
Solving Object-oriented Configuration Scenarios with ASP ∗

Gottfried Schenner and Andreas Falkner
Siemens AG Österreich, Vienna, Austria

gottfried.schenner@siemens.com
andreas.a.falkner@siemens.com

Anna Ryabokon and Gerhard Friedrich
Universität Klagenfurt, Austria

anna.ryabokon@aau.at
gerhard.friedrich@aau.at

Abstract
The main configuration scenarios occurring in the
domain of technical products and systems are con-
sistency checking, completing a partial configura-
tion, reconfiguration of an inconsistent configura-
tion and finding the best knowledge base for fu-
ture reconfigurations. This paper presents OOASP
- a framework for the description of object-oriented
product configurators using answer set program-
ming and shows that it is able to solve the differ-
ent (re)configuration scenarios occurring in prac-
tice. Thus, it is a step forward to close the concep-
tual gap between logic-based and object-oriented
approaches for product configuration.

1 Introduction
A configurator is a software system that enables the user
to design complex technical systems or services based on a
predefined set of components. In modern configuration sys-
tems, domain knowledge - comprising configuration require-
ments (product variability) and customer requirements - is ex-
pressed in terms of component types and relations between
them. Each type is characterized by a set of attributes which
specify the functional and technical properties of real-world
and abstract components of the configurable product. An at-
tribute takes values from within a predefined domain. Fur-
thermore, components are related/connected to each other in
various ways. Each component type has a number of ports
which allow to connect a component of that type with other
components. A possible connection between two component
types is modeled as a relation and its cardinality expresses
the number of components that can be connected to a port. In
most cases, modeling languages used in configuration allow
to specify relations of the following types: classification (is-
a), composition (part-of), association (user defined relations).

For simple customer products, a configuration system aims
at finding a consistent and complete configuration for a given
set of customer requirements and reconfiguration is seldom
an issue. Reconfiguration occurs during the maintenance of

∗This work has been developed within the scope of the project
RECONCILE (reconciling legacy instances with changed ontolo-
gies) and was funded by FFG FIT-IT (grant number 825071).

technical systems with a long life-span, where parts of exist-
ing configurations have to be adapted continuously.

Reconfiguration is especially challenging if an existing
system has to be extended with new functionality that was not
part of the original system design. In this case, some relations
between new and existing components have to be created or
some of the existing relations have to be changed in order
to meet modified configuration requirements. [Falkner and
Haselböck, 2013] discuss typical problems occurring when
configuration requirements are changed. Finding the best de-
sign for future configurations is an important task for the re-
configuration scenario since it allows to reduce costs during
the production process.

In the current paper we present a generic configurator
which uses an object-oriented approach to encode its knowl-
edge base. In order to compute configurations the sys-
tem uses answer set programming (ASP). We illustrate the
mapping from an object-oriented formalism (UML) to logi-
cal descriptions using a simplified real-world example from
Siemens. Additionally, the paper provides different insights
on (re)configuration scenarios such as checking and com-
pleting a configuration, reconciliation and choosing the best
knowledge base for reconciliation. Finally, we discuss chal-
lenges which frequently occur in practice and should be taken
into account while solving (re)configuration problems.

The remainder of this paper is organized as follows: In Sec-
tion 2 we introduce a sample configuration problem used as
example throughout the paper. After an ASP overview in Sec-
tion 3, we describe in Section 4 how object-oriented knowl-
edge bases can be specified using ASP. In Section 5 various
product configuration scenarios are discussed. Section 6 pro-
vides some evaluation details and in Section 7 we conclude.

2 Configuration example
Modules example is a simple hardware configuration prob-
lem. Figure 1 shows the configurable objects of the example
domain in a UML diagram: hardware frames contain up to
five modules of various types (A, B) and elements of various
types are assigned to the modules (one by one). Additionally
to the cardinality constraints implied by the UML diagram
there are the following domain-specific constraints:

• Elements of type ElementA require a module of type
ModuleA

Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich 55

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria



Figure 1: UML diagram for the modules example

• Elements of type ElementB require a module of type
ModuleB

• The position of the modules of a frame must be unique

In a typical configurator scenario for this domain, a user cre-
ates a partial configuration consisting of elements of different
types. Then the configurator extends the configuration by cre-
ating missing modules for the elements and by creating miss-
ing frames and assigning the modules to them. If the user ma-
nipulates a completed configuration, for instance by adding or
removing elements, the configurator can restore consistency
through reconfiguration, usually by keeping as much of the
existing structure of the configured system as possible.

