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Abstract
The knowledge engineering bottleneck is still a ma-
jor challenge in configurator projects. In this pa-
per we show how recommender systems can sup-
port knowledge base development and maintenance
processes. We discuss a couple of scenarios for
the application of recommender systems in knowl-
edge engineering and report the results of empirical
studies which show the importance of user-centered
configuration knowledge organization.

1 Introduction
Product knowledge changes frequently [Soloway, 1987].
Therefore, it must be possible to conduct knowledge base
development and maintenance operations efficiently. Since
the early developments of configurator applications in the
late 1970’s and early 1980’s [McDermott, 1982], knowledge
representations have been improved in terms of (1) model-
based approaches which allow a clear separation of do-
main knowledge and problem solving algorithms, (2) higher-
level knowledge representations which allow a component-
oriented representation of configuration knowledge (see, e.g.,
[Stumptner et al., 1998]), and (3) graphical knowledge rep-
resentations (e.g., [Felfernig et al., 2000; 2001]) which al-
low a compact representation. In addition to new knowl-
edge representations, intelligent diagnosis approaches have
been developed which help a knowledge engineer to identify
and repair erroneous configuration knowledge [Junker, 2004;
Felfernig et al., 2004; 2009; 2013].

Due to diversification strategies of companies, product
and service assortments are becoming increasingly large and
complex [Huffman and Kahn, 1998]. The complexity of
the underlying knowledge bases increases to the same extent
which requires additional concepts that help a knowledge en-
gineer to conduct knowledge base development and mainte-
nance operations in an efficient fashion. Furthermore, knowl-
edge bases are often developed by a group of persons with
different knowledge, goals, and focuses with regard to devel-
opment and maintenance operations. This situation requires
adaptive user interfaces to be integrated into configuration
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knowledge engineering environments. Adaptive user inter-
faces for knowledge engineering have the potential to effec-
tively support engineers and domain experts in activities such
as learning (knowledge base understanding), finding (the rel-
evant items in the knowledge base), and testing & debugging
(removing the source of faulty behavior).

In order to offer more adaptivity in configurator devel-
opment environments, we propose the application of differ-
ent types of recommendation technologies [Jannach et al.,
2010] which proactively support domain experts and engi-
neers when creating and adapting configuration knowledge.
Such technologies should dispose of a basic understanding of
cognitive processes when persons develop and maintain con-
figuration knowledge bases. They should support functional-
ities such as recommending relevant items (variables, compo-
nent types, constraints, diagnoses, etc.) and simultaneously
omitting specific items that are not relevant. Recommender
systems have the potential to provide such a support (see, e.g.,
[Robillard et al., 2010]).

There are three basic recommendation approaches. First,
collaborative filtering [Konstan et al., 1997] determines rec-
ommendations based on the preferences of nearest neigh-
bors (users with similar preferences compared to the current
user). In this context, items are recommended to the cur-
rent user which have received a positive rating by the near-
est neighbors but are not known to the current user. Second,
content-based filtering [Pazzani and Billsus, 1997] recom-
mends items that are not known to the current user and are
similar to items that have already been purchased by her/him.
Similarity between items can be determined, for example,
on the basis of the similarity of keywords used to describe
the item. Third, knowledge-based recommenders recommend
items by using constraints or similarity metrics [Burke, 2000;
Felfernig and Burke, 2008].

This paper is organized as follows. In Section 2 we intro-
duce example scenarios for the application of recommender
technologies in knowledge engineering. Thereafter, we report
results of related empirical studies (see Section 3). In Section
4 we provide a discussion of related work. Conclusions and a
discussion of future research issues are given in Section 5.

2 Recommenders for Knowledge Engineering
Collaborative Recommendation of Constraints. Collabo-
rative filtering (CF) recommender systems have shown to be
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one of the best choices to achieve serendipity effects, i.e., to
be surprised (in a positive sense) by item recommendations
one did not expect when starting the recommendation pro-
cess. In situations were knowledge engineers do not know the
configuration knowledge base very well, collaborative recom-
mendations can be exploited to support a more focused anal-
ysis of the knowledge base. The availability of navigation
data from other knowledge engineers is the major precondi-
tion for determining recommendations with collaborative fil-
tering. Table 1 shows an example of navigation data that de-
scribes in which order knowledge engineers (users) accessed
the constraints of a knowledge base. For simplicity we as-
sume that each of the users accessed each constraint (but in
different order). Similar applications of collaborative filter-
ing can be imagined for the recommendation of variables (or
component types) and instances of a component catalog.

Table 1 stores the information in which order the con-
straints have been visited by knowledge engineers (users),
for example, user 1 analyzed the constraints in the order
[c5, c2, c3, c1, c4, c6]. Let us assume that the current user has
already visited the constraints c5 and (then) c2. The nearest
neighbors of the current user (users with a similar navigation
behavior) are the users 1, 2, and 4. The majority of these
users analyzed constraint c1 in the third step – this one will
be recommended to the current user. Note that this recom-
mendation approach is currently under evaluation, therefore
no related empirical results will be reported in Section 3.

user c1 c2 c3 c4 c5 c6
1 4 2 3 5 1 6
2 3 2 5 6 1 4
3 1 3 2 4 6 5
4 3 2 4 5 1 6

current ? 2 ? ? 1 ?

Table 1: Recommending constraints (ci) with CF.

Content-based Clustering of Constraints. Another pos-
sibility to support knowledge engineers is to cluster con-
straints with the goal to improve the overall clarity of the
knowledge base. We will exemplify this on the basis of k-
means clustering [Witten and Frank, 2005]. Following this
approach, we have to generate k initial centroids which act
as (first) representatives of future clusters. In the following,
each object (in our case: constraint) is assigned to the group
(cluster) with the closest (most similar) centroid. Thereafter,
centroids are recalculated. In our case, a centroid is defined as
the object with the highest overall similarity to the other ob-
jects in the cluster. The algorithm terminates if the centroids
are stable (do not change). k-means clustering is guaranteed
to terminate but is not necessarily optimal since the outcome
depends on the initial centroids ([Witten and Frank, 2005]).

For demonstration purposes we introduce the following
simple configuration problem which is represented as a ba-
sic constraint satisfaction problem (CSP = (V, D, C)) where
V represents a set of variables {v1, v2, ..., v5}, D represents
the set of corresponding domains (dom(vi) = {1..5}), and C
represents the following set of constraints.
{c1 : v1 = 3 → v2 > 1, c2 : v1 = 3 ∧ v3 = 1, c3 : v2 =

2 → v3 = 1, c4 : v3 = 1 → v1 6= 1, c5 : v3 = 1 → (v4 =
2 ∧ v1 > v5), c6 : v4 ≥ 1 → v5 ≤ 4, c7 : v5 = 1 → v3 =
2 ∨ v3 = 3}.

On the basis of this simple knowledge base, we can
calculate the similarities between the individual constraints
(ca, cb) by using Formula 1. In this formula, V =
variables(ca) ∪ variables(cb), co−occurrence(v, ca, cb)
= 1 if v is contained in both constraints on the same
position, co−occurrence(v, ca, cb) = 0.5 if v is con-
tained in both constraints but on a different position, and
co−occurrence(v, ca, cb) = 0 of no co-occurrence exists.
Note that this is one possible approach to similarity determi-
nation. We also compared this approach with operator-based
similarity and a random assignment of constraints to clusters.

sim(ca, cb) =

∑
v∈V co–occurrence(v, ca, cb)

|V | (1)

The similarities between the pairs of individual constraints
are depicted in Table 2.

ci ∈ C c1 c2 c3 c4 c5 c6 c7
c1 1.0 - - - - - -
c2 0.33 1.0 - - - - -
c3 0.16 0.33 1.0 - - - -
c4 0.16 0.5 0.16 1.0 - - -
c5 0.1 0.25 0.1 0.37 1.0 - -
c6 0.0 0.0 0.0 0.0 0.12 1.0 -
c7 0.0 0.33 0.33 0.16 0.12 0.16 1.0

Table 2: Similarities between individual constraints.

