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Abstract
We give an introduction to possible applications
of MaxSAT solvers in the area of automotive
(re-)configuration. Where a SAT solver merely
produces the answer “unsatisfiable” when given an
inconsistent set of constraints, a MaxSAT solver
computes the maximum subset which can be sat-
isfied. Hence, a MaxSAT solver can compute re-
pair suggestions, e.g. for non-constructible vehi-
cle orders or for inconsistent configuration con-
straints. We implemented different state-of-the-art
MaxSAT algorithms in a uniform setting within a
logic framework. We evaluate the different algo-
rithms on (re-)configuration benchmarks generated
from problem instances of the automotive industry
from our collaboration with German car manufac-
turer BMW.

1 Introduction
The well-known NP-complete SAT problem of proposi-
tional logic—is a given propositional formula satisfiable—
has many practical applications; see [Marques-Silva, 2008]
for an overview. Küchlin and Sinz [Küchlin and Sinz, 2000]
pioneered the application of SAT solving for the verification
of the configuration constraints and the bill-of-materials in
the product documentation of the automotive industry on the
example of Mercedes-Benz. A standard problem to be solved
there is the following: Given a (sub-)setO = {o1, . . . , on} of
equipment options and a set C = {c1, . . . , cm} of configura-
tion constraints whose variables are all options, is it possible
to configure a car with the options in O such that C is sat-
isfied? This gives us the SAT problem SAT(C ∪ O), where
the options form unit clauses. If the answer is true, then the
partial configuration O is valid and can be extended to a full
valid configuration F which satisfies C, and F can be readily
obtained from the SAT solver.

For the unsatisfiable case, two main questions arise: (1)
Which constraints (or clauses for a CNF formula C) of the
input formula caused the unsatisfiability? (2) How many (and
which) clauses can be maximally satisfied?
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The first question can be answered with proof tracing tech-
niques [Zhang and Malik, 2003; Ası́n et al., 2010]. Here a
CDCL SAT solver records a trace while solving the formula.
From this trace, a resolution based proof can be deduced,
which shows the clauses involved in the unsatisfiable core.
An unsatisfiable core is also called conflict.

The answer to the second question can be of important
practical use, too. For example, a customer may want to know
a maximal valid subset of an invalid O. Similarly, the car
manufacturer may want to know which maximal subset of C
is still satisfied by a currently invalid, but frequently desired
option set. This optimization problem can be answered with
MaxSAT, a generalization of the SAT problem (see Chapter
19 in [Biere et al., 2009]). Instead of deciding the satisfiabil-
ity of a propositional formula, MaxSAT computes the maxi-
mum number of satisfiable clauses in an unsatisfiable formula
in CNF. The Partial MaxSAT variant splits the clause set into
hard and soft clauses in a way that the number of satisfied
soft clauses is maximized while all the hard clauses have to
be satisfied. In the weighted variant of MaxSAT, clauses may
carry an additional weight, such as the price of an option o.

Some modern MaxSAT algorithms use SAT solvers as
sub-routines by reducing the problem to several SAT solver
calls [Fu and Malik, 2006; Marques-Silva and Planes, 2008;
Ansótegui et al., 2009]. With this approach, we can make
use of all modern techniques (such as clause learning, non-
chronological backtracking, or watched literals) of state-of-
the-art SAT solvers, which are not generally applicable to
MaxSAT solvers.

MaxSAT can be used to answer further questions of prac-
tical use. For example: (1) After choosing components with
priorities, what is the maximum sum of priorities that can be
achieved for a valid configuration? (2) When considering the
price of each component, how much is the minimal cost of a
valid configuration?

Reconfiguration is of high practical relevance in the au-
tomotive industry [Manhart, 2005]. The after-sales business
asks for extensions, replacements, or removal of components
of a valid configuration with minimal effort. For example,
when replacing the alarm system with a newer one, or when
moving a vehicle from the U.S. to Europe, we would like to
keep the maximal number of already installed components.
One approach for reconfiguration uses answer set program-
ming (ASP), which is a decidable fragment of first-order logic
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[Friedrich et al., 2011]. In this paper, we will describe a
MaxSAT based approach for reconfiguration.

