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1 Introduction and Background

In Artificial Intelligence (AI) two approaches have been attempted so far: nu-
merical/statistical on one hand, and relational on the other. Statistical methods
are not able to fully seize the complex network of relationships, often hidden,
between events, objects or combinations thereof. This issue has been faced by
exploiting First-Order Logic (FOL) for representing the world. But this setting
holds when data are certain and complete and since this is far from being al-
ways true, there is the need for handling incompleteness and noise. Thus logical
and statistical learning have been combined in the way that the former provides
the representation language and reasoning strategies, and the latter enforces ro-
bustness. This gave origin to a new research area known as Probabilistic Induc-
tive Logic Programming [7] (PILP) or Statistical Relational Learning [2] (SRL).
Moreover working in very complex contexts often requires deductive reasoning
to be supported by a variety of techniques that cope with the lack or incom-
pleteness of the observations. Abductive inference can tackle incompleteness in
the data by allowing to guess information that has not been explicitly observed
[3]. Since there are so many explanations for such guesses, there is the need of
selecting the most plausible one. While humans are able to discriminate such
explanations, embedding this capability in machines is not trivial.

In the literature abductive reasoning has been performed by means of two
main approaches: uncertainty has been faced by bayesian probabilistic graphical
models and incompleteness by means of the classical approach based on pure
logic. Nowadays many works combined logical abduction and statistical infer-
ence, which allows to rank all possible explanations and choose the best one.
Mainly two approaches have merged directed and undirected graphical models
with logic. The former [8] exploits Bayesian Logic Programs (BLPs) as a repre-
sentation language for abductive reasoning; the latter [5] exploits Markov Logic
Networks (MLN). It’s worth noting that like MLNs, most SRL formalisms use
deduction for logical inference, and hence they cannot be used effectively for
abductive reasoning. Another approach [1] performs abduction using Stochas-
tic Logic Programs [6] (SLP) by considering a number of possible worlds. Ab-
ductive reasoning is carried out by reversing the deductive flow of proof and
collecting the probabilities associated to each clause. Although this approach is



probabilistically consistent with the SLP language, abduction through reversion
of deduction is quite hazardous because abductive reasoning by means of de-
duction without constraints may lead to wrong conclusions. A more extensive
comparison to other approaches has been presented in [9].

Our initial work has been focused on two perspectives: the generation of mul-
tiple (and minimal) explanations consistent with a given background knowledge,
and the definition of a strategy to prioritize different explanations using their
chance of being true. Now, in this paper, a new perspective is presented under-
lining the differences in the way of which such explanations are produced and
accordingly how probabilities are associated to them.

2 Preliminaries

Our approach is based on Abductive Logic Programming [3] (ALP), a high-level
knowledge representation framework that allows to solve problems declaratively
based on abductive reasoning. It extends Logic Programming by allowing some
predicates, called abducible predicates, to be incompletely defined. Problem solv-
ing is performed by deriving hypotheses on these abducible predicates (abductive
hypotheses) as solutions of the problems to be solved.

Definition 1 (Abductive Logic Program). An abductive logic program is
made up of a triple < P,A, IC >, where:

– P is a standard logic program;
– A (Abducibles) is a set of predicate names;
– IC (Integrity Constraints or domain-specific properties) is a set of first order

formulae that must be satisfied by the abductive hypotheses.

These three components are used to define abductive explanations.

Definition 2 (Abductive Explanation). Given an abductive theory T =<

P,A, IC > and a formula G, an abductive explanation ∆ for G is a set of
ground atoms of predicates in A s.t. P ∪∆ |= G (∆ explains G) and P ∪∆ |= IC

(∆ is consistent). When it exists, T abductively entails G, in symbols T |=A G.

Consider a clause C: h(t1, .., tn) :- l1, ..ln′ , where h is the unique literal of
the head, n is its arity, and the li’s, with i = {1, ..., n′}, are the literals in the
body. In the following we will denote by li the negative literal ¬li. Let us consider
Example 1, reporting a logic program P for concept printable(X) (that describes
the features that a document must own in order to be printed by a particular
printer) and the set of abducibles A.

Example 1 (Theory for paper domain).
c1 : printable(X) ← a4(X), text(X)

A = {image, text, b&w, printable, table, a4, a5, a3}

Example 2 (Constraints).
ic1 = 〈0.8, [table, text, image], or〉

ic2 = 〈1.0, [a3, a4, a5], xor〉

A proof procedure for abductive logic programs was presented in [4]. It inter-
leaves phases of abductive and consistency derivations: an abductive derivation



is the standard Logic Programming derivation extended in order to consider ab-
ducibles. When an abducible literal δ has to be proved, it is added to the current
set of assumptions (if not already included). Since the addition of δ must not
violate any integrity constraint, a consistency derivation starts to check that
all integrity constraints containing δ fail. In the consistency derivation an ab-
ductive derivation is used to solve each goal. This might cause an extension of
the current set of assumptions. The procedure returns the minimal abductive
explanation set if any, otherwise it fails.