On the basis of these individual similarities we are able to
determine a set of corresponding clusters (k = 2). The de-
termination of such clusters is exemplified in Table 3. First,
we (randomly) select two constraints as initial cluster cen-
ters (centroids): c1 and c5 (denoted by cs). In iteration 2 the
center of cluster 1 changes to c2 and we have to re-calculate
the cluster assignment. After this iteration, the assignment is
stable, i.e., the cluster centers (c2 and c5) remain the same.

iteration c1 c2 c3 c4 c5 c6 c7
1 1(cs) 1 1 2 2(cs) 2 2
2 1 1(cs) 1 1 2(cs) 2 1

Table 3: k-means clustering of C = {c1, c2, ..., c7}.

For the visualization of the constraints {c1, c2, ..., c7} this
means that the knowledge base would be presented in terms
of two constraint groups: {c1, c2, c3, c4, c7} and {c5, c6}.

Knowledge-based Refactoring Recommendations. The
way in which semantics is expressed has an impact on the
understandability of the knowledge base. For example, users
need less time to understand the semantics of a knowledge
base if implications are expressed in terms of A → B com-
pared to the alternative representation of ¬A ∨ B. Explicit
knowledge about the cognitive complexity of constraint rep-
resentations can be exploited to recommend structural and
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semantics-preserving adaptations of knowledge structures.
Such recommendations are knowledge-based, since they are
explicitly encoded in refactoring rules.

3 Empirical Evaluation
For the content-based clustering of constraints and
knowledge-based refactoring recommendations we now
present the results of two empirical studies. In the first study,
we compared the applicability of three different clustering
strategies with regard to knowledge engineering tasks (find a
solution, find a minimal conflict) (see, e.g., [Junker, 2004]).

Study A: Clustering of Constraints. For two different
configuration knowledge bases (kba1, kba2) we conducted a
study based on an within-subjects design (N=40). Each study
participant (students of computer science who visited a re-
lated course on knowledge engineering) had the task of (1)
finding a solution (in kba1) and (2) finding a minimal conflict
(in kba2).1 There were no time limits regarding task com-
pletion. Each student was assigned to one type of cluster-
ing (one out of variable-based similarity, operator-based sim-
ilarity, and random clustering), i.e., we did not vary the type
of clustering per student. The knowledge bases (kba1, kba2)
were defined as CSPs in a domain-independent fashion in or-
der to avoid an additional cognitive complexity related to the
understanding of a product domain. The basic properties of
the used knowledge bases are summarized in Table 4.

Knowledge base #(vi ∈ V ) vi domain size #(ci ∈ C)
kba1 5 5 15
kba2 10 3 10

Table 4: Knowledge bases used in Study A.

The outcome of this experiment is shown in Table 5.

Grouping approach kba1: SOL kba2: CON
Similar variables 21.43% 42.86%
Similar operators 30.77% 53.85%

Random 38.46% 76.92%

Table 5: Error rates for completing the tasks find a solution
(SOL) and find a conflict (CON) depending on clustering ap-
proach (variable-based, operator-based, or random).

From the three compared approaches to the clustering of
constraints in a configuration knowledge base, variable sim-
ilarity based clustering clearly outperforms operator-based
clustering and random clustering of constraints.

Study B: Cognitive Complexities. There are different
possibilities to represent equivalent semantics on the basis of
a constraint, for example, the requires relationship X → Y
can be represented in terms of ¬X ∨ Y . The incompatibil-
ity relationship ¬(X ∧ Y ) can be represented as X → ¬Y .
Table 6 depicts five different possibilities to express requires
and incompatibility relationships.

1We used these tasks to measure knowledge understanding. Fur-
ther more differentiated tasks are within the scope of future work.