This paper is organized as follows. Section 2 defines the
MaxSAT variants and notations. In Section 3 we give a short
introduction to automotive configuration based on SAT, fol-
lowed by a complete example. In Section 4 we describe
our approach to use MaxSAT for automotive configuration
to solve the above questions followed by detailed complete
examples. Section 6 shows experimental proof-of-concept re-
sults based on different modern MaxSAT solvers. Section 8
concludes the paper.

2 Preliminaries: SAT and MaxSAT variants
A Boolean assignment v is a mapping from a set of Boolean
variables X to {0, 1}. If a propositional formula ϕ evaluates
to true under an assignment v (denoted as v |= ϕ), we call v
a satisfying assignment or model for ϕ, otherwise an unsat-
isfying assignment. The SAT problem of propositional logic
is the question whether such a satisfying assignment v exists
for a given formula ϕ or not.

A literal is a variable or its negation. A clause is a disjunc-
tion of literals. Given a propositional formulaϕ =

∧m
i=1 ψi in

conjunctive normal form (CNF) over n variables, where ψi is
a clause for all 1 ≤ i ≤ m and m ∈ N≥0, the solution to the
Maximum Satisfiability problem (MaxSAT) is the maximal
number of clauses which can be satisfied by an assignment v.
Equation (1) shows a formal definition.

MaxSAT(ϕ) := max





m∑

j=1

‖ψi‖v
∣∣∣∣v ∈ {0, 1}n



 (1)

Where ‖ψi‖v = 1, if v |= ψi, otherwise ‖ψi‖ = 0.
We notice that for the corresponding MinUNSAT problem

whose solution is the minimum number of unsatisfied clauses,
equation (2) holds.

MaxSAT(ϕ) + MinUNSAT(ϕ) = m (2)

Equation (2) also holds for the same resulting model. As a
consequence, we only have to compute one problem to di-
rectly get the optimum and the corresponding model for both
problems.

There are two extensions of the MaxSAT problem,
called Weighted MaxSAT (WMaxSAT) and Partial MaxSAT
(PMaxSAT). As the name suggests, in a weighted MaxSAT
instance each clause ψi has a weight wi ∈ N≥0 (denoted
by the tuple (ψi, wi)). The Weighted MaxSAT problem then
asks for the maximal sum of weights of satisfied clauses. Fur-
thermore, in a partial MaxSAT instance, the clauses are di-
vided into disjoint hard and soft clauses sets: Hard ∪̇ Soft.
An optimal solution satisfies all hard clauses and a maximal
number of soft clauses. Both extensions can be combined to
Partial Weighted MaxSAT (PWMaxSAT).

The relationship of equation (2) also holds for each
MaxSAT variant.

3 Automotive Configuration with SAT
Automotive configuration can be represented as a constraint
satisfaction problem (c. f. [Astesana et al., 2010]) and also as

a CNF formula in propositional logic, where each satisfying
assignment is called a valid configuration of a car. The latter
approach was investigated in [Küchlin and Sinz, 2000].

We will give a simplified and short introduction into this
representation: (1) Each component (option) c is represented
by a separate variable xc; the component will be used in the
final configuration assignment v if and only if v(xc) = 1; (2)
components of a family (e.g. different steering wheels) will
be restricted by cardinality constraints [Sinz, 2005; Bailleux
et al., 2009] to choose exactly one (or at most one, if the
component is an optional feature); (3) dependencies between
components are expressed as clauses (e.g. the implication
(xa ∧ xb) → (xc ∨ xd) means “If components a and b are
chosen, then component c or d has to be chosen (or both)”; in
clause form (¬xa ∨ ¬xb ∨ xc ∨ xd)).

The resulting formula in CNF is:

ϕcar := ϕcc ∧ ϕdep (3)

Where ϕcc are the clauses of the families’ cardinality con-
straints and ϕdep are the clauses of the dependencies between
the components. With this representation, we can answer the
following questions using a SAT solver:

1. Validation of a partial configuration.
2. Forced component: A component, which is used in ev-

ery valid configuration.

