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Abstract
Modern software applications can have very complicated
internal dynamics. Most of the software tools are writ-
ten in an imperative programming language which can
quickly become impractical for describing complex dy-
namics. Also, it is very hard to verify that the code
actually covers fully all aspects of the tool’s dynamics.
Propagation rules are suitable as a means for specifica-
tion and verification of such dynamic systems. We have
selected a software tool from the domain of configuration
for our study. Configuration wizards and tools are exam-
ples of software applications where even a small change
made by the user can lead to a very complex outcome. In
this paper, a configuration hierarchical model and a syn-
tax of propagation rules are introduced. These constructs
can be used to describe declaratively the dynamics that is
typical for software configuration tools. The hierarchical
model is then used for describing the internal dynamics
of the configuration tool Freeconf. This specific model
instance is then implemented in UPPAAL and verified
by the UPPAAL model-checker.

1 Introduction
Software applications become more and more complicated, nowa-
days. The complexity of the internal dynamics of a modern software
application can be hard to maintain. Software configuration is one
of the areas where the dynamics can become very complicated.

Software configuration can be divided into two distinct groups.
In literature, configuration is usually understood as finding such a
combination of software/hardware modules that the resulting prod-
uct satisfies some prescribed requirements [Vlaeminck et al., 2009].
On the other hand, from the point-of-view of the end-user, configu-
ration process means changing some options (configuration keys) of
a finished product, so that it will adapt to the user’s needs (chang-
ing the background of the desktop, choosing the size of the subti-
tles in the media-player, setting up permissions for the web server)
[Liaskos et al., 2005; Fabian, 2012]. Nowadays, there exist software
tools designed to aid the user with these application adjustments.
They often offer a GUI (Graphical User Interface) in a form of one
or more configuration windows and are usually hard-wired to the ap-
plication itself. There also exist general-purpose configuration tools
such as KConfigXT [TechBase, 2012], and Freeconf [Fabian, 2012].

Since there can be many possible configuration keys in a configu-
ration, it is natural to organize the keys into hierarchical categories.
Each key also has an inner state formed by some properties that de-
scribe it. When the user interacts with a configuration tool, some
configuration keys change their state in reaction to the user’s input.

Every change can be propagated further across the hierarchy and in-
duce more changes in other keys depending on the semantics of the
properties. In a configuration tool with many internal key properties,
the amount of property interactions can lead to a complex dynam-
ical behavior which is difficult to implement in an imperative style
programming language. However, it is straightforward to describe
the dynamics in a declarative form as propagation rules. The ele-
gance of this approach consists in condensing the description of the
dynamics (which can be very complex) to a single list of rules. That
list can be then (semi)automatically verified for its soundness and
completeness.

This topic is related to problems from the domain of produc-
tion rules and knowledge bases [Arman, 2013; Preece and Shinghal,
1994; Preece and Shinghal, 1992]. Some initial work has been done
to address the problem of automatic detection of rules redundancy
and inconsistency in [Lukichev, 2011]. In the paper, the author uses
description logic [Nardi and Brachman, 2003] to describe, in an ab-
stract and general way, some typical patterns which can lead to an
inconsistent or non-minimal set of production rules. The long-term
goal of our work, however, is to develop a usable software appli-
cation which would (semi)automatically verify the minimality and
consistency of hierarchical models that are used in software config-
uration tools.

In this paper, an attempt to model and verify configuration soft-
ware dynamics is introduced. A general model of a configuration
hierarchy is described together with declarative rules that are used
to model the dynamics on top of the hierarchy. Further, it is shown
on a specific instance of the model (which is used in Freeconf) how
such a set of rules can look like. Finally, the soundness of this in-
stance is studied and verified by using the model-checking utility
UPPAAL.