Requires Incompatibility

X → Y X → ¬Y
¬X ∨ Y ¬X ∨ ¬Y
¬Y → ¬X Y → ¬X
¬(X ∧ ¬Y ) ¬(X ∧ Y )
Y ← X ¬Y ← X

Table 6: Five different possibilities of representing requires
and incompatibility relationships.

Study B is based on an within-subjects design (N=66) with
two configuration knowledge bases. Knowledge base kbb1
consisted of a set of requires constraints and kbb2 consisted
of a set of incompatibility constraints. Each study partici-
pant (again, computer science students who visited a related
knowledge engineering course) had the task of finding a solu-
tion for the given CSP. Each participant was confronted with
one version of kbb1 and one version of kbb2 conform the
schema depicted in Table 6. For example, if a student re-
ceived the X → Y version of kbb1 then she/he also received
the X → ¬Y version of kbb2. The knowledge bases kbb1
and kbb2 were (again) defined in a domain-independent fash-
ion (see Study A). The basic properties of the used knowledge
bases are summarized in Table 7.

Knowledge base #(vi ∈ V ) vi domain size #(ci ∈ C)
kbb1 5 5 7
kbb2 3 3 5

Table 7: Knowledge bases used in Study B.

The outcome of this experiment is shown in Table 8.

kbb1: SOL errors kbb2: SOL errors
X → Y 21.43% X → ¬Y 14.29%
¬X ∨ Y 50.0% ¬X ∨ ¬Y 34.62%
¬Y → ¬X 96.43% Y → ¬X 50.0%
¬(X ∧ ¬Y ) 73.08% ¬(X ∧ Y ) 42.31%
Y ← X 25.0% ¬Y ← X 16.67%

Table 8: Error rates in solution identification (SOL) depend-
ing on constraint representation.

A result of the study is that basic implications (→) should
be preferred to other representations in order to maximize un-
derstandability. The only type of knowledge representation
with a similar performance is the reverse implication, how-
ever, when comparing both alternatives, the standard impli-
cation seems to be the better choice.

4 Related Work
There is a long history of research on the improvement of
knowledge engineering processes. Early research focused on
model-based knowledge representations that allowed a sepa-
ration of domain and problem solving knowledge. An exam-
ple of such a representation are constraint technologies which
became extremely popular as a technological basis for indus-
trial applications [Freuder, 1997]. In a next step, graphical
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knowledge representations [Felfernig et al., 2000] and intel-
ligent techniques for knowledge base testing and debugging
have been developed [Felfernig et al., 2004]. The need of an
intuitive access to a corpus of software artifacts is also one of
the major requirements for software comprehension [Storey,
2006]. In this context, recommender systems [Jannach et
al., 2010] have already been identified as a valuable means
to provide intelligent support for the navigation in large and
complex software spaces (see, e.g., [Robillard et al., 2010]).
The application of recommendation technologies for support-
ing knowledge engineering processes is a new research area.
Research contributions in this field have the potential to sig-
nificantly improve the overall quality of knowledge engineer-
ing processes. In [Felfernig et al., 2010] basic knowledge
representations are compared, for example, the use of → to
represent an implication vs. the use of ¬ and ∨. This work
is an important step towards a discipline of empirical knowl-
edge engineering with a clear focus on usability aspects and
cognitive efforts needed to complete knowledge engineering
tasks. The work presented in this paper is a continuation of
the work of [Felfernig et al., 2010]. It takes a more detailed
look at different alternative representations of requires and
incompatibility relationships and introduces a new concepts
related to the content-based clustering of constraints.

5 Conclusions
In this paper we showed how recommenders can be exploited
to support knowledge engineering tasks. Examples are col-
laborative filtering of constraint sets, clustering of constraints,
and knowledge-based recommendation of refactoring oper-
ations. Future work will include the development of fur-
ther recommendation algorithms, for example, the inclusion
of content-based filtering and further clustering algorithms
as well as further empirical studies with more differentiated
maintenance tasks. Finally, we will focus on an in-depth anal-
ysis of existing research in the area of cognition psychology
which can further advance the state of the art in (configura-
tion) knowledge engineering.
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