3. Redundant component: A component, which can
never be used in any valid configuration.

3.1 Example: SAT based Configuration
We consider the families of components with their limitations
listed in Table 1.

Table 1: Component families with limitations

family alternatives limit
engine E1, E2, E3 = 1
gearbox G1, G2, G3 = 1
control unit C1, C2, C3, C4, C5 = 1
dashboard D1, D2, D3, D4 = 1
navigation system N1, N2, N3 ≤ 1
air conditioner AC1, AC2, AC3 ≤ 1
alarm system AS1, AS2 ≤ 1
radio R1, R2, R3, R4, R5 ≤ 1

Furthermore, we consider the dependencies between the
components listed in Table 2.

Table 2: Component dependencies

premise conclusion
G1 E1 ∨ E2

N1 ∨N2 D1

N3 D2 ∨D3

AC1 ∨AC3 D1 ∨D2

AS1 D2 ∨D3

R1 ∨R2 ∨R5 D1 ∨D4
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For example, the implication “G1 → E1 ∨ E2” means “If
gearbox G1 is chosen, then engine E1 or E2 has to be cho-
sen”.

With the resulting formula ϕcar from the above specifica-
tions, we consider two customer cases:

1. A customer chooses engine E1 and control unit C1 for
the car. But she does not want the air conditioner AC2.
We test Formula (4) for satisfiability.

ϕcar ∧ xG1
∧ xC1

∧ ¬xAC2
(4)

The result is true. Derived from the resulting model,
we can choose the components D1, C1, G1, E1 to get a
complete valid configuration assignment.

2. A customer chooses the componentsE1, G2, C2, D3 and
N2, AC1, AS1, R2. The result is false.
The question now is, which maximal subset of the orig-
inal choice will lead to a valid configuration?

3.2 Advantage of the MaxSAT based approach
With the SAT based configuration, two main problems arise.
First, if the configuration is not valid, it is not possible to
know which components cause the conflict. Second, even
if we know the components causing the conflict, we do not
know, which components to omit to get a valid configuration
with a maximal number of components we wanted originally.
The example 2 of Subsection 3.1 shows such a case.

As mentioned in the introduction, the first problem can be
handled with proof tracing to explain a conflict for an in-
valid configuration. The second problem can be handled with
MaxSAT and its extensions. We explain this approach in the
next section in detail.

4 Automotive Configuration with MaxSAT
For the representation of automotive configuration as a
MaxSAT instance we consider the Partial MaxSAT problem.
We use the SAT based specification ϕcar of Section 3 and
divide the clauses into hard and soft ones. First, all cardinal-
ity constraints are marked as hard clauses, because they have
to be satisfied (e.g. it is not possible to configure a car with
more than one steering wheel). Second, it is possible that the
dependencies between components do not necessarily have
to be satisfied (e.g. a dependency could have been created
due to marketing reasons; “No black seats for all Japanese
cars”). On the other hand, technical dependencies have to
be satisfied (e.g. a conflict between an engine and a gearbox).
For simplicity reasons, we also mark all dependencies as hard
clauses.

With the representation above, we can consider the follow-
ing advanced use cases and answer the new arising questions
with the help of a Partial (Weighted) MaxSAT solver:

1. (Maximization of chosen components) A customer
chooses components c1, . . . , cn which lead to an invalid
configuration. We can answer the question, what the
maximal number of the chosen components for a valid
configuration is, by solving Formula (5) with a Partial
MaxSAT solver.

ϕcar︸︷︷︸
hard clauses

∧xc1 ∧ . . . ∧ xcn︸ ︷︷ ︸
soft clauses

(5)

2. (Maximization of priorities) We can generalize the use
case 1 by attaching priorities to the components: A cus-
tomer chooses components c1, . . . , cn which lead to an
invalid configuration. Additionally, the customer has
priorities p1, . . . , pn, pi ∈ N>0, for each component.
We can answer the question, which sum of priorities can
be maximally reached for a valid configuration by solv-
ing Formula (6) with a Partial Weighted MaxSAT solver.