The rest of this paper is divided as follows. In Section 2, the hi-
erarchical model and propagation rules are presented. Section 3 de-
scribes the properties used in Freeconf and the specific set of rules
that describe the dynamics of properties propagation in it. Section 4
introduces UPPAAL, a model-checking software tool. In Section 5,
it is presented how the Freeconf propagation rules can be modeled
and their soundness verified in UPPAAL. Finally, Section 6 summa-
rizes the results and Section 7 concludes.

2 Hierarchical Model and Rules
In this section, a configuration hierarchical model and a syntax of
propagation rules will be introduced.

2.1 Hierarchical Model
The hierarchical configuration model can be thought as a rooted
acyclic graph where each node has an internal state. The state of
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a node can be changed directly by the environment (i.e., the user)
or indirectly as a result of propagation of some direct change. The
internal state will be limited to only Boolean and bounded integer
properties in this paper.

Definition The internal state of a node in the hierarchical configu-
ration model is a tuple of sets (B, I,D), where Bi ∈ B represents
a Boolean property and Ij ∈ I represents an integer property from
a single bounded integer domain D. At least one of the sets B and
I must be non-empty.

Definition A node of a configuration hierarchical model is a tu-
ple (i, p, C,X), where i is a unique positive integer index, p is the
node’s parent index, C is a (possibly empty) set of indices of the
node’s successors in the graph, and X is the internal state of the
node. There exists a special parent index ∅ for the top-level node of
the hierarchy denoting the absence of a parent.

Because some properties in different nodes can have the same name,
a term Xi

j will be used henceforth to denote a property Xj of the
node with index i.

Definition A configuration hierarchical model M is a non-empty
set of nodes. A top-level node, i.e. the one with the parent index ∅
must always be present.

2.2 Propagation Rules
In general, the user can initiate a propagation by changing any prop-
erty of an arbitrary node in the hierarchy (even more properties at
once). From that, based on the semantics of the propagation, the
change can propagate within that node, further up to the node’s par-
ent, down to its successors, or does not have to propagate at all.

The dynamics can be formally described by propagation rules.

Definition A propagation rule has a form A → B, where A is
the head (condition) of the rule and B is the body (action). The
head is always bound to a specific node and consists of a non-empty
conjunction of the node’s Boolean properties or their negations and
terms Ij ~ vj , where IJ is the node’s integer property and vj is
an integer constant. ~ is a substitute for comparison operators <
,>,≤,≥,==, 6=. The body is formed by a non-empty conjunction
of assignments to, in general, Boolean and integer properties of the
node itself, to properties of the node’s parent and to properties of
its children. If the head of a propagation rule is satisfied (i.e. all
Boolean properties are true and all comparison operations hold) the
rule fires and the body is executed leading to a change of values of
other properties.

The terms "head" and "body" are used in this particular order to
match Constraint Handling Rules (CHR) terminology since there are
plans to use CHR to develop propagation rules solver (see Section
7).

A syntactical shortcut will be used to express Ij = Ij + 1 and
Ij = Ij−1, i.e., incrementing and decrementing an integer property
by one, as Ij++ and Ij--, respectively. According to the definition,
a general propagation rule that operates only within a single node
with index a will have the following form
(∧
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A propagation rule that represents a communication between a node
and its parent will be
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Finally, a propagation rule that describes a communication between
a node and some of its children can be described as
(∧

i

Ba
i ∧

∧

m

(Iam ~ vm)

)
→
∧

j,l

(
B

Cl
j = bj

)
∧
∧

k,l

(
I
Cl
k = ck

)
.

1

2 3

Figure 1: An example of configuration hierarchical model
with three nodes.

To better illustrate how different types of propagation can look
like, let us consider a configuration hierarchical modelM with three
nodes as given in Figure 1. Each node will have an identical struc-
ture of the internal state X = (bool1, bool2, int1, {0, 1, 2}). The
model M will be a set of three tuples

M = {
(
1, ∅, {2, 3} ,

(
bool11, bool

1
2, int

1
1, {0, 1, 2}

))
,

(
2, 1, ∅,

(
bool21, bool

2
2, int

2
1, {0, 1, 2}

))
,

(
3, 1, ∅,

(
bool31, bool

3
2, int

3
1, {0, 1, 2}

))
} .

