
Neural Networks Learning: Some Preliminary
Results on Heuristic Methods and Applications

D. Nicolay and T. Carletti

Department of Mathematics and naXys, University of Namur, Belgium
delphine.nicolay@unamur.be

Abstract. The aim of this paper is to present some preliminary results
about the emergence of modular structures resulting from an evolutionary-
like mechanism in the framework of artificial evolution. Besides this, we
also focus and discuss the mathematical tools we exploit, namely artifi-
cial neural networks and genetic algorithms.

1 Introduction

A large number of biological networks exhibit modular structures resulting from
a Darwinian evolution on a varying environment. Our research question is to
study the emergence of such structures in the field of artificial evolution, that
is we consider (virtual) robots controlled by artificial neural networks trained,
for instance using genetic algorithms, to achieve abstract competing tasks, more
precisely we focus on the following research question (see also Fig.1):

Assume to have two neural networks, say N1 and N2, each one proved
to be the best one to achieve a given task, say T1 and T2, in the absence
of the other. The network, N , obtained by juxtaposition of N1 and N2,
plus few nodes to control the joint outputs of N1 and N2, can perform
the two tasks, but is its performance as good as the one of N1 and N2

separately? Can we find a better network N ′ where parts of N1 and N2

do merge together? Starting from a generic neural networks where links
and thresholds are randomly generated, does the learning phase shape
the network in such a way we can recover N1 and N2?

The rationale of this question is that under the pressure of the changing environ-
ment, here the necessity to perform tasks T1 and T2, the learning procedure will
eventually promote networks having modules able to perform (less efficiently)
both tasks instead of being well specialised in a single task.

The above question can be restated in our framework in the following way:
two robots are trained to achieve each one a given task among reaching a global
maximum (T1) and moving around by avoiding “dangerous”zones (T2). For each
robot, we keep the neural network responsible for the best observed behaviour,
that is whose fitness is the highest; then, we investigate if the juxtaposition of
these two networks leads to the best behaviour when controlling a new robot



dealing with both tasks. To get our goal, we study the connections, i.e. synapses
linking pieces of network responsible to solve the imposed tasks, to conclude
if they are achieved independently or collectively. We also compare structures
got by modular and global learning, i.e. by learning tasks sequentially or syn-
chronously.

Fig. 1. Illustration of our research question.

This research is a part of a larger project whose aim is to study the emergence
of structures because of a learning process, in order to unravel the mechanisms
responsible for the learning process. In this paper, we discuss the mathematical
tools we exploit and we present some preliminary results of this research.

We focus our preliminary analysis on the optimisation of our GA and on the
improvement of the best networks, i.e. the ones that are responsible for the best
observed behaviours. We implemented two versions of GA, namely a weighted
GA and a GA based on Pareto-optimality. The comparison of these GA leads
us to the conclusion that they both reach equivalent results. Moreover, we also
notice that the performance of the GA based on Pareto-optimality depends on
the method employed for the fitness allocation. Concerning our best networks,
we remark that the optimisation process doesn’t take into account the density
of the networks. We thus add a penalty on the number of links to deal with
it. Further to following experiments, we remark that this third objective slows
down the optimisation and we consider other solutions to reduce the number of
links. We envisage to make use of random methods but they lead to strongly
random results. We finally introduce the future analysis we envisage to study
the structures of our networks.

2 Artificial Neural Networks

In our study, we consider robots controlled by artificial neural networks, for
short ANN, which are calculations methods inspired by biological neural net-
works [7, 8]. Such ANN are made of inputs, outputs and hidden neurons linked
together by synaptic connections. They receive information from input nodes
and give answers through output nodes according to their connections and their
weights. In Fig. 2 we report the model of neural networks that we exploit in the
following.