ϕcar︸︷︷︸
hard clauses

∧ (xc1 , p1) ∧ . . . ∧ (xcn , pn)︸ ︷︷ ︸
soft clauses

(6)

3. (Reconfiguration) We can use the introduced tech-
niques in the use cases 1 and 2 for reconfiguration. Let
us assume a customer wants to add, replace, or remove
components of her existing car. She chooses the com-
ponents c1, . . . , ck with priorities p1, . . . , pk ∈ N>0. If
the priority or partial state (hard or soft) of a clause of
an originally chosen component has changed, the origi-
nal clause will be replaced by the new partial weighted
clause. Otherwise, the clause will be kept. We solve
Formula (7) with a Partial Weighted MaxSAT solver to
reach the maximal sum of priorities.

ϕcar︸︷︷︸
hard clauses

∧ (xc1 , p1) ∧ . . . ∧ (xcn , pn)︸ ︷︷ ︸
soft clauses

(7)

To force certain new components to be installed or old
components to be kept, we can designate the correspond-
ing clauses as hard clauses.
To reach a valid reconfiguration for the customer, a re-
configuration scenario can be considered as a process in
different steps:
• Check for validation after the customer chooses

new components with priorities as previously de-
scribed.

• If the hard clauses are unsatisfiable, check for vali-
dation after the sales division sets additional depen-
dencies as soft clauses (with priorities).

• If the hard clauses are unsatisfiable, check for vali-
dation after the engineering divison sets additional
dependencies as soft clauses (with priorites).

If the hard clauses are unsatisfiable after all steps, there
is no valid configuration, because technical limitations
are reached which can not be set as soft clauses. Other-
wise, if the hard clauses are satisfiable in one step, we
can compute the maximal sum of priorities of the soft
clauses while satisfying the hard clauses.

4. (Minimization of costs) The components c1, . . . , cn
have prices p1, . . . , pn, pi ∈ N>0. We want to know
which components have to be chosen, to get a valid con-
figuration with minimal cost. We can answer the ques-
tion by solving Formula (8) with a Partial Weighted Min-
UNSAT solver.

ϕcar︸︷︷︸
hard clauses

∧ (¬xc1 , p1) ∧ . . . ∧ (¬xcn , pn)︸ ︷︷ ︸
soft clauses

(8)

Instead of finding the minimal costs of a valid configu-
ration, we could also compute a valid configuration of
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minimal weights, CO2 emissions, or other interesting
targets.

In all situations above, the resulting model of the solver tells
us which components to choose to get the optimum.

Additionally, we can add arbitrary hard clauses to enforce
certain constraints: (1) Unit clauses to enforce the in- or
exclusion of a component; (2) Additional dependencies be-
tween components (e.g. “When engine E1 is chosen, then
choose gearbox G2”; (xE1

→ xG2
)); (3) Additional cardi-

nality constraints (e.g. xD1
∨ xD2

to ensure that one of the
dashboards D1 or D2 will be chosen).

For example, in Situation 4 (minimization of costs), we
could add unit clauses to enforce the inclusion of certain com-
ponents and then compute the minimal costs of the configu-
ration. The result is a valid configuration with minimal costs
which includes our chosen components.

4.1 Example: MaxSAT based Configuration

We reconsider the example in Subsection 3.1.

1. In the second case, the choice of the customer was unsat-
isfiable. With the MaxSAT based approach of configura-
tion we can find an assignment of a valid configuration
where a maximum number of components is included.
After solving Formula (5) with a Partial MaxSAT solver,
we obtain the results shown in Table 3.

Table 3: Customer choices and Partial MaxSAT results
family choice result
engine E1 E1

gearbox G2 G2

control unit C2 C2

dashboard D3 D1

navigation system N2 N2

air conditioner AC1 AC1

alarm system AS1 –
radio R2 R2

We can reach a valid configuration by changing two of
the choices (bold rows in the table) and therefore, we
can keep 6 of our 8 original components at most. For the
alarm system, the resulting model did not set another
alarm system variable to true, because this is an optional
feature.

In general, the result obtained from the solver may not
be the only optimum. There can be other different as-
signments with the same number of satisfied clauses.

