Dietmar Jannach

Toward automatically learned search heuristics for CSP-encoded configuration
problems — results from an initial experimental analysis

Dietmar Jannach
Department of Computer Science, TU Dortmund, Germany
dietmar.jannach @tu-dortmund.de

Abstract

Constraint Programming historically been one of
the most important approaches for compactly en-
coding and solving product configuration prob-
lems. Solving complex configuration problems
efficiently however often requires the usage of
domain-specific search heuristics, which have to be
explicitly modeled by domain experts and knowl-
edge engineers. Since this is a time-consuming
task, our long term research goal is to develop tech-
niques to automatically learn appropriate search
heuristics for a given configuration problem.

Compared to other types of Constraint Satisfaction
Problems (CSPs), practical configuration problems
have certain specific characteristics. First, often
only a few of the variables are used to specify the
problem (“inputs”); in addition, the specific user in-
puts and the corresponding final configurations are
not equally distributed in the solution space.

In this paper, we present results of an initial
simulation-based experimental analysis, in which
we aimed to evaluate if already simple statistics can
help to speed up the search process. The first results
indicate that already trivial branching statistics can
help to improve search efficiency.

1 Introduction

Encoding product configuration problems as Constraint Satis-
faction Problems (CSPs) [13] has a comparably long tradition
both in research and in industrial practice. Using CSPs and
Constraint Programming techniques has various advantages,
compared, e.g., to rule-based systems, as CSP encodings are
declarative in nature and thus often easier to maintain. Fur-
thermore, a number of extensions to the basic CSP encod-
ing scheme as well as specific solving techniques have been
proposed in the past, which are at least partially inspired by
the specific characteristics of product configuration problems,
see [1], [5], [7] or [11]. Today, there also exists a number effi-
cient free and commercial constraint solvers that can be used
to check configurations for consistency or to complete partial
configurations given some customer inputs.

Howeyver, some larger and complex configuration problems
can only be solved efficiently when domain-specific heuris-

tics are used that guide the search process. In [4], for ex-
ample, Fleischanderl et al. report of a configuration problem
in the context of telecommunication switches where the final
configuration can comprise thousands of interconnected com-
ponents. The so-called “Partner Units Problem” is another ex-
ample of a hard real-world configuration problem, for which
recently a heuristic algorithm was proposed which allows the
problem to be solved in an efficient way [12].

Such heuristics are however domain-specific or even
problem-specific and their identification, formalization and
evaluation usually is a time-consuming and manual process.
It would therefore be desirable to have domain-independent
techniques, which help us to automatically derive appropriate
heuristics for a given problem setting. In principle, differ-
ent approaches to achieve this goal are possible. First, one
could try to analytically examine the configuration problem
(or constraint network) and its solution space. Alternatively,
one could follow a learning-based approach by analyzing a
number of past solution searches in order to derive appropri-
ate search heuristics.

In our ongoing research, we will focus on the latter type of
systems. The long term goal of this research activity being to
develop a set of methods that use a learning-based approach
to derive search heuristics for configuration problems. We
decided to follow the path of a learning-based approach for
several reasons. First, in real-world applications, the configu-
ration reasoning process (e.g., to complete a partial configura-
tion) is initiated several times, so that more and more training
data will be naturally available over time and the heuristics
can thus be made self-adaptive. Furthermore, in many do-
mains, the actual configurations requested by customers are
not equally distributed in the solution space and there might
be configurations which are far more popular than others!.
When using a learning approach, such information, which
might only be available once the system is deployed, can be
integrated in the heuristics learning process.

In this paper, we report the results of an initial experi-
mental analysis, in which we implemented a basic value or-
dering heuristic for CSPs, which simply ranks the possible
variable values based on the number of times they were suc-

'In some complex configuration scenarios, every configuration
might be unique; still, some subassemblies are usually similar or
identical across different configurations.