3 Answer set programming overview
Answer set programming is an approach to declarative prob-
lem solving which has its roots in logic programming and
deductive databases. It is a decidable fragment of first-order
logic interpreted under stable model semantics and extended
with default negation, aggregation, and optimization. ASP al-
lows modeling of a variety of (combinatorial) search and op-
timization problems in a declarative way using model-based
problem specification methodology (see e.g. [Gelfond and
Lifschitz, 1988; Eiter et al., 2009; Brewka et al., 2011] for
details). ASP has a long history of being used for product
configuration [Soininen and Niemel, 1998].

An ASP program is a finite set of rules of the form:

a :- b1, . . . , bm, not c1, . . . , not ck. (1)

where a, bi, and cj are atoms of the form
predicate(term1, . . . , termn). A term is either a variable or a
constant.

In most of ASP languages, variables are denoted by strings
starting with uppercase letters and constants as well as pred-
icates by strings starting with lower case letters. An atom
together with its negation is called literal, e.g. a is a
positive and not a is a negative literal. In the rule (1),

the literal a is the head of the rule and the conjunction
b1, . . . , bm, not c1, . . . , not ck is the body. A rule with an empty
head, standing for false, is called an integrity constraint, i.e.
every interpretation that satisfies the body of the constraint
is not an answer set (configuration solution). A rule with an
empty body is called a fact. Rule (1) derives that the atom
a in the head of the rule is true if all literals of the body
are true, i.e. there is a derivation for each positive literal
b1, . . . , bm whereas none of the atoms of the negative literals
not c1, . . . , not ck can be derived.

Processing of a general ASP program P , in which atoms
can contain variables, is done in two stages [Brewka et
al., 2011]. First the program is grounded, i.e. P is re-
placed by a possibly small equivalent propositional program
grnd(P ) in which all atoms are variable-free. In the sec-
ond stage an ASP solver is used to identify answer sets.
Following the definition of configuration problems based
on logical descriptions, presented in [Soininen et al., 2001;
Felfernig et al., 2004], each configuration is a subset of a fi-
nite Herbrand-model. Given the stable model semantics used
in ASP, a Herbrand interpretation I is a model of a program P
iff (a) it satisfies all the rules in P , (b) for every atom ai ∈ I
there exists a justification based on given facts and (c) I is
minimal under set inclusion among all (consistent) interpre-
tations.

In this paper we use an ASP dialect implemented in
Gringo [Gebser et al., 2011]1 which includes a number of ex-
tensions simplifying the presentation of the programs. Thus,
it allows definition of weight constraints which are defined
as l[a1 = w1, . . . , an = wn]u where ai are atoms, wi are weights
of the atoms and l, u are integers specifying lower and upper
bounds. Such constraints allow declaration of choices, i.e.
such number of atoms from the set {a1, . . . , an} must be true
that the sum of corresponding weights is between l and u. If
the lower or upper bounds are missing, then the ASP grounder
substitutes l = 0 and u = n, where n is the sum of the weights
of all atoms in the set. A special case of the weight con-
straints are cardinality constraints where each weight wi = 1.
Cardinality constraints are denoted by curly brackets.

ASP dialects include operators that are used for generating
sets of atoms: The range operator (“..”) is used to generate a
set of atoms such that each atom includes one of the integer
constants from a given range of integers. The generate oper-
ator (“:”) is used in weight constraints to create sets of atoms
used in it.

Example Assume that we want to encode a simple problem
instance of the modules example including two frames with
ids 1 and 2, and six modules with ids ranging from 10 to 15.
These customer requirements can be represented as facts:

frame(1..2). module(10..15).

The relation between modules and frames, i.e. that each mod-
ule must be placed in exactly one frame, is encoded using a
choice rule:

1{mod2fr(X,Y) : frame(Y)}1 :- module(X).

