel.bayer, steffen.rendle}@uni-konstanz.de

Abstract. We describe in this paper our contribution to the ECML
PKDD Discovery Challenge 2013 (Offline Track). This years task was to
predict the next given names a user of a name search engine interacts
with. We model the user preferences with a sequential factor model that
we optimize with respect to the Bayesian Personalized Ranking (BPR)
Optimization Criterion. Therefore we complement the sequential factor
model with prefix smoothing in order to explicitly model syntactical
similarity.

Keywords: factor model, given names, recommender system

1 Introduction

We describe in this paper our contribution to the ECML PKDD Discovery Chal-
lenge 2013 (Offline Track). This years task task was to recommend given names
to user of the name search engine ”Nameling” [1] based on their historical search
and clicking behavior. We interpret the problem as a classical recommender prob-
lem and use a purely statistical approach based on the user history. No meta
data such as word similarity lists or geographic information for the users are
used.

We use a factorized personalized Markov Chain (FPMC) [4] model in order to
capture the user specific name preferences. The Bayesian Personalized Ranking
(BPR) Optimization Criterion [3] is used to learn the latent variables of this
model. We complement this factor model with syntactical similarity information
by applying prefix smoothing to the name ranking.

2 Terminology and Formalization

Let U = {uq,uq,...} be the set of all users and N = {ny, no,...} the set of all
names. We further use 7' = N to identify user action over time.
The scoring function

g:UxTxN—=R (1)

returns the estimated preference of a user U at time T' for a name N. To ob-
tain the user specific ranking for every user u € U, each name is scored — i.e.
9(u,t,n1), §(u,t,na), ete. is computed — and the names are sorted by their score.
We further define D C U x T' x N as the training set of available names which
have been observed in the logs.

3 Sequential Factor Model

In order to extract training samples from the user activities, we first defined
four indicator functions. These are then used to encode the training samples as
sparse real valued features that can be used in a factorization machine. Finally,
we give a formal definition of our prefix smoothing approach.

3.1 Indicators

Our model assumes that the name preference of a user u at time ¢ can be
explained by:

The ID of the user: u.

The ID of the name: n.

The last name selected by the user: [: U x T — N.

The history of all names selected by the user up to time ¢:
h:U xT — P(N).

Ll e

Besides these four indicators, the model should also take into account all inter-
actions between indicators. E.g. the interaction between name n and last name
{(u, t) would model the effect for choosing name n if the name [(u,t) has been
selected before. In total, the first three indicators correspond to a personalized
Markov chain [4]. The forth indicator can be seen as a Markov chain with long
memory where all the history is aggregated into a single set.

3.2 Factorization Machine

The number of pairwise interactions between variables is high and cannot be
estimated reliably with standard parametrization. Thus, we use a factorized
parametrization [4] which allows to estimate parameters even in highly sparse
data.

The ideas described so far can be realized with a factorization machine [2].
For this purpose, the four indicator variables are translated into a sparse real
valued feature vector x € R? with p = |U| + |N| + |N| + |N| many predictor
variables. The standard encoding described e.g. in [2] is used.

For example, for a case (u,t,n) let the values of the four indicators be:

1. user ID: 0,

2. name to rank: Anna,

3. last name selected by user: Jana,

4. history of all names selected by the user up to time ¢: { Petra, Annabelle, Maria}.

This can be encoded as a real valued feature vector of the form

x(u,t,n) = (1,...,0,0,1,0,...,0,...,1,0,...,0,0.33,...,0.33,...,0.33,...0).
—_— —

Ul [V [V [V

(2)

The factorization machine (FM) model [2] of order d = 2 can be applied to
the generated feature vector x and reads

P P P k
J™M(x(u,tn)) = wo + Y wimi+ > Y @y y v vy (3)
j=1 f=1

j=1j/=j+1

Here, wy € R,w € RP,V € RP** are the model parameters, & € N is the size/
dimensionality of the latent space. Thus, the model has one feature vector v; for
each variable x;.

Empirically inspecting the generated recommendations with this model shows
(see Table 2) that the semantic meaning of names is found: e.g. if a user searches
mainly for female names, female names are recommended; if the user selects typ-
ically short names, short ones are recommended, etc. The reason for the success
is that the model automatically finds latent features v,, € R¥ for each name
n which describe its characteristics. Such characteristics could be gender, name
length, etc.