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

10

cessfully chosen in previous configuration runs. Our evalu-
ation is based on a simulation, in which we artificially and
randomly generated inputs for a number of benchmark prob-
lems from a Constraint Solver competition. The correspond-
ing solutions were used as an input for the “training” phase
in which statistics were collected. The benchmark problems
were then solved again based on this statistics-based heuris-
tic. To compare the efficiency, the required running times
were measured. Our initial results show that significant re-
ductions for some types of problems can be achieved even
when a very simple learning strategy is applied.

Overall, we consider our work to be first evidence for the
general feasibility of such approaches in the configuration do-
main and as an initial step toward the development of more
advanced learning strategies. Our basic technique can further-
more be used as a baseline in further experiments. Finally we
propose an experimental evaluation protocol to evaluate the
effectiveness of such learning-based approaches.

2 Approach and Initial Results

In our analysis, we focus on standard CSPs which are repre-
sented by a tuple < V, D, C' >, where V is a set of variables,
D a set of finite domain associated with these variables, and
C a set of constraints on the variables. A solution to a CSP
comprises an assignment of values to each problem variable
in V' such that no constraint from C is violated, see, e.g., [13]
for a comprehensive discussion of CSPs.

2.1 The role of branching strategies

When systematic tree search is used as a problem solving
scheme for CSPs, the choice of the branching strategy, that
is, which variable to consider next and which values to try
first, can have a significant impact on the required search
time. Over the last decades, a number of different and often
domain- or problem-independent branching heuristics have
therefore been proposed to speed up the search process.

Consider the following example, which shall demonstrate
the impact of the branching strategy on the solution effi-
ciency. When searching for one solution for the classical “all-
interval series” problem? of a given size without any problem
specific optimizations, the running times when using the pop-
ular Choco® constraint solver with different built-in heuristics
range from 30ms to 1 minute. Interestingly, the best strategy
for this setting seems to be to pick variable values in decreas-
ing order (30ms), which is an order of magnitude faster than
the usual “increasing domain” strategy (500ms) or the dy-
namic “impact-based branching” [9] strategy (800ms). When
no specific strategy is explicitly defined, the search can take
up to one minute.

In many cases, the question of which heuristic to chose for
a certain problem setting cannot be easily decided analyti-
cally and requires an experimental analysis or can be explored
with a so-called portfolio solver. Such portfolio solvers,
which try out different solvers and corresponding solving

The goal is to find permutations of a given list of numbers that
fulfills certain properties, see http://www.cs.st—andrews.
ac.uk/~ianm/CSPLib/prob/prob007/refs.html

3http ://www.emnn.fr/z-info/choco-solver/

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Dietmar Jannach

strategies based on a case base of past solution searches for
similar problem instances, have shown to be very successful
in CSP Solver competitions [8].

2.2 Proposed baseline and experimental setup

For our experiments, we extended the open source constraint
solver Choco and implemented a new CSP value ordering
strategy called MostFrequent, which picks the next value
to test in the search process simply based on the number of oc-
currences of this value in solutions in previous search runs*.
When considering, for example, a PC configurator, if “Intel
Core i5” was the most frequent choice in previous configu-
ration sessions, the solver would simply try to use this value
first when asked to complete a partial configuration. While
in reality the choice of the CPU of course depends on the
specific requirements of the current customer, our underlying
assumption is that not every possible configuration is equally
popular. Therefore, if the specific CPU type was compatible
with a larger number of popular and frequent configurations,
it might be helpful to try this particular value first (as long as
it is not already ruled out by other constraints specified in the
current session)°.

In order to evaluate this approach, we conducted exper-
iments in which we measured the running times when us-
ing different branching strategies for a number of benchmark
problems of the CPAI’08 solver competition®. As a baseline
in our comparison the typical built-in IncreasingDomain
default strategy was used. The chosen benchmark problems
used in our experiments, see Section 2.3, had to fulfill certain
properties. First, they of course had to be solvable. Further-
more, as we had to run a larger number of solution searches,
e.g. to factor out random factors, we picked problems for
which the solver could determine a solution (or report infea-
sibility) for a given set of random inputs relatively quickly,
i.e., in less than a second’. The experiment consisted of two
phases.

(A) Statistics collection phase. Depending on the size of
the problem, we randomly designated a small number of the
problem variables to be input variables. When the CSP for
example contained 50 variables with an average domain size
of 20, we, e.g., picked up to 5 variables as inputs, so that
we could make sure that several thousand input combinations
(and resulting configurations) are possible. Next, we created
random input values for these variables, started a solution
search and recorded the variable assignments, if a solution
was found. In order to simulate that some configurations are
more popular than others, we picked the input values using a
Gaussian distribution and repeated the process until 300 solu-
tions with the default branching heuristic were found. As we
are also interested how the number of training instances ef-
fects the statistics-based approach, we defined different mea-
surement points during the simulation run, in which we made

*Technically, we used Choco’s built-in extension mechanism and
implemented a new ValIterator class.

SNote that the general solution space for a given configuration
problem is not affected by the different heuristics.

*http://www.cril.univ-artois.fr/CPAIO8/

"We furthermore excluded benchmark problems which could not
be imported by Choco’s current XML import program.

Dietmar Jannach

11

Problem name Default 30 50 100 150 200 300 Diff.
1|{normalized-renault-mod-0_ext.xml 143,44 | 37,03 | 26,20 | 26,60 | 28,72 | 28,70 | 30,77 | -82%
2|normalized-bibd-8-14-7-4-3_glb.xml 11,71 7.65 6,94 7,71 7,64 8,38 6,48 -41%
3|normalized-squares-3-9.xml 53,75 41,88 | 44,30 | 41,72 | 42,40 | 43,32 | 44,90 | -22%
4|normalized-geo50-20-d4-75-29_ext.xml (less inputs) 431,25 | 353,07 | 366,06 | 327,03 | 354,16 | 342,25 | 352,29 | -24%
5|normalized-geo50-20-d4-75-24_ext.xml 95,11 | 99,64 | 91,66 | 87,19 | 93,27 | 100,32 | 99,39 | -8%
8|normalized-costasArray-13.xml 53,36 48,33 | 47,70 | 47,18 | 47,13 | 46,96 | 46,49 | -12%
7|normalized-air05.xml 856,51 | 847,22 | 859,04 | 850,81 | 854,80 | 848,71 | 853,36] -1%
8|normalized-magicSquare-5_glb.xml (GAUSSIAN) 112,59 | 142,86 | 149,65 | 145,17 | 140,57 | 147,66 | 145,05] 25%
9|normalized-magicSquare-5_glb.xml (RANDOM) 122,81 | 154,49 | 144,64 | 137,90 | 141,06 | 131,88 | 139,49 7%

Figure 1: Measurements for example problems. Running times are given in milliseconds.

a snapshot of the collected statistics so far. These snapshots
were taken after 30, 50, 100, 150, 200 and 300 solutions. As
a baseline for the required running times using the default
strategy, we calculated the average search time for the 300
solutions.

(B) Measuring the effects. After the training phase,
we repeated the experiment with random inputs 300 times.
This time we however used the statistics-based value se-
lection strategy and using the training data for each of the
snapshots to analyze the effect when different amounts of
training data was available. For cases when individual val-
ues never appeared in a previous solution, we used the
IncreasingDomain strategy as a fallback.

Note that we used the same set of input variables in that
phase as in the training phase, but did not use exactly the same
input values. Instead, we again generated them randomly.
Otherwise, a simple solution caching technique would have
obviously led to the best results.

Since the total time of finding a solution for many prob-
lems depends on the specific set of variables used as an in-
put set, we repeated the whole above-described procedure
for 5 times, each time with a different set of input vari-
ables. Each problem therefore had to be solved successfully
(300 + 300) = 5 = 3000 times, which explains why we only
considered problems which could be solved efficiently.