3 The proposal

In order to motivate our approach we can assume that to abduce a fact, there
is the need for checking if there are constraints that prevent such an abduction.
The constraints can be either universally valid laws (such as temporal or phys-
ical ones), or domain-specific restrictions. Constraints verification can involve
two kinds of hypotheses: those that can be deductively proved and those that
have to be abduced. The former can be surely assumed true, conversely the lat-
ter might involve other abductions and thus there is the need of evaluating all
possible situations before assuming the best one. In this view each abductive
explanation can be seen as a possible world, since each time one assumes some-
thing he conjectures the existence of that situation in a specific world. Some
abductions might be very unlikely in some worlds, but most likely in other ones.
In this context we will refer to a possible world as the sets of the assumptions
(i.e. hypothesized literals) and of the involved constraints that must hold in a
particular abductive explanation.

We have also introduced new kinds of constraints in addition to typical ones
consisting of a (non-probabilistic) logical nand of conditions. Specifically, we
consider constraints that may express in a more suitable and understandable
way some situations, by using also the logical operators or and xor. Moreover
due to noise and uncertainty in the real world, we have smoothed each constraint
with a probability that reflects the degree of the personal belief in the likelihood
of the whole constraint. In this perspective we can extend the classical Definition
1 of abductive logic programs by replacing the concept of Integrity Constraints
with that of Typed Probabilistic Constraints.

Definition 3 (Extended Abductive Logic Program). An extended abduc-
tive logic program ET is made up of a triple 〈P,A, TPIC〉, where P is a stan-
dard logic program, A (Abducibles) is a set of predicate names and TPIC (Typed
Probabilistic Constraints) is a set of probabilistic constraints whose elements are
triples of the form 〈Pr, S, T 〉 where Pr is a probability and expresses its reliabil-
ity, or our confidence on it, T is the type of constraint and represents the kind
of denial, and S is the set of literals of the constraint that must be satisfied by
the abductive hypotheses. The way in which the constraints must be satisfied is
defined by its type.

Let us consider Example 2: ic1 states that a document can be composed
either of tables, images or text and that our personal belief in the likelihood of



this constraint is 0.8. In other words we believe that a document is composed
80% of times of at least tables, images or text, and that only 20% of times a
document does not have at least one of such elements. The latter constraint ic2
states that a document must be at least of one of the three formats and moreover
that this situation is always true.

In our previous work we focused on the study of what happens in such possible
worlds in which all the activated constraints (i.e. constraints involved in the proof
procedure) must hold, and thus we discarded all the other worlds in which such
constraints do not hold. Conversely in this paper we take into account all the
possible worlds in which all activated constraints might hold or not. According to
this new perspective we have further introduced in this paper a formal definition
for our probabilistic abductive explanation.

Our new approach can be described from two sides: the logical proof proce-
dure and the computation of probabilities.

3.1 Logical perspective

Our procedure consists of an extended version of the classical approach [3, 4].
While it resolved the goal by looking for one minimal abductive explanation set,
our approach is to generate different abductive explanations and then evaluate
them all. It can be achieved by changing each assumption that may constrain
the subsequent explanations. Thus each time the procedure assumes something
two possible worlds can be considered: one where the assumption holds and an-
other where it does not. This idea has been extended also to the probabilistic
constraints. In fact our previous perspective was more strict since we kept a
possible world iff it falsified all the constraints involved in the proof (activated
constraints). Conversely such an assumption can be relaxed, considering possible
worlds consistent with a subset of the constraints activated by the proof proce-
dure. In such a perspective the overall view is analogous to the exploration of a
tree in which each interior node corresponds to a decision (an assumption), as
for example changing the truth value of a literal, an edge represents the conse-
quences of that decision and a leaf is the conclusion of the abductive reasoning
in a particular possibile world. It is worth noting that in this way we have to
consider a notion of partial consistency since in each explanation the involved
constraints might be either falsified or not.

With such objectives we forced the classical backtracking procedure in order
to: assume both values (positive and negative) of a literal, choose different pred-
icate definitions (i.e. choosing different definitions, other literals will be taken
into account and thus other constraints are involved) and consider the constraints
involved in each abductive explanation as falsified or not.