2. We consider another case, where the customer chooses
the components with priorities as shown in Table 4. Ad-
ditionally, she wants dashboard D2, D3, or D4. To en-
force this constraint, we add the hard clause (xD2

∨xD3
∨

xD4
).

Table 4: Customer prioritized choices and PWMaxSAT re-
sults

family choice priority result
engine E1 8 E1

gearbox G2 5 G2

control unit C2 7 C2

dashboard
D2 8

D4D3 15
D4 15

navigation system N2 20 –
air conditioner AC1 7 –
alarm system AS1 2 –
radio R2 15 R2

Table 4 shows the result, scoring 50 priority points, after
solving Formula (6).

3. After the previous configuration, the customer wants to
reconfigure her existing car. Table 5 shows her choice.
We can imagine that for technical or financial reasons,
the engine E1 and gearbox G2 can not be replaced. We
set them as hard clauses. However, control unit C2 and
dashboardD4 can possibly be replaced and therefore are
set as soft clauses.

Table 5: Reconfiguration choice and PWMaxSAT results
family state new priorities choice results
engine E1 hard E1 E1

gearbox G2 hard G2 G2

control unit C2 (5, soft) C2 C2

dashboard D4 (2, soft) D4 D2

navigation system – (10, soft) N3 N3

air conditioner – hard AC1 ∨AC2 AC2

alarm system – (5, soft) AS1 AS1

radio R2 (13, soft) R2 –

The results show that dashboard D4 was replaced by
dashboard D2 and radio R2 has to be removed in favor
of other components.

4. Now we associate the components with prices (as shown
in Table 6) and we want to know a valid configuration
with a minimal total price.
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Table 6: Components with prices
family alternatives
engine E1 E2 E3

price (e) 4,000 2,500 4,500
gearbox G1 G2 G3

price (e) 500 800 300
control unit C1 C2 C3 C4 C5

price (e) 800 2,000 1,500 1,600 1,200
dashboard D1 D2 D3 D4

price (e) 300 500 600 450
navigation system N1 N2 N3

price (e) 100 150 130
air conditioner AC1 AC2 AC3

price (e) 180 100 90
alarm system AS1 AS2

price (e) 300 250
radio R1 R2 R3 R4 R5

price (e) 100 80 200 180 150

For the minimal costs we solve Formula (8) with a Par-
tial Weighted MinUNSAT solver. For the maximal costs
we solve Formula (6) with a Partial Weighted MaxSAT
solver by considering the prices as priorities. The results
are:
• Minimal cost: e 3,900
• Maximal cost: e 8,625

Table 7 lists the components to choose to reach the min-
imal and maximal costs.

Table 7: Choices for minimal and maximal costs
choice

family minimal cost maximal cost
engine E2 E3

gearbox G3 G2

control unit C1 C2

dashboard D1 D3

navigation system – N3

air conditioner – AC2

alarm system – AS1

radio – R3

5 Algorithmic techniques
In order to give the reader an impression of how MaxSAT
can be computed, we present a short incomplete overview of
some algorithmic techniques.

Branch-and-Bound The general branch and bound ap-
proach to explore the search tree of optimization problems
can also be used for solving MaxSAT and its extensions.
Each node of the tree represents a variable of the instance
and has two children for the two values the variable can be
assigned to. Tree pruning is used as soon as a partial solu-
tion becomes worse than the best solution found elsewhere in
the tree. Heuristics have been developed e.g. by Wallace and
Freuder to narrow the search space predicting the final value
of partial solutions [Wallace and Freuder, 1993].

Basic SAT-based Given an unsatisfiable SAT problem ϕ =
{C1, . . . , Cm}, we may iteratively try to remove individual
clauses Ci until the subproblem ϕ′ becomes satisfiable. ϕ′
will then be maximal in the sense that adding another clause
will make it unsatisfiable, but another, larger, subproblem
may exist which could be found by removing clauses from
ϕ in a different order.