1Potassco ASP suite: http://potassco.sourceforge.net

56 Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria



When the rule above is grounded, the grounder generates six
rules - one for each module. E.g., for module 10 it outputs:
1{mod2fr(10,1), mod2fr(10,2)}1 :- module(10).

In order to allow at most five modules to be put in a frame we
add the following cardinality constraint to our program:
:- frame(X), 6 {mod2fr(Y,X) : module(Y)}.
Due to the cardinality constraint every configuration (answer
set) containing a frame with more than 5 modules will be
eliminated.

Identification of the preferred configuration solution can
be done using the built-in optimization functionality of ASP
solvers. In the ASP dialect used in this paper, the optimiza-
tion is defined on a weighted set of true atoms and indicated
via #minimize or #maximize statements.

4 OOASP framework
OOASP2 is a framework for describing object-oriented
knowledge bases in ASP. A knowledge base consists of the
object model of the configurator and additional constraints
which a valid configuration must satisfy. It is assumed that
the object model of the object-oriented configurator can be
described by an UML class diagram [Rumbaugh et al., 2005].
The structure of a knowledge base and configurations are de-
scribed by special ASP facts. This fact-based language can
be seen as a domain specific language (DSL) for defining
object-oriented knowledge bases and configurations on top
of ASP. The DSL can represent multiple configurator knowl-
edge bases and solutions in one ASP program. The OOASP
framework provides a default implementation for the DSL,
e.g. the interpretation of the fact-based language, in several
program packages (*.lp files). If advanced features (such
as multiple inheritance, automatic symmetry breaking) are
required, the default implementation must be replaced with
alternative implementations, whereas the OOASP-DSL can
stay the same. The OOASP-DSL is largely independent of
special ASP features and can therefore be easily translated to
other formalisms (OWL/RDF, UML, etc.).

4.1 Defining the knowledge base
The knowledge base comprises an object-model describing
types of available components and possible relations between
them. In addition, it can include a number of constraints
on types and relations. To define the object-model of the
configurator with the OOASP-DSL, the following predicates
are used where all IDs are considered to be unique within a
knowledge base.

ooasp_class(KBID,CID)

• Defines a class in the knowledge base KBID 3.
KBID is an id for a knowledge base and CID is an id for
a class within the given knowledge base.

ooasp_subclass(KBID,CID,SUPERCID)

2The ASP code for OOASP is available upon request from the
first author

3To allow uppercase names, OOASP identifiers are strings, not
constants

• Defines an inheritance hierarchy of classes. Although
other interpretations are possible, in this paper the inher-
itance hierarchy is assumed to be a tree (single inheri-
tance).

ooasp_assoc(KBID,ASSOCID,
CID1,C1MIN,C1MAX,CID2,C2MIN,C2MAX)

• Defines the association between classes CID1 and CID2
within given cardinalities, i.e. for every instance of
CID1 there exist at least C2MIN and at most C2MAX
instances of CID2 in the association and vice versa.

ooasp_attribute(KBID,CID,ATTRID,
{"string","integer","boolean"})

• Defines an attribute for the class CID with the given
type.

ooasp_attribute_minInclusive(KBID,CID,
ATTRID,MINVALUE)

• Defines an optional minimum value for integer attributes

ooasp_attribute_maxInclusive(KBID,CID,
ATTRID,MAXVALUE)

• Defines an optional maximum value for integer at-
tributes

ooasp_attribute_enum(KBID,CID,
ATTRID,ENUMVALUE)

• Defines an enum-value (a possible value) for a string at-
tribute.

The mentioned predicates are sufficient to describe the
object-model of a simple object-oriented configurator. Many
features which can be additionally found in object-oriented
systems such as initial values, constants, multi-valued at-
tributes, ordered associations, etc. are currently missing in the
framework, but these features are not relevant to the demon-
stration of the configuration scenarios presented in the paper.
In practice, especially ordered associations and initial values
are a convenient feature of object oriented product configura-
tors.

Example The OOASP-DSL representation for the modules
example corresponds to the following set of facts:
% modules example kb "v1"
% classes
ooasp_class("v1","ConfigObject").
ooasp_class("v1","Frame").
ooasp_class("v1","Module").
ooasp_class("v1","ModuleA").
ooasp_class("v1","ModuleB").
ooasp_class("v1","Element").
ooasp_class("v1","ElementA").
ooasp_class("v1","ElementB").