In our model, the topology of the network is completely unconstrained, except
for the self–loops that are prohibited. Each neuron can have two internal states:



activated (equal to 1) or inhibited (equal to 0). The weight of each link is 1, if the
link is excitatory, or −1 if it is of inhibitory nature. Given the present state for
each neuron, (xti), the updated state of each neuron is given by the perceptron
rule:

∀j ∈ {1, . . . , N} : xt+1
j =

1 if
kin
j∑

i=1

wt
j ix

t
i ≥ θkinj

0 otherwise

where kinj is the number of incoming links in the j–th neuron under scrutiny, θ
the threshold of the neuron, a parameter lying in the interval [−1, 1], and wt

j i is
the weight, at time t, of the synapse linking i to j.

Fig. 2. Schematic presentation of the artificial neural networks model used in our
research.

3 Research Study

We decided to follow the ideas presented by Beaumont [1] and thus to work
on an abstract application where virtual robots, controlled by neural networks,
are trained to learn two different tasks in a virtual arena. This arena (see Fig.
3) is a discretised grid of varying sizes, hereby for a sake of simplicity we fixed
it to 20 × 20, with a torus topology, i.e. periodic boundary conditions on both
directions, on which robots are allowed to move into any neighbouring square
at each displacement, that is the 8–cells Moore neighbourhood. Assuming the
arena is not flat and it possesses one global maximum, the first task we proposed
involves reaching this global maximum, represented using a colour code in Fig.
3; the second task consists in moving as long as possible in the arena by avoid-
ing “dangerous”zones, represented by black boxes in Fig. 3, i.e. zones where the
robots loose energy.



The robots that we consider are built using 17 sensors and 4 motors. The 9
first sensors help robots to check the local height, given by the value of a nor-
mal bivariate function, of the square on which the robot is with respect to the
squares around it. The 8 other ones are used to detect the presence of “dan-
gerous”zones around it. The 4 motors control the basic movements of robots,
i.e. north–south-east and west, and combining them, they also allow diagonal
movements. Hence, the neural networks that control the robots are made of 43
nodes: 17 inputs, 4 outputs and 22 hidden neurons. This number has been set
large enough to let sufficient possibilities of connections and to compare global
and modular learning.

Fig. 3. Arenas where robots are trained. Left panel: arena for task T1, the peak level
is represented as a color code: red high level, blue lower leves. Right panel arena for
task T2, black boxes denote the “dangerous zones”to be avoided as much as possible.

As we described during the presentation of our neural networks model, the state
of each neuron is binary. So, we transform the information acquired by the
sensors in binary inputs to introduce them in the networks. Consequently, the
state xi of the nine first inputs is calculated according to the following formula:

xi =
⌊1.9(hi − hmin

i )

hmax
i − hmin

i

⌋
where hi is the height of sensor i and hmin

i and hmax
i respectively represent the

minimal and maximal heights among the 9 available ones for the robot. For the
last eight inputs, their state is 1 if their associated sensor detects a dangerous
square and 0 otherwise.

We achieve the reverse walk to transform the outputs in motors’ movements.
With this aim, we devote two motors to the west-east movements and the two
others to the north-south movements. Then, the robot movements follow the
rule detailed in Table 1.

Table 1. Movement achieved by the robot according to the network’s outputs.

Output 1 Output 2 Movement

0 0 −1
0 1 0
1 0 0
1 1 +1



For each task, the quality of robot’s behaviour is quantified in order to determine
the network that performs the best control. In the estimation of the first task, i.e.
reaching the global maximum of the arena, the robot carries out 20 steps for each
of the 10 initial positions of the training set. For each of these displacements, we
save the mean height of the last five steps. Then, we calculate a fitness value,
fit, which is the mean height on all the displacements. The quality of the robot’s
behaviour is finally given by:

quality1 =
f it− hmin

hmax − hmin

where hmin = 3.93 and hmax = 9.98 are respectively the minimal and maximal
heights of the grid. A robot, and so a network, has a quality of 1 if, for each
initial position, it reaches the peak at least at the sixteenth step end stays on
this peak until the end of the displacement.