Let us further assume that the semantics of the properties declares
that:

• whenever bool1 is false for node two, bool2 must also be
false for that particular node

• whenever bool2 is true and int1 is greater than one in node
three, the value of the parent’s int1 must be two

• whenever int1 is zero for node one, bool2 for node two must
be true and int1 for node three must be one

The respective propagation rules are given below.

¬bool21 → bool22 = false

bool32 ∧ int31 > 1→ int11 = 2

int11 == 0→ bool22 = true ∧ int31 = 1

Of course, the body of a propagation rule can affect not only the
node itself, the parent, and the successors separately, but also any
combination of the respective internal states. In general case, poorly
designed rules can form a loop and thus lead to a non-terminating
computation.

3 Freeconf properties
In this section, Freeconf is briefly introduced and its internal dynam-
ics modeled as a configuration hierarchical model is presented.

3.1 Freeconf Tool
Freeconf is a general-purpose cross-platform configuration utility
developed at Czech Technical University [Fabian, 2011; Fabian,
2012]. The tool is supposed to create an intermediate layer be-
tween the user and an application without any configuration GUI.
An example of such applications can be various application servers,
web servers, some movie players, and basically any program that
stores its configuration in configuration text files. When requested
by the user, Freeconf automatically generates a configuration dialog
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with application specific configuration options (configuration keys),
the user then can change the configuration according to her liking,
and during saving Freeconf transforms the output into the respec-
tive native configuration files from where the application can read
the changes. The details about this process can be found in [Fabian,
2012].

3.2 Key and Section Properties

property meaning
static mandatory
(sman)

If it is false, the key is never shown to
the user unless show all property is set.
If it is true the visibility is controlled
by the dynamic equivalent of this prop-
erty.

static active
(sact)

If it is false, the key is as being com-
mented out from the list of possible
keys. No further action is applicable
to the key and the key is not visible to
the user.

dynamic mandatory
(dman)

This property can only be set as a result
of propagation of the user’s action. If it
is true, the key is mandatory and must
be shown. This property has no mean-
ing when the static mandatory property
is set to false.

dynamic active
(dact)

This property can only be set as a result
of propagation of the user’s action. If
it is false, the key does not have sense
in the current settings. This property
has no meaning when the static active
property is set to false.

value set
(valset)

This property is true iff the key has a
value assigned. In some configuration,
there can be an initial state where the
key does not have any value.

default value set
(defvalset)

This property is true iff the key has a
default value assigned. There can be
some keys in the configuration which
do not have a default values assigned.

undefined
(undef )

This is an aggregation property which
is true iff the value and default values
are both unset.

inconsistent The key is inconsistent with the con-
figuration iff it is undefined and is dy-
namically mandatory and dynamically
active.

show all
(showall)

This is a special property which over-
rides whether the keys are shown to the
user or not. Every key will always have
the same value of this property because
the user will change it at once for all
the keys (broadcast change). If this
property is true all dynamically active
keys are shown to the user, even those
that are not mandatory.

Table 1: Freeconf key properties.

Freeconf can handle hundreds or even thousands of configuration
options. To avoid overfilled and confusing configuration dialogs, it
is necessary to divide the options into specific categories. It is done
by assigning a set of Boolean properties to every option such that
truthfulness of a specific set of properties means the option belongs

to the respective category. At the moment, Freeconf uses, apart from
the basic set of properties that are static and do not participate in
property propagation, a set of properties for every configuration key.
Static properties are meant to be fixed throughout the run of Freeconf
and cannot be changed by the user. Dynamic properties, on the other
hand, can have their values changed in reaction to the user’s action
quite often. Mandatory property reflects the fact that the key is vital
for the configuration and must be shown to the user at any case.
Activity of the key determines its current state of presence or absence
in the configuration. The key properties are given in Table 1.

Semantically related configuration keys are often grouped to-
gether to so called configuration sections. These are basically con-
tainers which can hold both other configuration sections or configu-
ration keys. The sections have themselves some properties that help
them to keep track of the state of their direct successors and react,
for example, to the situation where all successors of a given section
should be hidden. In that case, the section should hide itself too. The
current set of section properties is given in Table 2.

Freeconf has a semantics which describes the evolution of prop-
erties values in reaction to the users actions. It has been formulated
as a set of propagation rules in [Fabian et al., 2012].

In the context of Section 2, it is easy to encode Freeconf proper-
ties propagation into a configuration hierarchical model. There will
be two types of nodes in the model, one for configuration keys and
one for configuration sections. Following Definition 2.1, the inter-
nal state of a configuration key will be a tuple with nine Boolean
properties and no integer properties:

X = ( {defvalset, valset, sman,
dman, sact, dact,

undef, inconsistent, showall},
∅,
∅ ) .

The internal state of a configuration section will be a tuple of two
Boolean properties and four integer properties:

Y = ( {empty, inconsistent, showall},
{mancounter, actcounter,
inccounter, sectionshowncounter},
[0 . . . N ] ) ,

where N is the number of successors of the section. The configura-
tion hierarchy will be formed with configuration keys as leaf nodes
and configuration sections as non-leaf nodes.

3.3 Propagation Rules
The list of all propagation rules that describe the dynamics in
Freeconf is given in [Fabian et al., 2012] where the rules are rep-
resented using a rule-based constraint programming syntax [Brand,
2004]. A transformation to the propagation rules syntax is straight-
forward. For example, whenever dynamic mandatory property of a
node changes its value, the parent must be informed and its manda-
tory counter must be adjusted accordingly. Propagation rules de-
scribing this change are shown below.

dmani → mancounterpi ++
¬dmani → mancounterpi --

In Freeconf, rules rewrite only nodes that are higher up in the hierar-
chy, i.e., node to section and section to section communication. This
flow of information suffices for the needs of Freeconf and prevents
non-termination.
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property meaning
mandatory counter
(mancounter)

This counter reflects the number
of key successors that are dynamic
mandatory.

active counter
(actcounter)

This counter reflects the number of
key successors that are dynamic ac-
tive.

inconsistent counter
(inccounter)

This counter reflects the number of
successors (even sections) that are in-
consistent.

section shown counter
(sectionshowncounter)

This counter holds the number of suc-
cessor sections that are not empty.

empty This property is true iff there are no
mandatory and active key successors
and no non-empty successor sections.

inconsistent This property is true if there is at least
one inconsistent successor. In another
words, the inconsistent counter is not
zero.

show all
(showall)

The same property as in the case of
the keys. The user will change the
value for every section and every key
at once overriding the emptiness of
the section.

Table 2: Freeconf section properties.

4 UPPAAL
UPPAAL is a model-checking verification software of real-time dy-
namic systems developed by Upsalla University and Aalborg Uni-
versity [Behrmann et al., 2004; David et al., 2009]. A modeled sys-
tem is represented as a network of timed automata and one can verify
the soundness of the model by querying the built-in model checker.

4.1 Modeling in UPPAAL
UPPAAL offers a GUI written in Java to design each automaton of
the network graphically. One can also program parts of the automata
using a C-like syntax language. A very useful feature is templat-
ing which simplifies designing of very similar automata by using
constant template parameters. UPPAAL will automatically unfold
a template by creating an automaton according to the template for
every possible value of the template parameter.

UPPAAL further supports adding guards to transitions, time in-
variants to nodes, choosing non-deterministically a value of a vari-
able during a transition, and a synchronization of two or more con-
current transitions via signals. An example of a modeled automaton
template can be seen in Fig.2.