In SAT solving, clause removal can be simulated by aug-
menting each clause Ci with a fresh blocking variable bi. As
long as bi is set to false, the solver needs to satisfy Ci, but the
constraint Ci can effectively be blocked by setting bi to true
instead. Now, in order to remove as few clauses as possible,
we add m blocking variables to ϕ as above and restrict the
use of the bi by an additional cardinality constraint CC(k),
which is a formula that prevents more than k of the bi to be set
to true. Iterating over k from below until ϕ(k) becomes satis-
fiable, or from above until ϕ(k) becomes unsatisfiable, gives
us the MaxSAT result m−k, and the subset of clauses whose
bi are set to false forms one satisfiable subset of maximum
cardinality.

Algorithm 1 reflects basic approach. One improvement of
this approach is the use of binary search.

Algorithm 1: Basic SAT-based approach
Input: ϕ = {C1, . . . , Cm}
Output: Minimal number of unsatisfied clauses
ϕ← {C1 ∨ b1, . . . , Cm ∨ bm}
cost← m
while SAT(ϕ ∪ CNF(

∑m
i=1 bi < cost)) do

cost← cost− 1
return cost

Core-guided SAT-based Modern proof-tracing SAT
solvers return an unsatisfiable subset (unsat core) µ ⊆ ϕ
when given an unsatisfiable ϕ. It is then clear that at least one
clause of µ has to be blocked before ϕ can become satisfiable,
and thus the search can be narrowed compared to the basic
approach. An algorithm based on this idea was proposed by
Fu and Malik for partial MaxSAT [Fu and Malik, 2006]. In
every iteration where the instance is unsatisfiable, we add a
new blocking variable to all soft clauses of the unsatisfiable
core and a new cardinality constraint to achieve that exactly
one of the currently added blocking variables has to be
satisfied. We can not just iterate over the unsat cores and
count them, because they may not be disjoint.

This idea can also be extended for partial weighted
MaxSAT [Ansótegui et al., 2009].

6 Experimental Results
For our benchmarks we used product configuration formulas
of a current (2013) product line of the German car manufac-
turer BMW. We added unit clauses to create unsatisfiable cus-
tomer orders. We defined the following three categories for
hard and soft clauses:
• Order: Soft clauses are unit clauses of the customer’s

order. All other clauses are hard. This asks, wich of the
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customer’s wishes can be maximally satisfied.

• Packages: Soft clauses are clauses which represent
packages, e.g. a sports package, which triggers all rel-
evant sports components. The unit clauses of the cus-
tomer’s order and all other clauses are hard. This asks,
which of the package restrictions can be maximally sat-
isfied w.r.t. the customer’s wishes.

• Packages & more: Soft clauses are package clauses
and additional other sales relevant conditions. The unit
clauses of the customer’s order and all other clauses are
hard. This asks, which of the package restrictions and
additional restrictions can be maximally satisfied w.r.t.
the customer’s wishes.

The upper half of Table 8 shows detailed statistics about each
category. The second half of the table shows how many in-
stances have an optimum. No optimum means that there is
at least one conflict involving only hard clauses. The average
optimum is the average of the result of the minimal number
of unsatisfiable clauses. For example, the average optimum
of 2.127 within the ‘Order’ category means that on average
2.127 of the customer’s choices can not be satisfied.

Table 8: Benchmark details
Benchmark categories

Order Packages Packages & more
#instances 777 777 777
Avg. #variables 896 896 896
Avg. #hard clauses 4474 3928 3592
Avg. #soft clauses 15 561 897
#no optimum 0 688 0
#with optimum 777 89 777
Avg. optimum 2.127 1.348 4.067

We applied our benchmarks to three different state-of-the-
art MaxSAT solvers, namely:

• akmaxsat [Kügel, 2012]: A partial weighted MaxSAT
solver based on a branch-and-bound approach. One of
the best performing solvers in last year’s MaxSAT com-
petition1.

• Fu & Malik [Fu and Malik, 2006]: A partial MaxSAT
solver based on exploiting unsatisfiable cores and adding
blocking variables to each soft clause of each found un-
satisfiable core.

• PM2 [Ansótegui et al., 2009]: A partial MaxSAT solver
based on exploiting unsatisfiable cores. But unlike the
Fu & Malik solver this approach only uses exactly one
blocking variable to each clause.