For the assessment of the second task, namely avoiding “dangerous”zones, the
robot is assigned 1 an initial energy equal to 100 for the 5 initial positions in
each of the 3 configurations of the training set. For this fifteen cases, it performs
100 steps in the arena. If it moves to a dangerous square, its energy is decreased
by 5. Moreover, if it moves to a square that it has already visited, its energy is
reduced by 1. This condition is necessary to force the robot to move instead of
remaining on a safe cell. We save the final fitness of each case and we compute
the mean final energy. If the energy becomes negative, we set its value to zero.
The quality of the robot’s behaviour is then calculated as:

quality2 =
final energy

maximum energy

A robot has a quality of 1 if, for each initial position of each configuration, it
moves continuously on the grid without visiting dangerous squares and squares
already visited.

When both tasks are performed simultaneously, we have to slightly adjust our
training and our quality measures. The training set is composed of the three
configurations of the second task and their five respective initial positions. The
robot is assigned an energy equal to 20 instead of 100 and it performs 20 steps
in the arena. The rule for the loss of energy remains the same as well as the way
of calculating the mean height on all the displacements. Nevertheless, when the
final energy of one displacement is zero, we assigned a value of zero to its mean
height on the last five steps. If the value fit is lower than hmin, we set the quality
measure to zero. This alteration in the quality of the fitness is introduced to
prevent robots from having a very good behaviour for one task and a very bad
behaviour for the other one. Let us note that these two tasks are competing each
other. Indeed, in the first task, we hope that robot stops on the peak and in the

1 Let us observe that such parameters have been set to the present values after a
carefully analysis of some generic simulations and by a test and error procedure.



second one, we ask it to move continuously. So, we look for a trade-off between
the two tasks in the robot’s behaviour. Let us also remark that the second task
is more difficult to achieve than the first one.

Now that we know how to measure the quality of the robot’s behaviour, we
want to find neural networks responsible for good quality performance. We look
for the suitable topology and the appropriate weights and thresholds to achieve
particular tasks. For this stage, we decide to make use of a heuristic optimisation
method, namely genetic algorithms.

4 Optimisation: Genetic Algorithms

Genetic algorithms (GA) are heuristic optimisation methods that draw their in-
spiration from the biological evolution of species [6] and that have been used
abundantly in the literature. We decided to use genetic algorithms as optimi-
sation method for two reasons. Firstly, the perceptron rule is a discontinuous
threshold function and we can not apply the well-known backpropagation algo-
rithm directly. Secondly, we can use genetic algorithms not only for optimising
heuristically the weights and thresholds but also for finding a network’s topology
got used to the achievement of the trained task.

We implemented two versions of multi-objective genetic algorithms [4]. The first
one is a weighted GA, i.e. where the fitness is a combination of quality measures
got for each task achievement. The second one is based on the Pareto-optimality
theory [3]. Individuals are sorted according to their rank of non-dominance and
receive a fitness depending on this rank. Figure 4 presents the diagram of this
second GA 2.

Fig. 4. Diagram with the general functioning of multi-objective GA based on Pareto-
optimality.

2 The first one is a standard GA and, thus, its diagram is not presented in this paper.



For these two GA, each individual is represented by the adjacency matrix asso-
ciated to the neural network. As we prohibit self-loops, the thresholds are saved
on the diagonal of this matrix. The selection process is a roulette wheel selection.
We choose a one point crossover got used to our individuals, i.e. we randomly
select a column of the matrix and we switch the following columns between the
parents to obtain the children. The mutation process is a 1-inversion. To prevent
the population from converging too fast to one single individual, we introduce
new individuals at each generation.

A preliminary analysis leads us to get optimal parameters for our genetic al-
gorithms. The GA is run during 10000 generations. Indeed, Fig. 5 shows that
the most relevant part of the optimisation procedure happens before this limit.
The crossover and mutation rate are fixed to a value of 0.9 and 0.01 respectively.
Let us note that genetic algorithms are the tools we chose to train our networks
but other heuristic methods could be considered.