UPPAAL offers declaration of constants, typed variables and
single-dimensional and multi-dimensional arrays. A variable can
be either Boolean, or a bounded integer (in fact, Boolean is a special
case of int[0,1]). The scope of a variable is either local to the
automaton, or is global, so all parts of the model can access the vari-
able. In Fig. 2, the variable sm is Boolean and its value is chosen
randomly upon transition from the Initial state to the Start
state. During that same transition, the value of sm is assigned to
the cell of array sman with index id. The variable id is in fact
a template parameter and its value is different yet constant in every
instance of this template.

4.2 Query Language
The main purpose of a model-checker is to verify the model w.r.t.
a requirement specification [Behrmann et al., 2004]. The require-
ments must be formulated in a well-defined language. UPPAAL

Figure 2: A state machine automaton template designed in
UPPAAL.

modality meaning
E <> ϕ There exists a run in which ϕ eventually holds.
A <> ϕ In every run, ϕ eventually holds.
E[ ]ϕ There exists a run in which ϕ always holds.
A[ ]ϕ In every run, ϕ always holds.

Table 3: Modalities used in UPPAAL.

uses a simplified version of timed computation tree logic (TCTL)
[Alur et al., 1993].

E <> forall(i : id_s)manCounter[i] < 0 (1)

An example of a query is given in Equation 1. The query usually
starts with a path quantifier and a modality determining the validity
of a formula along a specific run of the system. All possible modal-
ities are presented in the following table.

Apart from the modalities stated above, UPPAAL also supports
the until modality ϕ --> ψ which can be read as "In every run, if ϕ
holds then ψ eventually holds". The same formula can be obtained
by using only the modalities from Table 3 A[ ](ϕ => (A <> ψ)).
UPPAAL however does not support multiple modalities in a single
query, so --> is the only possibility.

The model-checker in UPPAAL is written in C and it is possible
to choose different sub-algorithms it uses during the verification via
the program’s menu. If the verification of a query fails, UPPAAL
can be set to produce a counter-example in the form of a system
trace. The trace demonstrates how to get from the initial state to a
state where the query does not hold.

5 Modeling of Rules Using UPPAAL
Since the hierarchical configuration model can become quite large
and there can exist a lot of propagation rules, it would be profitable
to have a means of verification that the rules express the intended
semantics correctly, are consistent, and not redundant. The hierar-
chical model can be thought of as a Kripke structure where each
instance of the model forms a possible world and propagation rules
describe possible transitions. Since UPPAAL in its core uses Kripke
structures, it is natural to model the configuration hierarchical model
in UPPAAL.

As the first attempt, the Freeconf model was verified in UP-
PAAL. The entire Freeconf specific configuration hierarchical model
was encoded into UPPAAL and then the model-checker was used
to perform the verification. In the following sub-sections, each
of the steps will be briefly described. The entire model and all
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Figure 3: Freeconf section node modeled in UPPAAL.

queries can be found at http://kmlinux.fjfi.cvut.cz/
~fabiadav/phd/uppaal/freeconf_model.zip.

5.1 Modeling Phase
There are multiple problems to be solved while modeling the hierar-
chy. Firstly, Freeconf key and section properties forming the internal
states of Freeconf nodes have to be inserted. As shown in Listing 1,
they are declared as global Boolean and integer arrays in a straight-
forward way, where each node of the hierarchical model is assigned
a non-negative index and accessing the internal state of the node is
simply done by reading elements from all the arrays with the same
index. Even though in Freeconf, integer counters generally do not
have the same domains, it is acceptable to approximate the general
situation by setting the upper limit of each counter to the number of
nodes in the hierarchy (to the number of sections in the hierarchy
for sectionShownCounter). Property show all is implemented as a
single shared Boolean variable for the user template to be able to
change the property at once.

const int N = 3; // number of keys
const int M = 2; // number of sections

bool defvalset[N], valset[N], sman[N],
dman[N], sact[N], dact[N], undef[N],
inconsistent[N];

int[0, N] incCounter[M], manCounter[M],
actCounter[M];

int[0, M] sectionShownCounter[M];
bool empty[M];
bool showAll;

Listing 1: Declaration of Freeconf properties

The hierarchical nodes are encoded as state machine automaton tem-
plates parametrized by node indices. For each key, there exists an
automaton Node which was presented earlier in Figure 2. The au-
tomaton has two main tasks to perform — setting the initial state of
all its properties to random values (so that the model-checker can
later test all possible combinations of properties values) and updat-
ing the visibility in the case when the user has modified the show all

property. For each section, there is an automaton Section given
in Figure 3.

The section template merely listens to signals from its successors
and updates its respective counters and the emptiness status.

The most complicated part deals with the design of the hierar-
chical model. Since channel synchronization and global variables
are the only possibilities to exchange information between the au-
tomata in UPPAAL, properties propagation is implemented by us-
ing these two. Two separate tree connections have to be considered
because they behave differently. For section-key connections (that
is to model the propagation between the keys and their parent sec-
tions), a special automaton template NodeSectionDispatcher
is created. For section-section connections (i.e., for modeling
the propagation between the sections and their parent sections),
another automaton template SectionDispatcher is created.
NodeSectionDispatcher template is parametrized by an in-
dex which spawns from zero to the number of section-key pairs.
SectionDispatcher template is similarly parametrized by an
index going from zero to the number of section-section pairs (includ-
ing the top-level pair whose one end is connected the top- level sec-
tion and the other to TopLevelTerminator automaton). Two
global two-dimensional arrays are declared which, in fact, model
the hierarchical tree as a parent-child relation for node indices.

const int NODECON = 3;
const int SECTIONCON = 2;
const int[0, N] disIdx[NODECON][2] =

{{0, 0}, {1, 0}, {2, 1}};
const int[0, M] disSecIdx[SECTIONCON][2] =

{{0, 1}, {1, 2}};

Listing 2: Hierarchical tree modeled as two two-dimensional
arrays

Array disIdx has key indices in its first dimension and their
parent section indices in its second dimension. Thus, in the example
above key zero has section zero as its parent, key one has section
zero, etc. Array disSecIdx is the equivalent of disIdx array
but this time it describes section relationship. Note that in the ini-
tialization of disSecIdx, constant two is used even though in this
case, only two sections are present in the example model, and hence
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Figure 4: Propagation rules modifying the property undefined modeled as a state machine.

the index should be invalid. The first index that is not a valid sec-
tion index is, however, used to denote the top-level connection and
is thus valid in this context.

Constants NODECON and SECTIONCON represent the number
of section-key connections and section-section connections, respec-
tively. These arrays are used by the dispatcher automata to automat-
ically dispatch propagation signals across the tree. This settings is
flexible in the way that changing the shape of the hierarchy is simply
a matter of adjusting four constants and two arrays.

While the tree structure can be abstracted and generalized to allow
easy modifications, the actual rules have to be hard-wired into the
automata templates because the semantics behind those rules must
be expressed in a visual form. For example, the automaton presented
in Figure 4 models the behavior of propagation rules that modify
undefined property.

Enforcing causality of the propagation turns out to be another
complication. For example, the initialization phase, where the keys
are assigned some initial values and the first step of the propagation
fires, must come before the user is activated. Enforcing causality
does not require to use clocks that are the integral part of UPPAAL,
only auxiliary variables and synchronization channels suffice. On
the other hand, since automata execution is by default parallel in UP-
PAAL, the auxiliary code that controls causality renders the model
more complicated and less clear.

Finally, the user is modeled as a single state machine automaton.
The automaton non-deterministically chooses a key in the hierarchy
and one of its properties that is changeable at the current state. In
order to avoid race-conditions, every user’s action must lock the hi-
erarchy until the propagation has been finished. A global variable
propagationInProgress is used for this purpose.