2.3 Initial results

As a performance indicator, we used the average CPU time
needed for the solver to find a solution. We also col-
lected statistics about the standard deviation of the differ-
ent runs. Figure 1 shows the average running times for 300
runs using the default strategy and the running times for the
MostFrequent strategy at different training levels.

The first row shows the results of a benchmark car config-
uration problem from Renault, which in our view is therefore
the most relevant of all measurements. The problem has 111
variables and an average domain size of around 5. As inputs,
we used 6 variables, which leads to a range of 56 = 15,625
input combinations. The number of possible configurations
is actually lower as not all input combinations correspond to
feasible product variants. In this case, about one third (about
5,000) of the randomly generated input combinations were
feasible.

Using the solver’s built-in default value selection heuristic,
the problem could on average be solved in 134.44 millisec-
onds. When using the statistics-based strategy, however, the
average running times could be reduced to 26.20ms, which is
a reduction of over 80%. Interestingly, this effect could be
achieved already after a very small number of training runs.
Later on, when more training data is available, the values
seem to slightly increase again. As we did not measure if
these differences are statistically different so far, the slight
increase could however be a random effect.

When using the default branching strategy, the standard de-
viation for all experiment runs for the Renault problem was
around 220ms. With the statistics-based strategy, this value
could be reduced to the half of that. However, when com-
pared to the absolute overall running times, the standard de-
viation is much higher for the statistics-based strategy. This
in general means that some problems can be very efficiently
solved with the statistics-based approach, while in some cases
the statistics-based strategy can also lead the solver to wrong
areas of the search space®. Overall, however, the average
number of required backtracks, which we measured but do
not report here for space reasons, could also be reduced to a
third using the statistics-based strategy.

The other problems of our analysis shown in Figure 1 have
different characteristics and are in particular not configura-
tion problems but other types of general constraint problems.
Problem 2 in Figure 1, for example, is an artificially created
one and has over 500 variables and 400 constraints. Also in
this case, a significant reduction of the running times could be
observed. Problems 4 and 5 are quite similar, but in the case
of problem 5 we used many more variables as inputs which
led to a drastically higher number of possible inputs while at
the same time the solution search was more constrained. As
a result, the improvements for Problem 5 were very small.
For Problem 7, no improvement was observable. Problems
8 and 9 are classical magic square problems with a highly
symmetric problem structure that does not correspond to the
typical characteristics of configuration problems. In particu-
lar for case 9, in which the inputs were chosen from an equal

81n all experiments we limited the allowed computation time to
avoid effects of extreme outliers. In the Renault example, the time
limit was set to 1,000ms. Situations in which the time frame was not
sufficient were however very rare.

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

12

distribution, nearly no improvement was achieved with the
statistics-based strategy, because every variable value has an
nearly equal probability to appear in a random solution. For
case 8, a slight improvement could be observed because the
inputs values were chosen using a Gaussian distribution.

3 Previous and future works

To the best of our knowledge, limited research has been done
so far on the automatic derivation of search heuristics in
the area of product configuration. There are, however, ap-
proaches in the area of general CSPs that include a learn-
ing component in the search process. In the context of our
work, we are particularly interested in approaches which aim
to learn from previous solution searches or similar problem
instances (in contrast to works which try to adapt the search
strategy within a single search, often referred to as “online
learning”, or based on multiple restarts).

In [3], for example, the authors propose an “advice gen-
eration” framework for value ordering in CSPs which is
based on estimating the likelihood of the existence of at least
one solution in the area of the search graph to be explored.
Such estimates can be obtained by analyzing a simplified and
backtrack-free version of the problem, where the hope is that
the number of solutions in the simplified version with less
constraints correlates with the solution count for the original
problem. Overall, while the general goal of their work is sim-
ilar to ours, the approach in [3] is not based on past solutions
but from an analysis of adapted problem instances, which can
also induce significant additional computational costs. In our
work, we assume that the solver can learn by collecting infor-
mation from previous search runs for different users.