3.3 Prefix Smoothing

In general, the proposed model can express any kind of pairwise relation be-
tween names'. However, under small data sizes, the model might have problems
to find relations between infrequent names. To make an example, the model can
express and will automatically learn that Anna and Anne are syntactically sim-
ilar or that Farid and Behrouz are semantically similar (both Persian masculine
names) if the data logs are large enough. However, the size of the observed logs
is limited and the model cannot learn all these relations reliably — especially not
for infrequent names.

To overcome the problem, we inject some syntactical relations manually
into the model. We create indicators stating that two names (name n and
last name [(u,t)) share a prefix of length m — we consider prefix lengths of
m € {1,2,3,4,5,6}. We add these indicators about syntactical similarity to the
FM model mentioned above:

(u,t,n) = 7™M (x(u, t,n))

+ Z Zm O(prefix(n, m) = prefix(I(u,t),m)), (4)
me{1,2,3,4,5,6}

where ¢ is the indicator function — i.e. §(b) = 1 if b is true — and prefix(s, m)
returns the prefix of string s of length m.

The final model is slightly more complex and considers also syntactical sim-
ilarity with the next-to-last name:

+ Z Zm.v O(prefix(n, m) = prefix(l(u,t'),m)). (5)
t'e{t,t—1} me{1,2,3,4,5,6}

! Note that semantic or syntactical similarities are also just pairwise relations.

Please note that the idea of prefix smoothing —i.e. the indicator é (prefix(n, m) =
prefix({(u, t), m)) — can be used directly in the FM by enlarging the feature vector
x. Using this representation, the parameters z,, are part of the w parameters
of the original FM. Extending the prefix smoothing to longer prefixes as well as
taking into account names earlier then ¢ — 1 could further improve the model.

4 Learning

We have a lot of positive samples if we assume that the user likes names he
interacts with but we know little about other names. Encoding all names the user
didn’t interact with as negative samples can introduce wrong user preferences
since we can not distinguish between a name the user knowingly ignored and a
name the user has never seen. We avoid this problem by using a pairwise loss
function.

4.1 Optimization Criterion

The model parameters of the FM are learned by discriminating between previ-
ously selected and unselected names. This optimization criterion has been pro-
posed for item recommendation as BPR (Bayesian Personalized Ranking) [3]
and has been used in several other recommendation tasks including sequential
recommendation [4]. For the task of name recommendation it reads:

BPR-OPT := Z Z lna(g(uatvn) - Q(uatvnQ)) -)‘9H9||2 (6)

(u,t,n)ED na€(N\{n})

where ¢ is the FM (using the predictor variables encoded in the real valued
vector x) and O is a vector containing the model parameters V, w, wy.

4.2 Algorithm

The standard BPR algorithm [3] is a stochastic gradient descent (SGD) algo-
rithm. The algorithm samples first a positive observation (u,t,n) € D and then
a negative name no uniformly from N\ {n}. A gradient step is done on this pair-
wise comparison. In our implementation, instead of using a uniform distribution
for negative names, the names are sampled approximately proportional to their
expected rank.

Even though FM parameters and prefix smoothing could be learned jointly
with BPR, for simplicity? we learned only the FM parameters with BPR and
selected the prefix smoothing parameters (only 12 parameters) manually.

2 The reason for separating both parts were only of practical matter because we reused
an existing implementation.

4.3 Ensembling Factor Models

The BPR algorithm is a point estimator and returns one ranking. We consider
uncertainty in the ranking by running the learning algorithm three times, each
time with a different sampling hyperparameter. While training each model, we
select? in total 20 iterations for which we predict the ranking each — i.e. we have
20 (slightly) different scores §(u,t,n) for each triple (u,t,n). The final scoring
function is an unweighted average of the 20 scoring functions.

5 Experimental Results

In this section, we first present our scores from the official leaderboard and then
discuss the latent features learned by our model on randomly selected samples.

5.1 Evaluation on Holdout Set

We separate the training data into a new validation and training set using the
splitting script provided. This gives us a training set with 60.922 user and a
test set with 13.008 user. We use the first 3.000 user from the new test set to
calibrate our models.

5.2 Results

Table 1 shows the results we achieved on the official leaderboard. The table con-
tains also the scores that we obtained on our validation set. The score difference
between validation and challenge data might be partially explained by the differ-
ent ensemble size that we used in the two evaluations. We ensemble 20 rankings
for the last submitted model (as described in section 4.3) but an ensemble of
100 rankings for our validation set evaluation. After some last minute changes
we had only time to select 20 rankings for the final submission.

Table 1. Results as reported on the challenge leaderboard and the official evaluation
script (modified MAP@1000).

Model validation challenge
most-popular-item 0.0294 0.0259
FM-ens (with prefix smoothing) 0.0550 0.0472

3 The selected iterations were chosen close to the best iterations on the holdout set,
i.e. slightly before and after the best iteration.

20311~ I

33815~ mmm

1 o 1 [Y B B (R I
A0 O © 0 O I~ o
PR e R ® N © O — N K~ ™ 0
285835 - — N B O® » X O)
28388 + © ~ O — o O — ®
- - - - - & N SRR ™
userld

Fig. 1. Each bar pair represents the percentage of female names in the user history
h(u,t) (left) and the top 14 recommended names (right). The users evaluated here are
the same as listed in Table 2. Similar height of both bars (left and right) for one user
indicates that the user-preferred ratio of female to male names is closely reflected in
the recommendations.

5.3 Ranking Analysis

In this section, we demonstrate on samples that our model is able to represent
name similarities and user preferences through its latent variables. We illustrate
this on name characteristics such as gender or length because the effects of those
items are easy to recognize. More subtle effects might also be captured by our

model but an casual inspection on a small sample might not suffice to identify
them.

We select a subset of users from the challenge test set that have at least 30
and at most 50 activities (This is done to avoid users without history and to
save space by avoiding user with a very large history). From this set, we ran-
domly select 18 users and list them in table 2. The first line h(u, t) for each user
lists all names in his user history. Duplicates and names that are not used in
the competition (not listed in namelist.txt) have been removed. The second line
lists the top 14 recommendations generated by our FM model?.

4 The number of listed recommendations and the number of randomly selected users
are adjusted to the available space.

ueyjeuol ‘xiey “emed ‘“ejo1d ‘sniml ‘eynl ‘[rey ‘uueyol ‘ooyy ‘zyrow ‘ewrwo ‘qoyel ‘(ned ‘uojue| rdol
JPLI8pad] ‘)Ia([e ‘[IuIe ‘IesO ‘OIm3uA ‘eriwe ‘euryjeq ‘euue ‘esmi|(2‘n)y| 800

eIl “epriy ‘osse[‘9110[IeYD ‘©110[‘epolyj ‘[TWe ‘e[[o ‘euur ‘“erw ‘eul] ‘e)jo] ‘ewrwo ‘e101d| 1doy
ua[rew ‘epul] ‘oun(‘ofou ‘e[Iewr ‘eyey ‘erew ‘erue[ow ‘o[rey ‘epl|(1‘n)y| LEG1E

xew ‘erw ‘ernl ‘uensuyo ‘uowrs ‘Iepuexole ‘Z}LIouW ‘UrIjseqes ‘sewioy) ‘[eruep ‘euur ‘uod] ‘(med ‘ewrws| y1doj
esIn| ‘“er[ruo ‘XI[ej ‘seryyyew “elew ‘urwsel|(7‘n)y| g6T1

ey ‘uel ‘werrurxew ‘woj ‘sexny ‘ool ‘uernl ‘xew ‘seuol ‘qeou ‘uuy ‘“eony ‘ueq ‘smy| yrdol
1qo3} ‘preuos] ‘uosl ‘med ‘ouru ‘our] ‘sie ‘wiy|(2‘n)y| 1£99

URI[IWIXRUW ‘SNYIRW ‘UILIRW ‘@O ‘UUR ‘UeIIsegas ‘I9jod ‘pIaep ‘URIISLIYD ‘SedIpueR ‘[oRUDIW ‘[orluep ‘sewoy) ‘Iopuexoe| j1do)
SO[ded ‘JUedUIA “RULIl ‘el ‘“exarua|(7 ‘n)y| GLT9T

Ser[o ‘UrAey ‘seuol ‘uoo[‘sealpue ‘eUUR ‘[ORYIIW ‘URIISLIYD ‘BWWO ‘URIISLOS ‘PIARD ‘Sewloy) ‘Iopuexoe ‘[oruep| 1dol
snauryd ‘uosel ‘uoser ‘sotypresu ‘osu ‘[eryer ‘[of ‘uowr) ‘spruued ‘[eeryder|(7n)y| GTEE

uojue ‘euuerol ‘eurreyyey ‘seuol ‘(oruep ‘praep ‘qoyel ‘Iopuexoe ‘@0I8 ‘[rwe ‘ermnl ‘ned ‘euue ‘ewrwo| F1do)
prey1a3d ‘souue(‘preuus] ‘zuelo] “‘epul] ‘sirews ‘elue ‘Iotjse ‘euue ‘seuol|(12‘n)y| L9€9

eipues ‘orydos ‘euue ‘ernl ‘es] ‘oruoo[‘Yeres ‘erewl ‘Y[“eine[‘erwr ‘eon| ‘ewrwo ‘efiu| 1dol
uol ‘oued ‘UaqNI ‘OUNS ‘[WISRU ‘90Z “AOU ‘THAA ‘UNIPILY ‘pIeSym] “eou|(7‘n)Yy| G6687

souueyol ‘seuol ‘1o10d ‘xI1[0J ‘ZjLI0W ‘[PRTPIW ‘eIl ‘sewioy) ‘sealpue ‘Iopuexoe ‘qoyel qrue ‘euue ‘ewrwd| F1dol
[oqest ‘sery)yewr ‘uojue ‘[ned ‘suewa[d|(2‘n)y| YOV

reou ‘13 ‘uojue ‘seuol ‘xew ‘o0 ‘09 ‘Ined ‘uuy ‘1a9] ‘Ueq ‘[Tue ‘LIusy ‘smoj| FTdog
redsed ‘syewr ‘speur ‘smy ‘ouusq ‘outs ‘opoq ‘T[aly ‘essey|(2‘n)y| 0LV6g

esi] ‘erdos ‘eony ‘yeres ‘es] ‘praep ‘eus] ‘uool ‘erwr ‘euur ‘ernl ‘einey ‘eorydos ‘ewrws| F1dog
UeI[IY ‘Uo(‘UIAR] “BIR ‘STUIS] ‘SLIpUR ‘Se[YIU ‘se[ooru ‘urwsel ‘eipnepd ‘et |(7‘n)y| 11617

[ned ‘ejo13 ‘[oruep ‘OLIRW ‘SNYIRW ‘SeoIpUR ‘IopURXO[R ‘eIl ‘URJO)S ‘URIISLIYD ‘SRWOY) ‘[oeyoll ‘euur ‘ewrwd| ;1dol
[ned ‘1sa1 ‘uoypned ‘sowrel ‘ISIARX ‘UI[OPOLY ‘YDLIPALI] ‘IJo ‘eAd ‘ruue ‘Aey “eusIo|(7‘n)Yy| G6ET

ernl ‘zyuow ‘uaq ‘qoyel ‘emed ‘uojue ‘Iexso ‘euue ‘epoLy ‘ooy) ‘ewrwo ‘ned ‘ejoid ‘qrue| Fydoy
eIewW ‘OI[IUId ‘OTUO09] ‘09] ‘eIOU ‘810l “BUIUId ‘9})jO[IeTd ‘eres ‘eud] ‘@330l “epl|(1‘n)y| 08T LI

Joqest[o ‘qoxel ‘urIruiIxew ‘Yeuuey ‘OLIRW ‘[oRUDIW ‘eud] ‘urIijseqos ‘euuryol ‘“eurreyjey ‘ernl ‘ropuexole ‘euue ‘ewrws| 1doj
Xore ‘seyn| ‘yeres ‘[rey ‘ownl ‘1ojad ‘mned ‘ddiyd ‘ydogstyod ‘oger ‘ewpe|(2‘n)y| 7G8K]E

epoLy ‘errewt ‘“epl ‘epiyrewt ‘euueryol ‘ned ‘orrewr ‘eus[‘ermnl ‘esmy ‘euur ‘@013 ‘ourmed ‘ewrws| 1do)
a1IeUI ‘RIAI[O ‘DUIOIRD ‘eSO ‘WRLITW ‘osmn| ‘@jjorrerd ‘erned ‘utrey ‘qoxel|(1‘n)y| 11£5T

snury ‘rypewr ‘(ned ‘Uoq ‘UUy ‘eI ‘SIe[‘W) ‘S[IU ‘syew ‘90 ‘oure ‘uel ‘ojewr| Fdol
sngsnl ‘uojue ‘ojewr ‘sepyru ‘ossey ‘seiqol|(72‘n)y| L196

uraey ‘“ernl ‘uel ‘ned ‘uerjseqes ‘eeYDIW ‘SeoIpue ‘URIISLIYD ‘PIARD ‘RUUR ‘SRWOL) ‘Iopuexole ‘[oruep ‘ewrws| 1dol
uerjseq ‘YLIUoy ‘Lo ‘ueiqej ‘wernl ‘eIruisels] ‘Ieyms ‘praep ‘Ulqol ‘uoo] ‘stioq ‘wewol|(‘n)y| 89T