5.2 Verification Phase
Of course, since Freeconf model can become arbitrarily large by
adding more sections and keys to the model, only a small amount
of actual instances of the general Freeconf model is verified by the
exemplar UPPAAL model. The instances are given in Figure 5.
In reality, Freeconf can easily have four or five levels of sections
in the hierarchy since there exist auxiliary non-visible sections and
window tabs that act as sections in the model. On the other hand,
Freeconf model is somehow homogeneous which means that if node
to section and section to section properties propagation is valid than
Freeconf model with arbitrarily large tree should be also valid.

Model-checking queries are divided into several groups. The first
group serves a purpose of testing the UPPAAL model itself, because
the encoding of the problem is not very straightforward and often

(a) (b) (c)

Figure 5: Freeconf hierarchical models validated in UP-
PAAL. Sections are depicted as gray, keys are white.

leads to cycles and non-termination. The basic liveness checking
query E <> deadlock appears to be very useful.

When the model is ready, it is necessary to further test whether
updates to the integer properties do not set any value out of the do-
main. Queries similar to the one in the following listing are used for
this test for every counter.

E <> forall(i : ids) actCounter[i] > N

E <> forall(i : ids) actCounter[i] < 0

Of course, just in this situation, the domains of the respective coun-
ters are changed to [−1, N + 1] or [−1,M + 1]. Other basic type
checking was also done.

In [Fabian et al., 2012], one of the open problems was to deter-
mine if the following two sets of propagation rules that are given
in Equation 2 and 3 are complementary and if one can replace the
rule heads in the second set by just the negation of the heads from
the first set. These two rules affect the state of the section emptiness
property. They have got non-symmetric heads as a result of iterative
development of Freeconf.

emptyii ∧
(
sectionshowncounterii > 0

)
→ ϕ

showallii ∧
(
activeshowni

i > 0
)
→ ϕ

¬showallii ∧
(
activeshowni

i > 0
)
∧

∧
(
mandatoryshowncounterii > 0

)
→ ϕ

ϕ :=
(
emptyii = false ∧ (sectionshowncounterpi −−)

)

(2)
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¬emptyii ∧
(
mandatoryshowncounterii == 0

)
∧

∧
(
sectionshowncounterii == 0

)
→ ϕ′

(
activeshowncounterii == 0

)
∧

∧
(
sectionshowncounterii == 0

)
→ ϕ′

ϕ′ :=
(
emptyii = true ∧ (sectionshowncounterpi ++)

)

(3)

By using a query (and its derivation with negated outer conjuncts)
which are given in Equation 4, it can be shown that the rule sets
are not complementary and there exist situations where both rules
are applicable. To solve this error in the model, one has to modify
the rule head in the second set by adding ¬showalli as is shown
in Equation 5. After this minor tweak, the rules behave correctly
and the emptiness property is set correctly in all situations with the
existing code in Freeconf.

E <> forall(i : ids)(sectionShownCounter[i]||
||(showAll&&actCounter[i])||
||(!showAll&&actCounter[i]&&manCounter[i]))&&

&&((!manCounter[i]&&!sectionShownCounter[i]

&&!showAll)||(!sectionShownCounter[i]&&

&&!actCounter[i]))

(4)

¬emptyii ∧
(
mandatoryshowncounterii == 0

)
∧

∧
(
sectionshowncounterii == 0

)
∧ ¬showallii → ϕ′

(
activeshowncounterii == 0

)
∧

∧
(
sectionshowncounterii == 0

)
→ ϕ′

(5)

One of the hardest part is to construct a query that would allow us
to ask for the correctness of propagation of the node and section
inconsistency property. The final query which is shown below in
Equation 6 must use UPPAAL node names and the until operator to
be able to express the property update dynamics. Since UPPAAL
does not allow universal quantification with the until operator, it is
not possible to create a general query for every node.