% class inheritance
ooasp_subclass("v1","Frame","ConfigObject").
ooasp_subclass("v1","Module","ConfigObject").
ooasp_subclass("v1","Element","ConfigObject").
ooasp_subclass("v1","ElementA","Element").
ooasp_subclass("v1","ElementB","Element").

Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich 57

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria



ooasp_subclass("v1","ModuleA","Module").
ooasp_subclass("v1","ModuleB","Module").

% attributes and associations
% class Frame
ooasp_assoc("v1","Frame_modules",

"Frame",1,1,
"Module",0,5).

% class Module
ooasp_attribute("v1","Module","position","integer").
ooasp_attribute_minInclusive("v1",

"Module","position",1).
ooasp_attribute_maxInclusive("v1",

"Module","position",5).

% class Element
ooasp_assoc("v1","Element_module",

"Element",1,1,
"Module",1,1).

4.2 Defining a configuration
A (partial) configuration is an instantiation of the object-
model. A valid configuration is a configuration where no
constraint is violated. It represents a buildable artifact of the
configured system.

As with knowledge-bases, OOASP allows the representa-
tions of multiple configurations within one ASP program. We
use the following predicates to define a (partial) configura-
tion:
ooasp_configuration(KBID, CONFIGID)

• Declares that the configuration CONFIGID belongs to
the knowledge base KBID. Every configuration has a
unique ID and belongs to exactly one knowledge base.

ooasp_isa(CONFIGID, CID, OBJECTID)

• The object with the id OBJECTID is an instance of the
class CID in the configuration CONFIGID. If an object
is an instance of a class, it must also be an instance of
one of its leaf classes (i.e. class without subclasses).

ooasp_associated(CONFIGID,ASSOCID,
OBJECTID1,OBJECTID2)

• The objects with the OBJECTID1 and OBJECTID2 are
associated in the association ASSOCID in the configu-
ration CONFIGID.

ooasp_attribute_value(CONFIGID,ATTRID,
OBJECTID,VALUE)

• The attribute ATTRID of the object OBJECTID has the
value VALUE in the configuration CONFIGID.

Example The following configuration consisting of one
frame, one module, and one element is not valid. It would
be valid if the module 10 was a ModuleB.
ooasp_configuration("v1","c1").
ooasp_isa("c1","Frame",1).
ooasp_isa("c1","ModuleA",10).
ooasp_attribute_value("c1","position",10,5).
ooasp_isa("c1","ElementB",20).
ooasp_associated("c1","Frame_modules",1,10).
ooasp_associated("c1","Element_module",20,10).

4.3 Defining constraints
There are two different kinds of constraints in OOASP: in-
tegrity constraints and domain-specific constraints. Both are
implemented as ASP rules which derive an atom ooasp_cv
(head) for each constraint violation expressed in the body.
The derived atom can be used for explanations.

Integrity constraints are generic constraints derived from
the object model of the knowledge base. Implementations of
integrity constraints are provided by the OOASP framework
in program package ooasp check.lp, e.g. for the constraint
which checks the minimal cardinality of associations:

% Derive ooasp_cv(CONF,mincardviolated(ID1,ASSOC))
% whenever there are less objects associated
% with object ID1 than allowed by the cardinality
% restriction of the association
ooasp_cv(CONF,mincardviolated(ID1,ASSOC)) :-

{ ooasp_associated(CONF,ASSOC,ID1,ID2):
ooasp_isa(CONF,C2,ID2) } C2MIN-1,

C2MIN>0,
ooasp_isa(CONF,C1,ID1),
ooasp_assoc(KBID,ASSOC,

C1,C1MIN,C1MAX,C2,C2MIN,C2MAX),
ooasp_configuration(KBID,CONF).

In addition to the integrity constraints, a knowledge engi-
neer can define domain-specific constraints for a knowledge
base. These are constraints that can not be derived automati-
cally from the knowledge base.