For akmaxsat we used the implementation of Adrian Kügel2.
We implemented the Fu & Malik and PM2 algorithms on top
of our own Java SAT solver, which is optimized for our in-
dustrial collaborations. The cardinality constraints in the Fu
& Malik approach are only of the form

∑n
i=1 xi = 1 for given

1http://maxsat.ia.udl.cat:81/12
2http://www.uni-ulm.de/in/theo/m/alumni/

kuegel.html

variables x1, . . . , xn. We encode this constraint through the
constraints (

∨n
i=1 xi) and

(∧n
i=1

∧n
j=i+1(¬xi ∨ ¬xj)

)
. The

cardinality constraints in the PM2 approach uses general lim-
itations, which we implemented with the encoding proposed
in [Bailleux et al., 2009].

All our benchmarks were run on the same environment:
Operating System: Ubuntu 12.04 64 Bit; Processor: Intel
Core i7-3520M, 2,90 GHz; Main memory: 8 GB; JVM 1.7.0
(for Fu & Malik and PM2).

Table 9 shows the results of our time measurements of
each solver in each category. The listed times are the aver-
age times a solver needed to solve an instance of a category.
We listed the average time in each category Solver akmaxsat
has an average time of remarkable less than 0.6 seconds in
each category. Our implementation of Fu & Malik has a rea-
sonable average time of less than 6 seconds in each category.
Our implementation of PM2 has a reasonable average time
for the first category ‘Order’, but exceeded our time limit of
3, 600 seconds per instance on too many instances of cate-
gories ‘Packages’ and ‘Packages & more’ to get a reasonable
average time.

Table 9: Benchmark results with a time limit of 3,600 sec.
per instance

Avg. time (sec) akmaxsat Fu & Malik PM2
Order 0.165 4.367 4.180
Packages 0.025 1.664 exceeded limit
Packages & more 0.535 5.387 exceeded limit

Figures 1, 2 and 3 show the performance of each solver
in the first category ‘Order’. These figures show the relation
between the optimum and the response time of the instances.
Especially for Fu & Malik and PM2 the response time seems
to grow linearly with increasing optimum.
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Figure 1: Benchmark ‘Order’ with akmaxsat
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Figure 2: Benchmark ‘Order’ with Fu & Malik
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Figure 3: Benchmark ‘Order’ with PM2

In Figure 4 we can also recognize the linear growing re-
sponse time with increasing optimum. Also note the lower
line of quickly solvable instances.
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Figure 4: Benchmark ‘Packages & more’ with Fu & Malik

7 Related Work
In [Junker, 2004] general satisfaction problems are consid-
ered, where we have a knowlegde base of constraints which
have to be satisfied and customer requirements, which we
would like to satisfy. In the context of MaxSAT, the knowl-
edge base can be considered as hard clauses, whereas the cus-
tomer requirements can be considered as soft clauses. In the
case of inconsistency, the proposed algorithm QuickXplain
delivers preferred explanations, which are based on a given
total ordering of the constraints.

The work of [Reiter, 1987] proposes an algorithm for com-
puting minimal diagnoses using a conflict detection algo-
rithm. A diagnosis is a minimal subset ∆ of the customer
requirements, such that the constraints without ∆ is consis-
tent. In [Felfernig et al., 2012] another algorithm is proposed,
called FastDiag, which computes a preferred minimal diagno-
sis without calculating the corresponding conflicts.

8 Conclusion
In this paper we showed detailed examples of how MaxSAT
and its extensions can be applied in automotive configuration.
With this approach we are able to repair an unsatisfiable cus-
tomer order by computing the optimal solution which satisfies
as many of the customer’s choices as possible. Furthermore,
we showed how MaxSAT also can be used in reconfiguration
scenarios. From an already configured car we can compute
the minimal number of components to change when adding,
changing, or removing components.

We created realistic benchmarks for our MaxSAT applica-
tions out of the product formulas of our commercial collab-
oration with BMW. Our time measurements of these bench-
marks against the state-of-the-art MaxSAT solvers akmaxsat,
Fu & Malik, and PM2, showed that we have a reasonable re-
sponse time, except for PM2 in two categories. These results
suggest that MaxSAT can be applied for industrial automotive
(re-)configuration problems.
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