(empty[0]&&empty[1]&&dman[0]&&dact[0]&&

Inconsistent(0).SetInconsistentTrue)

-->(!empty[0]&&!empty[1]&&

TopLevelTerminator.TerminationDone)

(6)

5.3 UPPAAL Model-checker Performance
Because UPPAAL model is parametrized so that it can be very easily
modified to represent a different instance of Freeconf model, it is
interesting to measure UPPAAL’s model-checker performance with
respect to the size of Freeconf model. A fixed query 7 which tests
the correctness of the node inconsistency property modifications is
used for the needs of this measurement. The query uses "for all"
path quantifier A and "always" temporal modality [ ], so UPPAAL
would have to traverse a great amount of states to draw a conclusion.

A[ ]forall(i : idk)(undef [i]&&dman[i]&&dact[i]&&

&&!propagationInProgress&&!userAction&&

&&initF inished) imply (inconsistent[i])

(7)

In Table 4, the time and consumed memory it took to finish the
validation process of the query for the three Freeconf models which

Model Time (s) Memory (KiB) # of states
a 0.07 6889 16384
b 1.67 24572 21233664
c 189.1 2147932 17592186044416

Table 4: Performance statistics of UPPAAL model-checker
with respect to the size of Freeconf model.

were introduced in Figure 5 is given together with the upper esti-
mate on the number of states UPPAAL has to traverse. The test was
performed on a desktop PC with Intel Core 2 Quad Q9550 CPU at
2.83 GHz, 4 GiB RAM, running 64 bit Linux 3.1.10 and a develop-
ment snapshot of UPPAAL 4.1.14.

6 Results
The entire Freeconf model has been encoded in UPPAAL. Some
of the parts of the hierarchical configuration model, like the tree
structure, are easy to implement in UPPAAL, others, like propaga-
tion rules, are more problematic and sometimes require a substantial
amount of auxiliary coding/modeling to be able to express certain
features of the hierarchical model, e.g. causality. On the other hand,
UPPAAL offers extra constructs like global and local clocks and
time invariants that are not needed for modeling of a hierarchical
configuration model.

As can be seen in Table 4, there is an exponential explosion in
the number of states in the Freeconf model. The UPPAAL model-
checker can handle a large number of states but even for a small
Freeconf model like the one presented in Figure 5c, it already con-
sumes over two gigabytes of memory to finish verification of a sin-
gle query. Using UPPAAL to verify other (possibly) heterogeneous
configuration hierarchical models would be problematic. UPPAAL
also does not provide a simple way of storing a result of verifica-
tion (the only report on the overall state of verification is a green
or red light next to each query). When one has a functioning and
verified model and adds or modifies some aspect of it, one would
like to re-verify the model and get all differences in the verification
results. One would also like to automatize verification by having a
verified reference instance of the model for comparison. None of
this is supported in UPPAAL as of yet.

7 Conclusion & Future Works
In this paper, the first step towards a (semi)automatic mechanism
of dynamic rules verification has been made. A configuration hier-
archical model has been defined and a syntax of propagation rules
has been described. The dynamics of evolution of various prop-
erties of configuration keys in the configuration tool Freeconf has
been briefly introduced as an instance of the general hierarchical
model. This Freeconf model instance has been further encoded as a
set of state machine automata templates in UPPAAL. The UPPAAL
model-checker has been used to verify certain shapes of the Freeconf
model.

In the future, a custom domain specific model-checker should be
written which would utilize the knowledge of the hierarchical con-
figuration model and the propagation rules and would allow to ex-
press a specific problem with minimum overhead. All propagation
rules describing the dynamics of the problem should be held at one
place for maximum readability. The model-checker should also be
able to re-verify the model in the case of an update of the rules. The
intention at the moment is to use CHR (Constraint Handling Rules)
[Frühwirth, 2009; Frühwirth and Raiser, 2011] as a base program-
ming language for the model-checker implementation.
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