Example The first of the constraints in the modules exam-
ples may be implemented as follows:

% ElementA requires ModuleA
ooasp_cv(CONF,wrongModuleType(E,M)) :-

ooasp_configuration("v1",CONF),
ooasp_associated(CONF,"Element_module",E,M),
ooasp_isa(CONF,"ElementA",E),
not ooasp_isa(CONF,"ModuleA",M).

5 Product Configuration Scenarios
This section describes some of the typical scenarios for an
object-oriented product configurator.

5.1 Checking a Configuration
Checking a (partial) configuration evaluates the integrity
constraints of the knowledge base and the domain-specific
constraints for a configuration under closed world assump-
tion, i.e. during the checking no new objects are instantiated.

In an interactive configurator, checking the current config-
uration highlights the parts of the configuration that need to
be changed by a user.

Example Checking the minimal configuration consisting of
only one element of type A

ooasp_isa("c2","ElementA",10).

will derive a cardinality violation

ooasp_cv("c2",mincardviolated(10,"Element_module")).

58 Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria



Figure 2: Checking a configuration

for the association between element and module, indicating
that there must be a module for the element with OBJECTID
10.

The constraint violations derived during checking can also
guide a repair-based solver to repair the current configuration
[Falkner et al., 2011]. If checking does not find any con-
straint violation, the current configuration is valid. The pro-
cess of checking a configuration within OOASP framework
is depicted in Figure 2.

5.2 Completing a Configuration
Given a possible empty (partial) configuration, find an ex-
tension of the configuration that satisfies all constraints. No
fact of the given configuration may be removed. If no such
extension can be found, the current configuration is either in-
consistent or there is no valid configuration with the given
upper bounds for object instances.

Completing a configuration can be accomplished by enu-
merating all possible extensions of the given configuration
until a valid configuration is found. Figure 3 shows the nec-
essary program packages for completing a configuration.

Figure 3: Completing a configuration

To enumerate all possible configurations one has to instan-
tiate objects according to customer requirements. The num-
ber of the possible instances is controlled by the predicate
ooasp_domain(CONFIGID, CID, OBJID)

• The object with the OBJID can be instantiated to one of
the leaf-classes of class CID.

The ooasp_domain facts define the available object IDs
for a configuration. The object IDs are unique within a con-
figuration. Every object ID can represent one instance of a
leaf-class. However, the classes used in the ooasp_domain
predicates can be non-leaf-classes as well. Therefore, the
number of ooasp_domain facts for each class CID is equal
to the maximal number of its instances in the configura-
tion CONFIGID. From the ooasp_domain facts the possi-
ble types of every object ID in a configuration are derived
(ooasp_canbe), searching up and down the class hierarchy
(see (1) in Figure 4). The ooasp_isa facts (2) are derived
upwards only. This approach of controlling instantiation is
similar to the notion of a scope in Alloy [Jackson, 2011].

Example ooasp_domain("c3","Module",20) allows
the object with OBJECTID 20 to become either a ModuleA
or a ModuleB but not Frame. In a second step it may be
set explicitly to be a ModuleA. Figure 4 shows the derived
information after the object has been instantiated this way.

Figure 4: Controlling instantiation

The enumeration of all possible configurations is accom-
plished by instantiating objects and setting associations and
attributes. The default implementation for instantiating ob-
jects is done in program package ooasp config.lp:
% instantiate objects
0 { ooasp_isa(CONF,LEAFCLASS,ID) :

ooasp_leafclass(V,LEAFCLASS) :
ooasp_canbe(CONF,LEAFCLASS,ID) } 1 :-

ooasp_domain(CONF,C,ID),
ooasp_configuration(V,CONF).

This means that every object ID can become an instance
of one of its possible leaf-class types. Associations are set
in a similar matter. Every instance in the configuration can
be associated with all other possible instances in the config-
uration. Constraints ensure that only instantiated objects are
associated.
% associate objects
C2MIN { ooasp_associated(CONF,ASSOC,ID1,ID2):

ooasp_canbe(CONF,C2,ID2) } :-
ooasp_isa(CONF,C1,ID1),
ooasp_assoc(V,ASSOC,C1,C1MIN,C1MAX,C2,C2MIN,C2MAX),
ooasp_configuration(V,CONF).

Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich 59

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria



% type check - only use instantiated objects
:- ooasp_associated(CONFIG,ASSOC,ID1,ID2),

not ooasp_isa(CONFIG,C2,ID2),
ooasp_assoc(V,ASSOC,C1,C1MIN,C1MAX,C2,C2MIN,C2MAX),
ooasp_configuration(V,CONFIG).

Finally, there must be a generating rule for all possible val-
ues of the attributes of an object. The following shows the
generating rule for integer attributes.
% set attribute values for integer attributes
1 { ooasp_attribute_value(CONFIG,N,ID,VALUE):

VALUE=MIN..MAX } 1 :-
ooasp_attribute(V,C,N,T),
ooasp_isa(CONFIG,C,ID),
ooasp_attribute_minInclusive(V,C,N,MIN),
ooasp_attribute_maxInclusive(V,C,N,MAX),
ooasp_configuration(V,CONFIG).

Example Figure 5 shows a completed configuration for
the partial configuration c3 below. It contains three in-
stances of ElementA and two instances of ElementB. Note
that ooasp_isa is given as customer requirement only for
those elements. For modules, only the ooasp_domain is
given and only 5 of the available 10 IDs are used in the com-
pleted configuration.
% Partial configuration
ooasp_configuration("v1","c3").
ooasp_domain("c3","Frame",1).
ooasp_domain("c3","ElementA",10..12).
ooasp_isa("c3","ElementA",10..12).
ooasp_domain("c3","ElementB",13..14).
ooasp_isa("c3","ElementB",13..14).
ooasp_domain("c3","Module",20..29).

Figure 5: Complete configuration for the modules example

5.3 Reconciliation
Given a complete legacy configuration and the changed
knowledge base which makes the configuration invalid, find
a new valid configuration that is close to the legacy configu-
ration.

Reconciliation of a configuration is illustrated in Figure 6.
OOASP uses the same cost-based reconciliation approach as
described in [Friedrich et al., 2011]. For every change in the
legacy configuration, a cost can be defined. This allows a fine
control over the reconfiguration process. The optimal recon-
ciliation is the reconfiguration that minimizes the costs. For
example, the rule for reconciling associations either keeps the

Figure 6: Reconcile a configuration

link between two objects in the legacy configuration or re-
moves it. Reconciliation is controlled by the following pred-
icates:

ooasp_reconcile(LEGACY,RECONCILED)

• Activates reconciliation from configuration LEGACY to
the configuration RECONCILED

ooasp_cost_instance(KB,CID,ADD,REMOVE)

• Defines the costs for adding and removing instances of
class CID

ooasp_cost_assoc(KB,ASSOC,ADD,REMOVE)

• Defines the costs for adding and removing a link to/from
the association ASSOC

ooasp_cost_attribute(KB,ATTR,COST)

• Defines the cost for changing attribute ATTR

ooasp_rcost(CHANGEOFLEGACYCONFIGURATION,COST)

• For every modification of the legacy configuration an
ooasp_rcost atom is derived, defining the COST of the
modification. The best reconciliation is the one that min-
imizes the overall cost of the ooasp_rcost atoms, i.e.
#minimize[ooasp_rcost(CHANGE,COST)=COST].

The following listing shows the implementation of the
rules for reconciling associations:

% either reuse link or remove it:
% ooasp_remove_associated is derived,
% if a link is removed
1 { ooasp_associated(RECONCILED,ASSOC,ID1,ID2),

ooasp_remove_associated(RECONCILED,ASSOC,
ID1,ID2) } 1 :-

ooasp_associated(LEGACY,ASSOC,ID1,ID2),
ooasp_reconcile(LEGACY,RECONCILED).

% derive the reconfiguration costs
% ooasp_rcost contains the overall costs
ooasp_rcost(ooasp_remove_assoc(ID1,ID2),REMOVE) :-

ooasp_remove_associated(RECONCILED,ASSOC,ID1,ID2),
ooasp_cost_assoc(KB,ASSOC,ADD,REMOVE),
ooasp_configuration(KB,RECONCILED),
ooasp_reconcile(LEGACY,RECONCILED).