In the area of Answer Set Programming, Balduccini in [2]
presents an approach for learning branching heuristics from
past solution instances. Similar to our work, the proposed
DORS framework aims to derive a problem-specific policy to
guide the solving procedure, i.e. which branch of the search
graph should be explored first. While there are differences
related to the actual search procedures, the general idea of [2]
corresponds to the work presented in this paper. Our future
work includes an analysis of how the more advanced but still
not very complex approach from [2] can be integrated in the
CSP solving process.

Finally, the idea of deriving heuristics from past observa-
tions in an automated way can be also found in other applica-
tion areas. In [10], for example, supervised machine learning
techniques are used to at least partially automate the construc-
tion of heuristics for the NP-complete problem of instruction
scheduling on modern processors. While the specific relation
to our work is limited, our future work includes the explo-
ration of techniques such as decision tree learning or classifi-
cation, see e.g., [6], for the generation of branching heuristics
for configuration problems.

4 Summary

Problem-specific search heuristics are a key element for the
practical success of many configurator applications. Since
the manual definition of such heuristics is time-consuming,
our research goal is to develop techniques that help us to

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Dietmar Jannach

learn such heuristics automatically from previous solution
searches. In this paper, we have reported results of an initial
analysis of the general feasibility of such an approach based
on a simulation with small examples and a simple statistics-
based branching strategy. Our first results indicate that mea-
surable efficiency improvements can be achieved, when the
special characteristics of configuration problems are taken
into account.

References

[1] J. Amilhastre, H. Fargier, and P. Marquis. Consistency
restoration and explanations in dynamic CSPs appli-
cation to configuration. Artificial Intelligence, 135(1-
2):199-234, 2002.

[2] M. Balduccini. Learning and using domain-specific
heuristics in ASP solvers. AI Commun., 24(2):147-164,
2011.

[3] R. Dechter and J. Pearl. Network-based heuristics for
constraint-satisfaction problems. Artif. Intell., 34(1):1—
38, 1987.

[4] G. Fleischanderl, G. Friedrich, A. Haselbock,
H. Schreiner, and M. Stumptner. Configuring Large
Systems Using Generative Constraint Satisfaction.
IEEE Intelligent Systems, 13(4):59-68, 1998.

[5] A. Haselbock.
constraint-satisfaction problems.
282-289, Chambery, France, 1993.

[6] H. Ingimundardottir and T. P. Runarsson. Super-
vised learning linear priority dispatch rules for job-shop
scheduling. In Proc. LION 2011, pages 263-277, Rome,
Italy, 2011.

[7] D. Jannach and M. Zanker. Modeling and solving
distributed configuration problems: A CSP-based ap-
proach. IEEE TKDE, 25(3):603-618, 2013.

[8] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and
B. O’Sullivan. Using case-based reasoning in an algo-
rithm portfolio for constraint solving. In Proc. AICS
2008, 2008.

[9] P. Refalo. Impact-based search strategies for constraint
programming. In Proc. CP 2004, pages 557-571,
Toronto, Canada, 2004.

[10] T. Russell, A. M. Malik, M. Chase, and P. van
Beek. Learning heuristics for the superblock instruc-
tion scheduling problem. IEEE Trans. on Knowl. and
Data Eng., 21(10):1489-1502, 2009.

[11] T. Soininen, E. Gelle, and 1. Niemeld. A fixpoint def-
inition of dynamic constraint satisfaction. In Proc.
CP’99, volume 1713, pages 419-433, Alexandria, Vir-
ginia, USA, 1999.

[12] E. Teppan, G. Friedrich, and A. A. Falkner. Quick-
Pup: A heuristic backtracking algorithm for the partner
units configuration problem. In Proc. AAAI/IAAI 2012,
Toronto, Canada, 2012.

[13] E. Tsang. Foundations of Constraint Satisfaction. Aca-
demic Press, 1993.

Exploiting interchangeabilities in
In IJCAI'03, pages