Fig. 5. Evolution of the maximum fitness according to the number of generations.

With the weighted GA, we run different simulations in order to analyse the
characteristics of our final networks. Firstly, we train robots to manage only
one task. Secondly, robots are trained to achieve both tasks together. Finally,
we take the neural networks got after the training on one task and we add a
training on both tasks. We hope to find differences between robots that learn
both tasks together and robots that learn one task before the other. The first
analysis of our networks leads to the conclusion that they are thick and that a
large number of “useless”links, i.e. links that can be removed without changing
the networks fitness, remains after the optimisation process.

We then switch to the GA based on Pareto optimality. In this case, both tasks
are trained together and the GA provides a set of solutions instead of one unique
solution (see Fig. 6). With this GA, we can easily add a third quality measure,
i.e. a third objective function, in order to control the number of links in the
networks. This third function is calculated as

quality3 = 1− number of links

maximum number of allowed links



The advantage of this GA, unlike the weighted one, is that it doesn’t require
any assignment of a combination of weights for the fitness.

Fig. 6. Pareto-optimality fronts. Each symbol (color on line) represents the front ob-
tained in different simulations.

5 Results and Perspectives

The comparison of the two genetic algorithms leads to the observation that, for
the same number of generations, we got better fitness for weighted GA than for
the one based on Pareto-optimality. The picture on the left in Fig. 7 represents
the ten best networks got for ten simulations of the weighted GA and the Pareto
fronts of ten simulations of the other GA. Our conjecture is that this is due to
the way we defined the fitness according to the rank of non-dominance.

Fig. 7. Comparison between quality measures of the best networks optimised by our
two GA. On the left panel, the allocation method to assign fitness in GA based on
Pareto-optimality is the one developped by Deb [3]. On the right panel, the fitness is
set to 1 for individuals of rank 1 and then it decreases by 20% for each subsequent
rank.

To check this hypothesis, we test another way of defining fitness of individuals
according to the rank of non-dominance. Instead of using the measure following
by Deb [3], we assign a fitness of 1 to individuals of rank 1 and we decrease
the assigned fitness by 20% for each subsequent rank. Results got with this new
allocation method are presented in Fig. 7 on the right. We remark that this
allocation seems to give better behaviours than the previous one. Indeed, with
this allocation, we acquire networks that have approximately the same quality



measures than the ones got with the weighted GA. Moreover, the Pareto fronts
appear more hung out, which means that we explore more possibilities during the
optimisation. Nevertheless, if we consider a third objective, we observe in Fig. 8
that Deb’s allocation seems to be more appropriate. Our hypothesis is that, as
the dimension of the objectives space increase, there are more possibilities to be
a non-dominated individual and, as almost all individuals have a fitness equal
to one, the considered solutions are sparse in the space of possibilities. On the
contrary, the Deb’s allocation method takes into account the distance between
solutions and favours solutions that are isolated.

As we have already introduced, although neural networks so far obtained lead to
the expected robots behaviours, they exhibit many “useless”links. So, we con-
sider different methods to decrease the number of links. Firstly we try to decrease
the number of links by adding a third objective, namely a penalty on the number
of links, in our genetic algorithms.But, concerning the weighted GA, the choice
of the combination of weights to introduce is not trivial and the reduction (of
the number of links) obtained is very low and slow. On the other hand, for the
GA based on Pareto optimality, adding a third objective function prevents best
networks from reaching equivalent tasks performance to the one that they have
in the case of two objectives optimisation.

Fig. 8. Comparison between the two allocation methods when the optimisation is done
on three objectives. The picture on the left panel presents the quality measures for the
two tasks, that is a projection on the plane T1 − T2, we can clearly observe that both
methods provide equivalent results. In the 3D view on the right panel, we can remark
a significant difference to the advantage of Deb’s allocation.

Then, we replicate the best networks got with simulations performed without
any links constraints by removing “useless”links as long as possible. To remove
these links, we begin by choosing one link randomly. Then we remove it and
we check if the fitness decreased, in this case then the link is reinserted in the
network, otherwise it is definitely removed and we go on by choosing another
link. We stop this part of the algorithm when we get a sequence of 50 randomly
chosen links that can not be removed. Next, we check every remaining link to
see which ones can be removed without changing the fitness and we choose one
of them to be removed. We iterate this algorithm until it’s no longer possible to
keep the same fitness by removing any link. We observe that this method returns



limited results. Indeed, it’s a random method and the final matrix depends on
the order in which we removed the links. Moreover we notice that removing what
we think to be a “useless”link will sometimes reduce the fitness. The explanation
is that, for each node, the sum of stimuli are divided by the number of incoming
links and compared with a threshold to see if the neuron is activated or not. By
removing links, we change the divisor and we influence the comparison.

In order to overcome this limit, we modify the thresholds each time that we
remove a link. Some preliminary experiments shows that this change leads to
networks with a lower number of connections. We also consider to introduce this
approach in the genetic algorithms themselves. Even if this new method brings
comparable quality measures with the previous one, we notice that it results in
a significant decrease (30%) in the number of improvements observed during the
optimisation phase. Another way that we could explore would be to develop a
kind of simulated annealing for removing links with a certain probability. This
method could be less sensitive to the order in which links are considered.

Once we get the networks responsible for the best robot’s behaviour, we look
for finding particular structures. We realise that two kinds of modularities can
be defined. The first one is a topological modularity [5] that can be studied
with some community detection methods such as the Louvain method [2] or by
using measures of centrality or similarity. In order to analyse the second one,
namely the functional modularity, that is to group together neurons that have
similar dynamic behaviours, we follow two trails. We plan to use some recent
information-like indicators [9]. We also decide to check the node relevance by
randomly removing hidden nodes.

6 Conclusion

This paper is the presentation of the first phase of our research in artificial
evolution, in which robots are controlled by neural networks and trained to
achieve two abstract competing tasks with genetic algorithms. Our aim is to
compare the behaviour of robots created by juxtaposition of the best networks
trained for the achievement of one particular task and by global learning. We
presented the context in which we realise the research and the mathematical
tools that are exploited. We also detailed the preliminary results and the work
that we plan to study the modularity in our networks.

Acknowledgements We would like to thank Andrea Roli for his help and his in-
volvement in this project. This research used computational resources of the “Plate-
forme Technologique de Calcul Intensif (PTCI)”located at the University of Namur,
Belgium, which is supported by the F.R.S.-FNRS. This paper presents research results
of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization),
funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian
State, Science Policy Office. The scientific responsibility rests with its authors.



References

[1] M.A. Beaumont. Evolution of optimal behaviour in networks of boolean automata.
Journal of Theoretical Biology, 165:455–476, 1993.

[2] V. D. Blondel, J-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[3] K. Deb. Multi-objective evolutionary algorithms: Introducing bias among pareto-
optimal solutions. Advances in Evolutionary Computing, Part I:263–292, 2003.

[4] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons Ltd, Chichester, 2008.

[5] N. Kashtan and U. Alon. Spontaneous evolution of modularity and network motifs.
Proceedings of the National Academy of Sciences, USA, 102(39):13773–13778, 2005.

[6] D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, Cambridge, 2005.

[7] P. Peretto. An introduction to the modeling of neural networks. Alea Saclay. Cam-
bridge University Press, Cambridge, 1992.

[8] R. Rojas. Neural networks: A systematic introduction. Springer, Berlin, 1996.
[9] M. Villani, A. Filisetti, S. Benedettini, A. Roli, D. A. Lane, and R. Serra. The

detection of intermediate-level emergent structures and patterns. In Advances in
Artificial Life, ECAL, volume 12, pages 372–378, 2013.