60 Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria



Example Suppose after the first systems of our example do-
main have been built, there is evidence of a previously un-
known overheating problem if two modules of type A are put
next to each other in a frame. Thus, to prevent overheating
we have to add a new constraint to the knowledge base that
disallows putting two modules of type A next to each other.
% do not put 2 modules of type moduleA
% next to each other
ooasp_cv(CONF,moduleANextToOther(M1,M2,P1,P2)):-

ooasp_configuration("v2",CONF),
ooasp_associated(CONF,"Frame_modules",F,M1),
ooasp_associated(CONF,"Frame_modules",F,M2),
ooasp_attribute_value(CONF,"position",M1,P1),
ooasp_attribute_value(CONF,"position",M2,P2),
M1!=M2,
ooasp_isa(CONF,"ModuleA",M1),
ooasp_isa(CONF,"ModuleA",M2),
P2=P1+1.

Figure 7: Reconciled configuration for the modules example

Because of the added constraint the legacy configuration in
Figure 5 is no longer valid. Using reconciliation with equal
costs for all changes to the configuration results in the new
configuration shown in Figure 7.

5.4 Choosing the best knowledge base for
reconciliation

Given a new technical requirement and N knowledge bases
satisfying that requirement, choose the knowledge base that
minimizes the costs for reconciling legacy configurations and
the estimated costs for building a new system and maintaining
existing systems.

Note that the costs for maintaining systems may also con-
tain the costs for future reconciliations. Often there are many
different technical solutions satisfying new requirements af-
fecting existing systems. The choice of a technical solu-
tion that minimizes the costs for reconciliation of the legacy
systems is an important problem to be solved. Given costs
for various system modifications, we have to find a solution
which corresponds to the most cost-effective reconciliation.

Example A possible technical solution for the overheating
modules is to avoid putting the modules next to each other.
Suppose there is an alternative technical solution replacing
module A with a new module ANEW, which does not have
the overheating problem.

Figure 8: Reconciled configuration with the module of type
ANEW

Reconcilation in the alternative knowledge base consists in
replacing modules of type A with modules of type ANEW,
but no rearranging is necessary. The result is shown in Fig-
ure 8. If modules of type A can be used together with type
ANEW then it is sufficient to just replace module A 21 with
module ANEW 31.

Which technical solution shall be chosen? To answer this
question one has to find the affected configurations. With
a framework like OOASP, the effected legacy configurations
(i.e. deployed systems which must be reconfigured) can be
computed by checking the constraint representing the new
technical requirement in all available legacy configurations.
Note that legacy configurations may use earlier versions of
the knowledge base. In this case the legacy configurations
must be upgraded to the current version of the knowledge
base or the constraint must be expressed in terms of the legacy
knowledge bases.

Using the reconcile scenario one can compute how costly it
would be to modify the existing legacy configurations to the
available technical solutions.

The cost for new systems can be estimated by computing
the configuration cost of existing legacy systems, i.e. how
costly it would have been to build these systems from scratch
with the new knowledge bases. This can be computed by
a configurator using the initial (partial) configuration, i.e. the
customer requirements and completing the configuration with
the new knowledge base.

The costs for future reconciliations are hard to compute in
general, unless there is some knowledge about the future re-
quirements. Otherwise, one has to estimate how often the
critical constellations will occur. By concentrating on the
most probable reconcile scenarios of a product configurator,
one can simulate these reconciliation scenarios using alterna-
tive knowledge bases and compare their costs.

6 Evaluation
The main purpose of OOASP is to demonstrate the behavior
of an object-oriented configurator within a logical framework.
Therefore, performance was not the main focus of this paper.
Since OOASP uses a similar approach as [Friedrich et al.,
2011], its performance is similar, too.

For checking configurations, the framework proved to be
able to handle more than 1000 components for integrity con-

Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich 61

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria



straints and simple domain-specific constraints. Of course,
one can always come up with complex constraints, like find-
ing all paths in a graph, for which computation of logical
models is infeasible.