RUI[‘9)J0[IRYD ‘URISLIYD ‘IopueXole ‘“eAd ‘orydos ‘sewioy) ‘olrew ‘“eurreyjey ‘[oeyoru ‘“euuryol ‘ernl ‘euue ‘ewrws| 1do)
eIuI ‘TP ‘OUT[eD ‘POUIURIOUI ¢ ‘INT}Ie ‘RLIRWI ‘UIAdY ‘OpIoy ‘uLres ‘ofjue ‘y181iq ‘efue}|(2‘n)y| 210€
sowreu 19s|plIosn

‘proq ut patid st 1osn
o1} Aq PJISTOS SUIRT)S¥] ST T,) I} d[CR[TRAR }SR] oY) 01 dn AIOJSTY I9ST ST[) UT SOUTRU [oI€ (1 ‘N)Yy "oUO papuswmiodal doj o) ST sureu
1SOWIJ YY) SISYM ‘SOUIRU POPUSWWOIAI JO JSI[9Y} Smoys FTdOT, "SIOSN JO UOTPDS[6S WOPURI & I0J ‘Sowreu papuswiwiodal T doJ, *g o[qelL,

5.4 Discussion of Learned Effects

Even though the predictive strength is best jugged by the leaderboard score,
we want to give an impression of the kind of relationships that our model has
learned from the training data. Please note that the rankings presented here
are without prefix smoothing. This means that the model had no information
on how long or which characters a certain name contains since names are only
represented by unique identifiers.

Our model learns to distinguish between female and male names and recog-
nizes if a user prefers male or female names. For users that have very strong
preferences, such as user 6631, 9617, 29470, 3017, 28995, the recommendations
that are accordingly balanced (see Table 2 and Figure 1). For users with very
few user activities this becomes less reliable as can be seen on users; 16175 and
14192.

The model also learned if a name is long (user 3017, 38852, 16175) or very
short (user 9617, 29470). It also recognizes if a user prefers infrequent names
User 28995 for example has kjell and enno in his history and gets names like levi
and finn recommended. Double consonant names are surprisingly frequent in
the recommendations for user 31937, while names with similar prefixes have
similar ranks for user 16175 (martin, markus, mazximilian) or user 20508 (julia,
Julius) and also lotte and charlotte are ranked next to each other for user 31937.
A more detailed analysis of the learned ranking could reveal more information
on how people judge the similarities of given names.

6 Conclusion

In this paper, we have shown that a Factorization Machine [2] is well suited
for the task of recommending given names. When the model parameters are
optimized with respect to the personalized ranking criterion BPR-Opt [3], the
latent variables are able to express name preferences such as name length and
gender. Is important to note that this information is not part of the model input.
Being able to learn this characteristic is useful if this information is not readily
available.

The data used in this competition were strongly dominated by German speak-
ing users (according to the user location obtained from the ip addresses) but our
approach is supposed to work equally well with data that contain names from dif-
ferent alphabets or a user base that contains strong regional preferences without
any modification.

We like to point out the close relation of given name recommendation to tasks
such as movie recommendation where factor models have been very successful.
The latent variables in this competition represent here syntactic and semantic
similarity instead of movie related characteristics like genres or common actor.
We have further shown that for infrequent names and small data sets the injec-
tion of regularizing information such as syntactical similarity does improve the
prediction quality. We however expect that the benefit of information injection
diminishes with the size of available data.

7 ACKNOWLEDGMENTS

We gratefully acknowledge funding by Baden- Wiirttemberg Stiftung.

References

1. Mitzlaff, F., Stumme, G.: Namelings - discover given name relatedness based on
data from the social web. In Aberer, K., Flache, A., Jager, W., Liu, L., Tang,
J., Guret, C., eds.: SocInfo. Volume 7710 of Lecture Notes in Computer Science.,
Springer (2012) 531-534

2. Rendle, S.: Factorization machines with libFM. ACM Trans. Intell. Syst. Technol.
3(3) (May 2012) 57:1-57:22

3. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence (UAI 2009). (2009)

4. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized markov
chains for next-basket recommendation. In: WWW ’10: Proceedings of the 19th
international conference on World wide web, New York, NY, USA, ACM (2010)
811-820