3.2 Probabilistic perspective

Given all explanations, the issue of selecting the best one arises. The abduction
probability of each ground literal through the possible worlds can be obtained



considering both the chance of it being true in the real world and all sets of
assumptions made during the abductive proof in each possible world.

Let’s introduce some notation: ∆ = {P1 : (∆1, Ic1), ..., PT : (∆T , IcT )} is the
set of the T consistent possible worlds that can be assumed for proving a goal G.
Each (∆i, Ici) is a pair of sets: ∆i = {δi1, ..., δiJi

} contains the ground literals
δij abduced in a single abductive proof, and Ici = {ici1, ..., iciKi

} is the set of
the constraints icik involved in the explanation ∆i. Both ∆i and Ici may be
empty. Moreover, we have used the following symbols in our equations: n(δij) is
the number of true grounding of the predicate used in literal δij , n(cons) is total
number of constants encountered in the world, a(δij) is the arity of literal δij and
P (icik) is the probability of the k-th constraint in Ici. The chance of being true
of a ground literal δij can be defined as in Equation 1. Then the unnormalized
probability of the abductive explanation can be assessed by Equation 2 and the
probability of the abductive explanation normalized over all T consistent worlds
can be computed as in Equation 3:

P (δ) =
n(δ)

n(cons)!
(n(cons)−a(δ))!

(1)

P
′

(∆i,Ici)
=

Ji∏

j=1

P (δij) ∗

Ki∏

k=1

P (icik)

(2)

P(∆i,Ici)
=

P ′

(∆i,Ici)∑
T
t=1 P ′

(∆t,Ict)

(3)

Equation 1 expresses the ratio between true and possible groundings of literal
δ. The intuition behind this equation can be expressed with a simple example:
given a feature f(·) and an item obj that does not have such a feature, if we want
to assess the probability that obj owns f(·) (i.e. P (f(obj))), we should consider
how often we found items for which f(·) holds over all items for which it might
hold in real world.

The probability of δ is equal to 1−P (δ) as well as P (ic) is equal to 1−P (ic). It
is worth noting that we are considering the Object Identity [10] assumption and
so within a clause, terms (even variables) denoted with different symbols must be
distinct. Thus only literal groundings without constants repetitions are allowed
in Equation 1. The first part of the Equation 2 encloses the probability that all
abduced literals are true in that particular world. The second part expresses the
reliability of the constraints involved in the i-th abductive explanation.

In our previous work some worlds are ruled out due to inconsistency with all
integrity constraints and so in the computation of the probabilities we do not
consider such situations. Conversely, in this paper we have taken into account
also the possible consistent world in which some activated constraints might not
hold. Now, we can state a definition for our probabilistic abductive explanation:

Definition 4 (Probabilistic Abductive Explanation). Given an extended abduc-
tive theory ET = 〈P,A, TPIC〉 and a formula G, a probabilistic abductive explanation
〈∆∗, IC∗〉 for G is a pair of sets, where ∆∗ is a set of ground literals l of predicates in
A, IC∗ with IC∗ ⊆ TPIC is the set of constraints involved, whose ICH ⊆ IC∗ is the
subset of the ones which hold in such abductive explanation ∆∗, s.t. P∪∆∗ |= G (∆∗ ex-
plains G) and P∪∆∗ |= ICH (∆∗ is consistent). When it exists at least a pair 〈∆∗, IC∗〉
whose P(∆∗,IC∗) > 0 and P(∆∗,IC∗) obtained as in Equation 3, ET abductively entails
G under at least a possible world (i.e. 〈∆∗, IC∗〉), in symbols ET |=〈∆∗,IC∗〉 G.



4 Conclusion

Reasoning in very complex contexts often requires pure deductive reasoning to
be supported by a variety of techniques that can cope with incomplete and un-
certain data. Abductive inference allows to guess information that has not been
explicitly observed. Since there are many explanations for such guesses, there is
the need for assigning a probability to them in order to choose the best one. Our
initial work was focused on two perspectives: the generation of multiple (and
minimal) explanations consistent with a given background knowledge, and the
definition of a strategy to prioritize different explanations using their chance of
being true. In this paper a new perspective is presented underlining the differ-
ences in the way of which such explanations are produced and accordingly how
the probability are related to. The new approach was tested on some toy exper-
iments motivating further research. Since our old procedure has been tested on
some standard datasets, we will exploit this extended procedure in the same ex-
perimental setting in order to compare both approaches. Further studies will be
focused on learning the probabilistic constraints and on exploiting our approach
in other tasks such as natural language understanding and plan recognition.
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