Completing a configuration can be handled for problems
with hundreds of components. The main limiting factor
here is the grounding size. The grounding explodes since
the generic translation of UML to ASP rules of the default
OOASP implementation associates every possible object of
one related type with every other possible object of the other
type. The grounding of the module example with 200 objects
is already greater than 500 MB. One can reduce the ground-
ing size by replacing the rules of the generic translation with
special instantiation rules as follows:

% associate objects
% special implementation
% ’create’ a module for every element
% at a fixed object ID
1 {ooasp_associated(CONF,

"Element_module",
ID1,1000+ID1)} 1:-

ooasp_isa(CONF,"Element",ID1),
ooasp_configuration(V,CONF).

This is similar to automatically generating subobjects in
an object-oriented setting. However, these special rules can
no longer be used for reconfiguration, because they assume
that for every element there is a unique module at a fixed ob-
ject ID. Another way to avoid the explosion of grounding size
would be to use a constraint-based model. Additional limit-
ing factor is the current lack of ASP to incorporate domain-
specific heuristics into the solving, which is a topic of active
research.

7 Conclusions
This paper demonstrates the implementation of a small
object-oriented product configurator on top of ASP. The
framework contains a domain-specific language for specify-
ing knowledge bases and configurations, that can be easily
translated to other formalisms (OWL/RDF, UML/Java).

Evaluations showed that checking constraints relative to a
given configuration can be done effectively. However, finding
(re)configurations efficiently remains a challenge for large-
scale product configuration. The main obstacle for SAT- and
ASP-based approaches seems to be the explosion of ground-
ing. In addition, the identification of appropriate domain-
specific heuristics is an open problem for all search-based
approaches.

By defining typical configuration scenarios we hope to
raise awareness to often neglected aspects of product config-
uration. We demonstrated the handling of these scenarios in
ASP and are going to continue this work for other formalisms
such as constraint programming, RDF/OWL, etc.

References
[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and

Miroslaw Truszczynski. Answer set programming at a
glance. Communications of the ACM, 54(12):92–103,
2011.

[Eiter et al., 2009] Thomas Eiter, Giovambattista Ianni, and
Thomas Krennwallner. Answer set programming: A
primer. In Reasoning Web, pages 40–110, 2009.

[Falkner and Haselböck, 2013] Andreas Falkner and Alois
Haselböck. Challenges of Knowledge Evolution in Prac-
tice. AI Communications, 26:3–14, 2013.

[Falkner et al., 2011] Andreas Falkner, Alois Haselböck,
Gottfried Schenner, and Herwig Schreiner. Modeling and
solving technical product configuration problems. Arti-
ficial Intelligence for Engineering Design, Analysis and
Manufacturing, 25:115–129, 2011.

[Felfernig et al., 2004] Alexander Felfernig, Gerhard
Friedrich, Dietmar Jannach, and Markus Stumptner.
Consistency-based diagnosis of configuration knowledge
bases. Artificial Intelligence, 152(2):213–234, 2004.

[Friedrich et al., 2011] Gerhard Friedrich, Anna Ryabokon,
Andreas A. Falkner, Alois Haselböck, Gottfried Schenner,
and Herwig Schreiner. (Re)configuration based on model
generation. In Conrad Drescher, Ins Lynce, and Ralf
Treinen, editors, LoCoCo, volume 65 of EPTCS, pages
26–35, 2011.

[Gebser et al., 2011] Martin Gebser, Benjamin Kaufmann,
Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Marius Thomas Schneider. Potassco: The Potsdam answer
set solving collection. AI Communications, 24(2):105–
124, 2011.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In 5th International Conference and
Symposium on Logic Programming, pages 1070–1080,
1988.

[Jackson, 2011] D. Jackson. Software Abstractions: Logic,
Language and Analysis. Mit Press, 2011.

[Rumbaugh et al., 2005] James Rumbaugh, Ivar Jacobson,
and Grady Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 2 edition, 2005.

[Soininen and Niemel, 1998] Timo Soininen and Ilkka
Niemel. Formalizing configuration knowledge using rules
with choices. In Seventh International Workshop On
Nonmonotonic Reasoning, 1998.

[Soininen et al., 2001] Timo Soininen, Ilkka Niemelä, Juha
Tiihonen, and Reijo Sulonen. Representing configuration
knowledge with weight constraint rules. In 1st Interna-
tional Workshop on Answer Set Programming: Towards
Efficient and Scalable Knowledge, pages 195–201, 2001.

62 Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria


